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Today's Learning GoalsToday's Learning Goals
Learn how condition variables can let threads signal to each other

Get practice with the "available permits" resource model

Learn what a semaphore is and how it is implemented
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Threads allow a process to parallelize a problem across multiple cores

Consider a scenario where we want to process 250 images and have 10 cores

Simulation: let each thread help process images until none are left

// images.cc 
int main(int argc, const char *argv[]) { 
  thread processors[10]; 
  size_t remainingImages = 250; 
  for (size_t i = 0; i < 10; i++) 
    processors[i] = thread(process, 101 + i, ref(remainingImages)); 
  for (thread& proc: processors) proc.join(); 
  cout << "Images done!" << endl; 
  return 0; 
}

Race Conditions and MutexesRace Conditions and Mutexes
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There is a race condition here!

Problem: multiple threads could access remainingImages between lines 2 and 4.

 

 

 

Why is this? It's because remainingImages > 0 test and remainingImages-- aren't atomic

Atomicity: externally, the code has either executed or not; external observers do not see any

intermediate states mid-execution

If a thread evaluates remainingImages > 0 to be true and commits to processing an image,

another thread could come in and claim that same image before this thread processes it.

Race Conditions and MutexesRace Conditions and Mutexes

static void process(size_t id, size_t& remainingImages) {
    while (remainingImages > 0) {
        sleep_for(500);  // simulate "processing image"
        remainingImages--;
        ...
    }
    ...
}
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C++ statements are not inherently atomic - anything that takes more than 1 assembly

instruction could be interleaved or interrupted.

E.g. even remainingImages-- takes multiple assembly instructions:

 

 

 

 

 

Each core has its own registers that it has to read from

Each thread makes a local copy of the variable before operating on it

Problem: What if multiple threads do this simultaneously?  They all think there's only 128

images remaining and process 128 at the same time!

Race Conditions and MutexesRace Conditions and Mutexes

// gets remainingImages 
0x0000000000401a9b <+36>:    mov    -0x20(%rbp),%rax 
0x0000000000401a9f <+40>:    mov    (%rax),%eax 
 
// Decrements by 1 
0x0000000000401aa1 <+42>:    lea    -0x1(%rax),%edx 
 
// Saves updated value 
0x0000000000401aa4 <+45>:    mov    -0x20(%rbp),%rax 
0x0000000000401aa8 <+49>:    mov    %edx,(%rax)
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MutexMutex

https://www.flickr.com/photos/ofsmallthings/8220574255

A mutex is a variable type that
represents something like a
"locked door".

You can lock the door:

- if it's unlocked, you go through the
door and lock it

- if it's locked, you  wait for it to unlock
first

 

If you most recently locked the door,
you can unlock the door:

- door is now unlocked, another may
go in now
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A mutex is a type used to enforce mutual exclusion, i.e., a critical section

Mutexes are often called locks

When a thread locks a mutex...

If the lock is unlocked: the thread takes the lock and continues execution

If the lock is locked: the thread blocks and waits until the lock is unlocked

If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock

When a thread unlocks a mutex, it continues normally; one waiting thread (if any) takes the lock

and is scheduled to run

class mutex { 
public: 
  mutex();        // constructs the mutex to be in an unlocked state 
  void lock();    // acquires the lock on the mutex, blocking until it's unlocked 
  void unlock();  // releases the lock and wakes up another threads trying to lock it 
};

Mutex - Mutual ExclusionMutex - Mutual Exclusion
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Goal: keep critical sections as small as possible to maximize concurrent execution

Note: we don't need to lock around printing out remainingImages - reading a size_t has no risk of corruption

static void process(size_t id, size_t& remainingImages, mutex& counterLock) {
  while (true) {
    size_t myImage;
    
    counterLock.lock();
    if (remainingImages == 0) {
      counterLock.unlock();
      break;
    } else {
      myImage = remainingImages;
      remainingImages--;
      counterLock.unlock();
 
      processImage(myImage);
      
      cout << oslock << "Thread#" << id << " processed an image (" << remainingImages 
      << " remain)." << endl << osunlock;
    }
  }
  cout << oslock << "Thread#" << id << " sees no remaining images and exits." 
  << endl << osunlock;
}
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Critical Sections Can Be BottlenecksCritical Sections Can Be Bottlenecks
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Hardware provides atomic memory operations to build on top of: e.g. "compare and swap"

 cas old, new, addr - instruction that says if addr == old, set addr to new
Idea: use this as a single bit to see if the lock is held - if not, take it - if it is, enqueue yourself in a thread-safe
way and tell kernel to sleep you
When a node unlocks, it clears the bit and wakes up a thread

 

Caches add an additional challenge:

Each core has its own cache
Writes are typically write-back (write to higher cache level when line is evicted), not write-through
(always write to main memory) for performance
Caches are coherent -- if one core writes to a cache line that is also in another core's cache, the other core's
cache line is invalidated: this can become a performance problem

How Do Mutexes Work?How Do Mutexes Work?
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This is a  of the potential for
deadlock and how to avoid it.

canonical multithreading example

Dining Philosophers ProblemDining Philosophers Problem

https://commons.wikimedia.org/wiki/File:An_illus

tration_of_the_dining_philosophers_problem.png 
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This is a  of the potential for
deadlock and how to avoid it.
Five philosophers sit around a circular table, eating spaghetti
There is one fork for each of them
Each philosopher thinks, then eats, and repeats this three times
for their three daily meals.
To eat, a philosopher must grab the fork on their left and the fork
on their right.  With two forks in hand, they chow on spaghetti to
nourish their big, philosophizing brain. When they're full, they
put down the forks in the same order they picked them up and
return to thinking for a while.
To think, the a philosopher keeps to themselves for some amount
of time.  Sometimes they think for a long time, and sometimes
they barely think at all.
Let's take our first attempt. (The full program is .)

canonical multithreading example

right here
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Dining Philosophers ProblemDining Philosophers Problem
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Goal: we must encode resource constraints into our program.

Example: how many philosophers can hold a fork at the same time? One.

How can we encode this into our program?  Let's make a mutex for each fork.
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Goal: we must encode resource constraints into our program.

Example: how many philosophers can hold a fork at the same time? One.

How can we encode this into our program?  Let's make a mutex for each fork.

Each philosopher either holds a fork or doesn't.
A philosopher grabs a fork by locking that mutex.  If the fork is available, the philosopher continues.
 Otherwise, it blocks until the fork becomes available and it can have it.
A philosopher puts down a fork by unlocking that mutex.
static void philosopher(size_t id, mutex& left, mutex& right) {
  ...
}
 
int main(int argc, const char *argv[]) {
  mutex forks[5];
  thread philosophers[5];
  for (size_t i = 0; i < 5; i++) {
    mutex& left = forks[i], & right = forks[(i + 1) % 5];
    philosophers[i] = thread(philosopher, i, ref(left), ref(right));
  }
  for (thread& p: philosophers) p.join();
  return 0;
}
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A philosopher thinks, then eats, and repeats this three times.  

think is modeled as sleeping the thread for some amount of time

static void think(size_t id) { 
  cout << oslock << id << " starts thinking." << endl << osunlock; 
  sleep_for(getThinkTime()); 
  cout << oslock << id << " all done thinking. " << endl << osunlock; 
} 
 
static void eat(size_t id, mutex& left, mutex& right) { 
  ... 
} 
 
static void philosopher(size_t id, mutex& left, mutex& right) { 
  for (size_t i = 0; i < kNumMeals; i++) { 
    think(id); 
    eat(id, left, right); 
  } 
}

Dining Philosophers ProblemDining Philosophers Problem
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A philosopher thinks, then eats, and repeats this three times.  

eat is modeled as grabbing the two forks, sleeping for some amount of time, and putting the
forks down.

static void eat(size_t id, mutex& left, mutex& right) {
  left.lock();
  right.lock();
  cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
  sleep_for(getEatTime());
  cout << oslock << id << " all done eating." << endl << osunlock;
  left.unlock();
  right.unlock();
}
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Dining Philosophers ProblemDining Philosophers Problem
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Food For ThoughtFood For Thought

19



What if: all philosophers grab their left fork and then go off the CPU?
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What if: all philosophers grab their left fork and then go off the CPU?

deadlock!  All philosophers will wait on their right fork, which will never become available.
Testing our hypothesis: insert a sleep_for call on line 3, between getting left fork and right fork
We should be able to insert a sleep_for call anywhere in a thread routine and have no
concurrency issues.
static void eat(size_t id, mutex& left, mutex& right) {
  left.lock();
  sleep_for(5000);  // artificially force off the processor
  right.lock();
  cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
  sleep_for(getEatTime());
  cout << oslock << id << " all done eating." << endl << osunlock;
  left.unlock();
  right.unlock();
}
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Food For ThoughtFood For Thought
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When coding with threads, you need to ensure that:

there are never any race conditions
there's zero chance of deadlock; otherwise a subset of threads are forever starved
Race conditions can generally be solved with mutexes.

We use them to mark the boundaries of critical regions and limit the number of threads
present within them to be at most one.

Deadlock can be programmatically prevented by implanting directives to limit the number of
threads competing for a shared resource.   What does this look like?

Race Conditions and DeadlockRace Conditions and Deadlock

20



Plan For TodayPlan For Today
Recap: Race Conditions and Mutexes

Recap: Dining With Philosophers

Encoding Resource Constraints

Condition Variables

Break: Announcements

Semaphores

Thread Coordination

Example: Reader-Writer

21



Race Conditions and DeadlockRace Conditions and Deadlock
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Goal: we must encode resource constraints into our program.

Example: how many philosophers can try to eat at the same time? Four.

How can we encode this into our program?

 

What does this look like in code?

Race Conditions and DeadlockRace Conditions and Deadlock
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Goal: we must encode resource constraints into our program.

Example: how many philosophers can try to eat at the same time? Four.

Alternative: how many philosophers can eat at the same time? Two.
Why might the first one be better?  Imposes less bottlenecking while still solving the issue.

How can we encode this into our program?

let's add another shared variable representing a count of "permits" or "tickets" available.
In order to try to eat (aka grab forks at all) a philosopher must get a permit
Once done eating, a philosopher must return their permit

 

What does this look like in code?

If there are permits available (count > 0) then decrement by 1 and continue
If there are no permits available (count == 0) then block until a permit is available
To return a permit, increment by 1 and continue

Race Conditions and DeadlockRace Conditions and Deadlock
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Let's add a new variable in main called permits, and a lock for it called permitsLock, so that we
can update it without race conditions.
We pass these to each philosopher by reference.
The full program can be found .right here

int main(int argc, const char *argv[]) {
  // NEW
  size_t permits = 4;
  mutext permitsLock;
  
  mutex forks[5];
  thread philosophers[5];
  for (size_t i = 0; i < 5; i++) {
    mutex& left = forks[i], & right = forks[(i + 1) % 5];
    philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits), ref(permitsLock));
  }
  for (thread& p: philosophers) p.join();
  return 0;
}
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Tickets, Please...Tickets, Please...
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Each philosopher takes two additional parameters as a result.
The implementation of think does not change, as it does not use permits.
The full program can be found .right here

static void philosopher(size_t id, mutex& left, mutex& right,
                        size_t& permits, mutex& permitsLock) {
  for (size_t i = 0; i < kNumMeals; i++) {
    think(id);
    eat(id, left, right, permits, permitsLock);
  }
}
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Tickets, Please...Tickets, Please...
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The implementation of eat changes:

Before eating, the philosopher must get a permit
After eating, the philosopher must return their permit.

The full program can be found .right here

static void eat(size_t id, mutex& left, mutex& right, size_t& permits, mutex& permitsLock) {
  // NEW
  waitForPermission(permits, permitsLock);
  
  left.lock();
  right.lock();
  cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock;
  sleep_for(getEatTime());
  cout << oslock << id << " all done eating." << endl << osunlock;
  
  // NEW
  grantPermission(permits, permitsLock);
  
  left.unlock();
  right.unlock();
}
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Tickets, Please...Tickets, Please...
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How do we implement grantPermission?
Recall: "To return a permit, increment by 1 and continue"

static void grantPermission(size_t& permits, mutex& permitsLock) {
  permitsLock.lock();
  permits++;
  permitsLock.unlock();
}

1
2
3
4
5

grantPermissiongrantPermission

26



How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

waitForPermissionwaitForPermission
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How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

static void waitForPermission(size_t& permits, mutex& permitsLock) {
  while (true) {
    permitsLock.lock();
    if (permits > 0) break;
    permitsLock.unlock();
    sleep_for(10);
  }
  permits--;
  permitsLock.unlock();
}
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How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

static void waitForPermission(size_t& permits, mutex& permitsLock) {
  while (true) {
    permitsLock.lock();
    if (permits > 0) break;
    permitsLock.unlock();
    sleep_for(10);
  }
  permits--;
  permitsLock.unlock();
}
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waitForPermissionwaitForPermission

Problem:  this is busy waiting!
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It would be nice if....someone could let usIt would be nice if....someone could let us
know when they return their permit.know when they return their permit.

 Then, we can sleep until this happens. Then, we can sleep until this happens.
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Plan For TodayPlan For Today
A  condition variable is a variable that can be shared across threads and used for one

thread to notify to another thread when something happens.  A thread can also use this to

wait until it is notified by another thread.
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A  condition variable is a variable that can be shared across threads and used for one

thread to notify to another thread when something happens.  A thread can also use this to

wait until it is notified by another thread.

 

 

 

 

 

class condition_variable_any { 
public: 
   void wait(mutex& m); 
   template <typename Pred> void wait(mutex& m, Pred pred); 
   void notify_one(); 
   void notify_all(); 
}; 

30



Plan For TodayPlan For Today
A  condition variable is a variable that can be shared across threads and used for one

thread to notify to another thread when something happens.  A thread can also use this to

wait until it is notified by another thread.

 

 

 

 

 

We can call wait to sleep until another thread signals this condition variable.

class condition_variable_any { 
public: 
   void wait(mutex& m); 
   template <typename Pred> void wait(mutex& m, Pred pred); 
   void notify_one(); 
   void notify_all(); 
}; 
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Plan For TodayPlan For Today
A  condition variable is a variable that can be shared across threads and used for one

thread to notify to another thread when something happens.  A thread can also use this to

wait until it is notified by another thread.

 

 

 

 

 

We can call wait to sleep until another thread signals this condition variable.

We can call notify_all to send a signal to waiting threads.

class condition_variable_any { 
public: 
   void wait(mutex& m); 
   template <typename Pred> void wait(mutex& m, Pred pred); 
   void notify_one(); 
   void notify_all(); 
}; 
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How do we implement waitForPermission?
Recall:

"If there are permits available (count > 0) then decrement by 1 and continue"
"If there are no permits available (count == 0) then block until a permit is available"

 

Idea:

when someone returns a permit and it is the only one now available, signal.
if we need a permit but there are none available, wait.

waitForPermissionwaitForPermission
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Full program: 

Now we must create a condition variable to pass by reference to all threads.

here

int main(int argc, const char *argv[]) {
  size_t permits = 4;
  mutex forks[5], m;
  
  // NEW
  condition_variable_any cv;
  
  thread philosophers[5];
  for (size_t i = 0; i < 5; i++) {
    mutex& left = forks[i], & right = forks[(i + 1) % 5];
    philosophers[i] = 
       thread(philosopher, i, ref(left), ref(right), ref(permits), ref(cv), ref(m));
  }
  for (thread& p: philosophers) p.join();
  return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
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15
16

Condition VariablesCondition Variables
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Full program: 

For grantPermission, we must signal when we make permits go from 0 to 1.

here

static void grantPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
  m.lock();
  permits++;
  if (permits == 1) cv.notify_all();
  m.unlock();
}
 

1
2
3
4
5
6
7

grantPermissiongrantPermission
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Full program: 

For waitForPermission, if no permits are available we must wait until one becomes available.

 

 

 

 

Here's what cv.wait does:

it puts the caller to sleep and unlocks the given lock, all atomically
it wakes up when the cv is signaled
upon waking up, it tries to acquire the given lock (and blocks until it's able to do so)
then, cv.wait returns

here

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) {
  m.lock();
  while (permits == 0) cv.wait(m);
  permits--;
  m.unlock();
}

1
2
3
4
5
6

waitForPermissionwaitForPermission

34

http://web.stanford.edu/class/cs110/examples/threads-cpp/dining-philosophers-with-cv-wait-one.cc


The  Problem, continued

while loops around cv.wait(m) calls are so common that the 
condition_variable_any class exports a second, two-argument version of wait
whose implementation is a while loop around the first. That second version looks
like this: 
 
 
 
 
It's a template method, because the second argument supplied via pred can be
anything capable of standing in for a zero-argument, bool-returning function.
The first waitForPermissions can be rewritten to rely on this new version, as with:

Dining Philosophers

template <Predicate pred> 
void condition_variable_any::wait(mutex& m, Pred pred) { 
  while (!pred()) wait(m); 
} 
 

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  cv.wait(m, [&permits] { return permits > 0; }); 
  permits--; 
} 

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables
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AnnouncementsAnnouncements
Midterm This Friday

Midterm info webpage with practice materials, BlueBook download:

cs110.stanford.edu/exams/midterm/

Please notify us of any OAE accommodations by today

We use BlueBook, computerized testing software you will run on your laptop. If you

don't have a laptop to use, let us know by today.

Review Session tonight 7-8:30PM in Hewlett 201 (recorded)
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The lock_guard is a convenience class whose constructor calls lock on the supplied mutex and whose destructor calls
unlock on the same mutex. It's a convenience class used to ensure the lock on a mutex is released no matter how the
function exits (early return, standard return at end, exception thrown, etc.)
Here's how we could use it in waitForPermission and grantPermission:

static void waitForPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  while (permits == 0) cv.wait(m); 
  permits--; 
} 
 
static void grantPermission(size_t& permits, condition_variable_any& cv, mutex& m) { 
  lock_guard<mutex> lg(m); 
  permits++; 
  if (permits == 1) cv.notify_all(); 
} 
 

Lock GuardsLock Guards
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Fundamentally, the size_t, condition_variable_any, and mutex are collectively
working together to track a resource count—in this case, four permission slips.

They provide thread-safe increment in grantPermission and thread-safe
decrement in waitForPermission.
They work to ensure that a thread blocked on zero permission slips goes to sleep
indefinitely, and that it remains asleep until another thread returns one.

In our latest dining-philosopher example, we relied on these three variables to
collectively manage a thread-safe accounting of four permission slips. However!

There is little about the implementation that requires the original number be four.
Had we gone with 20 philosophers and and 19 permission slips,
waitForPermission and grantPermission would still work as is.
The idea of maintaining a thread-safe, generalized counter is so useful that most
programming languages include more generic support for it. That support
normally comes under the name of a semaphore.
For reason that aren't entirely clear to me, standard C++ omits the semaphore
from its standard libraries. My guess as to why? It's easily built in terms of other
supported constructs, so it was deemed unnecessary to provide official support
for it.

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables
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The semaphore constructor is so short that it's inlined right in the declaration of the
semaphore class.
semaphore::wait is our generalization of waitForPermission.

void semaphore::wait() { 
  lock_guard<mutex> lg(m); 
  cv.wait(m, [this] { return value > 0; }) 
  value--; 
}

Why does the capture clause include the this keyword?

Because the anonymous predicate function passed to cv.wait is just that—a
regular function.  Since functions aren't normally entitled to examine the private
state of an object, the capture clause includes this to effectively convert the bool-
returning function into a bool-returning semaphore method.

semaphore::signal is our generalization of grantPermission.

void semaphore::signal() { 
  lock_guard<mutex> lg(m); 
  value++; 
  if (value == 1) cv.notify_all(); 
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables
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Here's our final version of the dining-philosophers.

It strips out the exposed size_t, mutex, and condition_variable_any and replaces
them with a single semaphore.
It updates the thread constructors to accept a single reference to that semaphore.

static void philosopher(size_t id, mutex& left, mutex& right, semaphore& permits) { 
  for (size_t i = 0; i < 3; i++) { 
    think(id); 
    eat(id, left, right, permits); 
  } 
} 
 
int main(int argc, const char *argv[]) { 
  semaphore permits(4); 
  mutex forks[5]; 
  thread philosophers[5]; 
  for (size_t i = 0; i < 5; i++) { 
    mutex& left = forks[i], & right = forks[(i + 1) % 5]; 
    philosophers[i] = thread(philosopher, i, ref(left), ref(right), ref(permits)); 
  } 
  for (thread& p: philosophers) p.join(); 
  return 0; 
} 

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables
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eat now relies on that semaphore to play the role previously played by
waitForPermission and grantPermission.
 
 
 
 
 
 
 
 

We could switch the order of the last two lines, so that right.unlock() precedes 
left.unlock(). Is the switch a good idea? a bad one? or is it really just arbitrary?
One student suggested we use a mutex to bundle the calls to left.lock() and
right.lock() into a critical region. Is this a solution to the deadlock problem?
We could lift the permits.signal() call up to appear in between right.lock() and the
first cout statement.  Is that valid?  Why or why not?

static void eat(size_t id, mutex& left, mutex& right, semaphore& permits) { 
  permits.wait(); 
  left.lock(); 
  right.lock(); 
  cout << oslock << id << " starts eating om nom nom nom." << endl << osunlock; 
  sleep_for(getEatTime()); 
  cout << oslock << id << " all done eating." << endl << osunlock; 
  permits.signal(); 
  left.unlock(); 
  right.unlock(); 
}

Lecture 11: Multithreading and Condition VariablesLecture 11: Multithreading and Condition Variables
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The semaphore class is not built in to C++, but it is a useful way to generalize the

"permits" idea. We will link against our version of a semaphore for this class, but you
should understand how it is built.
Using a semaphore is straightforward: you first declare a semaphore with a number

of permits you would like:

semaphoresemaphore

semaphore permits(5); // this will allow five permits

When a thread wants to use a permit, it first waits for the permit, and then signals

when it is done using a permit:

permits.wait(); // if five other threads currently hold permits, this will block 
 
// only five threads can be here at once 
 
permits.signal(); // if other threads are waiting, a permit will be available

A mutex is kind of like a special case of a semaphore with one permit, but you should

use a mutex in that case as it is simpler and more efficient. Additionally, the benefit of

a mutex is that it can only be released by the lock-holder.
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Question: what would a semaphore initialized with 0 mean?

semaphoresemaphore

semaphore permits(0);
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Question: what would a semaphore initialized with 0 mean?

semaphoresemaphore

semaphore permits(0);

In this case, we don't have any permits!
So, permits.wait() always has to wait for a signal, and will never stop waiting until

that signal is received.
We will see an example of this shortly.

 

What about a negative initializer for a semaphore?

semaphore permits(-9);
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What about a negative initializer for a semaphore?
semaphore permits(-9);

In this case, the semaphore would have to reach 1 before the wait would stop waiting.
You might want to wait until a bunch of threads finished before a final thread is
allowed to continue. Example (full program ): here

void writer(int i, semaphore &s) {
    cout << oslock << "Sending signal " << i << endl << osunlock;
    s.signal();
}
 
void read_after_ten(semaphore &s) {
    s.wait();
    cout << oslock << "Got enough signals to continue!" << endl << osunlock;
}
 
int main(int argc, const char *argv[]) {
    semaphore negSemaphore(-9);
    thread readers[10];
    for (size_t i = 0; i < 10; i++) {
        readers[i] = thread(writer, i, ref(negSemaphore));
    }
    thread r(read_after_ten, ref(negSemaphore));
    for (thread &t : readers) t.join();
    r.join();
    return 0;
}
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New concurrency pattern!

semaphore::wait and semaphore::signal can be leveraged to support a different
form of communication: thread rendezvous.
Thread rendezvous is a generalization of thread::join. It allows one thread to stall
—via semaphore::wait—until another thread calls semaphore::signal, often
because the signaling thread just prepared some data that the waiting thread
needs before it can continue.

To illustrate when thread rendezvous is useful, we'll implement a simple program
without it, and see how thread rendezvous can be used to repair some of its problems.

The program has two meaningful threads of execution: one thread publishes
content to a shared buffer, and a second reads that content as it becomes
available.
The program is a nod to the communication in place between a web server and a
browser. The server publishes content over a dedicated communication channel,
and the browser consumes that content.
The program also reminds me of how two independent processes behave when
one writes to a pipe, a second reads from it, and how the write and read processes
behave when the pipe is full (in principle, a possibility) or empty.

semaphoresemaphore

49



Consider the following program, where concurrency directives have been
intentionally omitted. (The full program is .)right here

static void writer(char buffer[]) { 
  cout << oslock << "Writer: ready to write." << endl << osunlock; 
  for (size_t i = 0; i < 320; i++) { // 320 is 40 cycles around the circular buffer of length 8 
    char ch = prepareData(); 
    buffer[i % 8] = ch; 
    cout << oslock << "Writer: published data packet with character '"  
         << ch << "'." << endl << osunlock; 
  } 
} 
 
static void reader(char buffer[]) { 
  cout << oslock << "\t\tReader: ready to read." << endl << osunlock; 
  for (size_t i = 0; i < 320; i++) { // 320 is 40 cycles around the circular buffer of length 8  
    char ch = buffer[i % 8]; 
    processData(ch); 
    cout << oslock << "\t\tReader: consumed data packet " << "with character '"  
         << ch << "'." << endl << osunlock; 
  } 
} 
 
int main(int argc, const char *argv[]) { 
  char buffer[8]; 
  thread w(writer, buffer); 
  thread r(reader, buffer); 
  w.join(); 
  r.join(); 
  return 0; 
} 
 

semaphoresemaphore
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Here's what works:

Because the main thread declares a circular buffer and shares it with both
children, the children each agree where content is stored.
Think of the buffer as the state maintained by the implementation of pipe, or the
state maintained by an internet connection between a server and a client.
The writer thread publishes content to the circular buffer, and the reader thread
consumes that same content as it's written. Each thread cycles through the buffer
the same number of times, and they both agree that i % 8 identifies the next slot of
interest.

Here's what's broken:

Each thread runs more or less independently of the other, without consulting the
other to see how much progress it's made.
In particular, there's nothing in place to inform the reader that the slot it wants to
read from has meaningful data in it. It's possible the writer just hasn't gotten that
far yet.
Similarly, there's nothing preventing the writer from advancing so far ahead that it
begins to overwrite content that has yet to be consumed by the reader.

semaphoresemaphore
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One solution? Maintain two semaphores.

One can track the number of slots that can be written to without clobbering yet-
to-be-consumed data. We'll call it emptyBuffers, and we'll initialize it to 8.
A second can track the number of slots that contain yet-to-be-consumed data that
can be safely read. We'll call it fullBuffers, and we'll initialize it to 0.

Here's the  that declares, initializes, and shares the two
semaphores. 
 
 
 
 
 
 
 
The writer thread waits until at least one buffer is empty before writing. Once it
writes, it'll increment the full buffer count by one.
The reader thread waits until at least one buffer is full before reading. Once it reads, it
increments the empty buffer count by one.

new main program

int main(int argc, const char *argv[]) { 
  char buffer[8]; 
  semaphore fullBuffers, emptyBuffers(8); 
  thread w(writer, buffer, ref(fullBuffers), ref(emptyBuffers)); 
  thread r(reader, buffer, ref(fullBuffers), ref(emptyBuffers)); 
  w.join(); 
  r.join(); 
  return 0; 
}

semaphoresemaphore
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Here are the two new thread routines: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The reader and writer rely on these semaphores to inform the other how much work
they can do before being necessarily forced off the CPU.
Thought question: can we rely on just one semaphore instead of two? Why or why
not?

static void writer(char buffer[], semaphore& full, semaphore& empty) { 
  cout << oslock << "Writer: ready to write." << endl << osunlock; 
  for (size_t i = 0; i < 320; i++) { // 320 is 40 cycles around the circular buffer of length 8 
    char ch = prepareData(); 
    empty.wait();   // don't try to write to a slot unless you know it's empty                          
    buffer[i % 8] = ch; 
    full.signal();  // signal reader there's more stuff to read                                         
    cout << oslock << "Writer: published data packet with character '"  
         << ch << "'." << endl << osunlock; 
  } 
} 
 
static void reader(char buffer[], semaphore& full, semaphore& empty) { 
  cout << oslock << "\t\tReader: ready to read." << endl << osunlock; 
  for (size_t i = 0; i < 320; i++) { // 320 is 40 cycles around the circular buffer of length 8 
    full.wait();    // don't try to read from a slot unless you know it's full                          
    char ch = buffer[i % 8]; 
    empty.signal(); // signal writer there's a slot that can receive data                               
    processData(ch); 
    cout << oslock << "\t\tReader: consumed data packet " << "with character '"  
         << ch << "'." << endl << osunlock; 
  } 
}

semaphoresemaphore
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Implementing myth-buster!

The myth-buster is a command line utility that polls all 16 myth machines to
determine which is the least loaded.

By least loaded, we mean the myth machine that's running the fewest number
of CS110 student processes.
Our myth-buster application is representative of the type of thing load
balancers (e.g. myth.stanford.edu, www.facebook.com, or www.netflix.com)
run to determine which internal server your request should forward to.

The overall architecture of the program looks like that below. We'll present
various ways to implement compileCS110ProcessCountMap.

static const char *kCS110StudentIDsFile = "studentsunets.txt"; 
int main(int argc, char *argv[]) { 
  unordered_set<string> cs110Students; 
  readStudentFile(cs110Students, argv[1] != NULL ? argv[1] : kCS110StudentIDsFile); 
  map<int, int> processCountMap; 
  compileCS110ProcessCountMap(cs110Students, processCountMap); 
  publishLeastLoadedMachineInfo(processCountMap); 
  return 0; 
} 

semaphoresemaphore
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Implementing myth-buster! 
 
 
 
 
 
 
 

readStudentFile updates cs110Students to house the SUNet IDs of all students
currently enrolled in CS110. There's nothing interesting about its implementation,
so I don't even show it (though you can see its implementation ).
compileCS110ProcessCountMap is more interesting, since it uses networking—
our first networking example!—to poll all 16 myths and count CS110 student
processes.
processCountMap is updated to map myth numbers (e.g. 61) to process counts
(e.g. 9).
publishLeastLoadedMachineInfo traverses processCountMap and and identifies
the least loaded myth.

right here

static const char *kCS110StudentIDsFile = "studentsunets.txt"; 
int main(int argc, char *argv[]) { 
  unordered_set<string> cs110Students; 
  readStudentFile(cs110Students, argv[1] != NULL ? argv[1] : kCS110StudentIDsFile); 
  map<int, int> processCountMap; 
  compileCS110ProcessCountMap(cs110Students, processCountMap); 
  publishLeastLoadedMachineInfo(processCountMap); 
  return 0; 
} 

semaphoresemaphore
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The networking details are hidden and packaged in a library routine with this
prototype: 
 
 
 
num is the myth number (e.g. 54 for myth54) and sunetIDs is a hashset housing the
SUNet IDs of all students currently enrolled in CS110 (according to our
/usr/class/cs110/repos/assign4 directory).
Here is the sequential implementation of a compileCS110ProcessCountMap, which
is very brute force and CS106B-ish:

static const int kMinMythMachine = 51; 
static const int kMaxMythMachine = 66; 
static void compileCS110ProcessCountMap(const unordered_set<string>& sunetIDs, 
                                        map<int, int>& processCountMap) { 
  for (int num = kMinMythMachine; num <= kMaxMythMachine; num++) { 
    int numProcesses = getNumProcesses(num, sunetIDs); 
    if (numProcesses >= 0) { 
      processCountMap[num] = numProcesses; 
      cout << "myth" << num << " has this many CS110-student processes: " << numProcesses << 
    } 
  } 
} 

 
int getNumProcesses(int num, const unordered_set<std::string>& sunetIDs);

semaphoresemaphore
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Here are two sample runs of myth-buster-sequential, which polls each of the myths
in sequence (i.e. without concurrency). 
 
 
 
 
 
 

 

 

 

 

Each call to getNumProcesses is slow (about half a second), so 16 calls adds up to
about 16 times that. Each of the two runs took about 5 seconds.

poohbear@myth61$ time ./myth-buster-sequential  
myth51 has this many CS110-student processes: 62 
myth52 has this many CS110-student processes: 133 
myth53 has this many CS110-student processes: 116 
myth54 has this many CS110-student processes: 90 
myth55 has this many CS110-student processes: 117 
myth56 has this many CS110-student processes: 64 
myth57 has this many CS110-student processes: 73 
myth58 has this many CS110-student processes: 92 
myth59 has this many CS110-student processes: 109 
myth60 has this many CS110-student processes: 145 
myth61 has this many CS110-student processes: 106 
myth62 has this many CS110-student processes: 126 
myth63 has this many CS110-student processes: 317 
myth64 has this many CS110-student processes: 119 
myth65 has this many CS110-student processes: 150 
myth66 has this many CS110-student processes: 133 
Machine least loaded by CS110 students: myth51 
Number of CS110 processes on least loaded machine: 62 
poohbear@myth61$

poohbear@myth61$ time ./myth-buster-sequential  
myth51 has this many CS110-student processes: 59 
myth52 has this many CS110-student processes: 135 
myth53 has this many CS110-student processes: 112 
myth54 has this many CS110-student processes: 89 
myth55 has this many CS110-student processes: 107 
myth56 has this many CS110-student processes: 58 
myth57 has this many CS110-student processes: 70 
myth58 has this many CS110-student processes: 93 
myth59 has this many CS110-student processes: 107 
myth60 has this many CS110-student processes: 145 
myth61 has this many CS110-student processes: 105 
myth62 has this many CS110-student processes: 126 
myth63 has this many CS110-student processes: 314 
myth64 has this many CS110-student processes: 119 
myth65 has this many CS110-student processes: 156 
myth66 has this many CS110-student processes: 144 
Machine least loaded by CS110 students: myth56 
Number of CS110 processes on least loaded machine: 58 
poohbear@myth61$

semaphoresemaphore
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Each call to getNumProcesses spends most of its time off the CPU, waiting for a
network connection to be established.
Idea: poll each myth machine in its own thread of execution. By doing so, we'd align
the dead times of each getNumProcesses call, and the total execution time will
plummet.

static void countCS110Processes(int num, const unordered_set<string>& sunetIDs, 
                                map<int, int>& processCountMap, mutex& processCountMapLock,  
                                semaphore& permits) { 
  int count = getNumProcesses(num, sunetIDs); 
  if (count >= 0) { 
    lock_guard<mutex> lg(processCountMapLock); 
    processCountMap[num] = count; 
    cout << "myth" << num << " has this many CS110-student processes: " << count << endl; 
  } 
  permits.signal(on_thread_exit); 
} 
 
static void compileCS110ProcessCountMap(const unordered_set<string> sunetIDs,  
                                        map<int, int>& processCountMap) {   
  vector<thread> threads; 
  mutex processCountMapLock; 
  semaphore permits(8); // limit the number of threads to the number of CPUs 
  for (int num = kMinMythMachine; num <= kMaxMythMachine; num++) { 
    permits.wait(); 
    threads.push_back(thread(countCS110Processes, num, ref(sunetIDs), 
                             ref(processCountMap), ref(processCountMapLock), ref(permits))); 
  } 
  for (thread& t: threads) t.join(); 
} 

semaphoresemaphore
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Here are key observations about the code on the prior slide:

Polling the myths concurrently means updating processCountMap concurrently.
That means we need a mutex to guard access to processCountMap.
The implementation of compileCS110ProcessCountMap wraps a thread around
each call to getNumProcesses while introducing a semaphore to limit the number
of threads to a reasonably small number.
Note we use an overloaded version of signal. This one accepts the on_thread_exit
tag as its only argument.

Rather than signaling the semaphore right there, this version schedules the
signal to be sent after the entire thread routine has exited, as the thread is
being destroyed.
That's the correct time to really signal if you're using the semaphore to track
the number of active threads.

This new version, called myth-buster-concurrent, runs in about 0.75 seconds.
That's a substantial improvement.
The full implementation of myth-buster-concurrent sits .right here

semaphoresemaphore
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http://web.stanford.edu/class/cs110/examples/threads-cpp/myth-buster-concurrent.cc
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Recap: Race Conditions and Mutexes
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Next time: more threads
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