

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
- By looking at the next few tokens
- No backtracking
- Predictive parsers accept $\mathcal{L L}(\mathbb{K})$ grammars
- Lmeans "left-to-right" scan of input
- Lmeans "leftmost derivation"
- Kmeans "predict based on K tokens of lookahead"
- In practice, $\operatorname{LL}(1)$ is used

$\mathcal{L L}(1)$ vs. Recursive Descent

- In recursive-descent,
- At each step, many choices of production to use
- Backtracking used to undo bad choices
- In $\mathcal{L L}(1)$,
- At each step, onfy one choice of production
- That is
- When a non-terminal \mathfrak{a} is leftmost in a derivation
- The next input symbol is t
- There is a unique production $\mathcal{A} \rightarrow \alpha$ to use
- Or no production to use (an error state)
- $\operatorname{LL}(1)$ is a recursive descent variant without backtracking Prof. Aiken CS 143 Lecture 7

Left-Factoring Example

- Recalltfe grammar

$$
\begin{aligned}
& \mathcal{E} \rightarrow \mathcal{T}+\mathcal{E} \mid \mathcal{T} \\
& \mathcal{T} \rightarrow \text { int } \mid \text { int }{ }^{*} \mathcal{T} \mid(\mathcal{E})
\end{aligned}
$$

- Factor out common prefixes of productions

$$
\mathcal{E} \rightarrow \mathcal{T} X
$$

$x \rightarrow+\mathcal{E} \mid \varepsilon$
$\mathcal{T} \rightarrow(\mathcal{E}) \mid$ int \mathcal{V}
$\mathcal{Y} \rightarrow{ }^{*} \mathcal{T} \mid \varepsilon$

Prof. Aiken CS 143 Lecture 7

$\mathcal{L L}(1)$ Parsing Table Example

- Left-factore d grammar $\mathcal{E} \rightarrow \mathcal{T} X \quad X \rightarrow+\mathcal{E} \mid \varepsilon$ $\mathcal{T} \rightarrow(\mathcal{E}) \mid$ int $\mathcal{Y} \quad \mathcal{Y} \rightarrow{ }^{*} \mathcal{T} \mid \varepsilon$
- The $\mathcal{L L}(1)$ parsing table: next input token

	int	$*$	+	$($	$)$	$\$$
\mathcal{E}	$\mathcal{T} X$			$\mathcal{T} X$		
X			$+\mathcal{E}$		ε	ε
\mathcal{T}	int \mathcal{Y}			(\mathcal{E})		
\mathscr{Y}		${ }^{*} \mathcal{T}$	ε		ε	ε

refthost non-terminal of production to use

[^0]Prof. Aiken CS 143 Lecture 7

```
LL(1) Parsing Table Example (Cont.)
```

- Consider the [E, int] entry
- "When current non-terminal is \mathcal{E} and next input is int, use production $\mathcal{E} \rightarrow \mathcal{T} X$ "
- This cangenerate an int in the first position
- Consider the [V,+] entry
- "When current non-terminal is γ and current token is + , get rid of $\mathcal{Y}^{\prime \prime}$
$-Y$ can be followed $b y+o n l y$ if $\mathcal{Y} \rightarrow \varepsilon$

Prof. Aiken CS 143 Lecture 7

$\mathcal{L L}(1)$ Parsing Tables. Errors

- Blankentries indicate error situations
- Consider the [EE, *] entry
- "There is no way to derive a string starting with * from non-terminal ${ }^{\prime \prime}$

$\mathcal{L L}(1)$ Parsing $\mathcal{A l g o r i t f m}$

initialize stack $=<$ S $\$>$ and next repeat

case stack of

$<X$, rest $>$: if $T[X, *$ next $]=Y_{1} \ldots Y_{n}$ then stack $\leftarrow<Y_{1} \ldots Y_{n}$ rest>; else error ();
$<\mathrm{t}$, rest> : if $\mathrm{t}==$ * next ++
then stack $\leftarrow<$ rest>; else error ();
until stack $==<>$

$\mathcal{L L}(1)$ Parsing	Example	
Stack	Input	Action
$\mathcal{E} \$$	int ${ }^{*}$ int $\$$	$\mathcal{T} X$
$\mathcal{T} X \$$	int ${ }^{*}$ int $\$$	int \mathcal{Y}
int $\mathcal{Y} X \$$	int ${ }^{*}$ int $\$$	terminal
$\mathcal{Y} X \$$	${ }^{*}$ int $\$$	${ }^{*} \mathcal{T}$
${ }^{*} \mathcal{T} X \$$	${ }^{*}$ int $\$$	terminal
$\mathcal{T} X \$$	int $\$$	int \mathcal{Y}
int $Y X \$$	int $\$$	terminal
$\mathcal{Y} X \$$	$\$$	ε
$X \$$	$\$$	ε
$\$$	$\$$	$\mathcal{A C C E P T}$
	Prof. Aiken Cs 143 Lecture 7	

Constructing Parsing Tables: The Intuition
- Consider non-terminal \mathfrak{A}, production $\mathcal{A} \rightarrow \alpha$, \& token t - $\mathcal{T}[\mathcal{A}, t]=\alpha$ in two cases: - If $\alpha \rightarrow{ }^{*} t \beta$ $-\alpha$ can derive at in the first position - We say that $t \in \mathscr{F}_{\text {irst }}(\alpha)$ - If $\mathcal{A} \rightarrow \alpha$ and $\alpha \rightarrow{ }^{\prime} \varepsilon$ and $S \rightarrow{ }^{*} \beta \mathcal{A} t \delta$ - Usefulif stack has \mathcal{A}, input is t, and \mathfrak{A} cannot derive t - In this case only option is to get rid of $\mathfrak{A l}$ ($6 y$ deriving ε) - Can work only if t can follow \mathcal{A} in at least one derivation - We say $t \in \mathscr{F o l l o w}(\mathcal{A})$
Prof. Aiken CS 143 Lecture 7 13

Computing First Sets
Definition

$$
\mathscr{F i r s t}(X)=\left\{t \mid X \rightarrow^{*} t \alpha\right\} \cup\left\{\varepsilon \mid X \rightarrow^{*} \varepsilon\right\}
$$

$\mathcal{A l g o r i t h m}$ sketch:

1. $\mathcal{F i r s t}(t)=\{t\}$
2. $\varepsilon \in \operatorname{First}(X)$

- if $x \rightarrow \varepsilon$
- if $X \rightarrow \mathcal{A}_{1} \ldots \mathcal{A}_{n}$ and $\varepsilon \in \mathscr{F}$ irst $\left(\mathcal{A}_{i}\right)$ for $1 \leq i \leq n$

3. $\mathcal{F i r s t}(\alpha) \subseteq \mathcal{F i r s t}(X)$ if $X \rightarrow \mathcal{A}_{1} \ldots \mathcal{A}_{n} \alpha$

- and $\varepsilon \in \mathcal{F i r s t}\left(\mathcal{A}_{i}\right)$ for $1 \leq i \leq n$

Computing Follow Sets

- De finition:

$$
\mathcal{F o l l o w}(X)=\left\{t \mid \mathcal{S} \rightarrow^{*} \beta x t \delta\right\}
$$

- Intuition
- If $X \rightarrow \mathcal{A} \mathcal{B}$ then $\operatorname{First}(\mathcal{B}) \subseteq \mathcal{F o l f o w}(\mathcal{A})$ and $\mathcal{F o l l o w}(X) \subseteq \mathcal{F o l l o w}_{(\mathcal{B})}$
- if $\mathcal{B} \rightarrow{ }^{*}$ \& then $\mathcal{F o l l o w}(X) \subseteq \mathcal{F o l l o w}(\mathcal{A})$
- If S is the start symbolthen $\$ \in \mathcal{F o l l o w}(S)$

Prof. Aiken CS 143 Lecture 7

Follow Sets. Example

- Recallthe grammar

$$
\begin{array}{ll}
\mathcal{E} \rightarrow \mathcal{T} X & X \rightarrow+\mathcal{E} \mid \varepsilon \\
\mathcal{T} \rightarrow(\mathcal{E}) \mid \text { int } \mathcal{Y} & \mathcal{Y} \rightarrow^{*} \mathcal{T} \mid \varepsilon
\end{array}
$$

- Follow se ts

Follow(+) =\{int, (\} Follow(*) =\{int, (\}
Follow ($)=\{$ int, $(\} \quad \mathcal{F o l l o w}(E)=\{), \$\}$
$\operatorname{Follow}(X)=\{\$),\} \quad \operatorname{Follow}(\mathcal{T})=\{+, 1, \$\}$
$\mathcal{F o l l o w}())=\{+$,), \$\} $\mathcal{F o l l o w}(\mathcal{Y})=\{+$,), \$\}
Follow(int) $=\left\{{ }^{*},+\right.$,), \$\}
Prof. Aiken CS 143 Lecture 7
${ }^{18}$

Constructing $\mathcal{L L}(1)$ Parsing Tables

- Construct a parsing table \mathcal{T} for $\subset \mathcal{F} \mathcal{G} \mathcal{G}$
- For each production $\mathcal{A} \rightarrow \alpha$ in \mathcal{G} do:
- For each terminal $t \in \mathcal{F i r s t}(\alpha)$ do
- $\mathcal{T}[\mathcal{A}, t]=\alpha$
- If $\varepsilon \in \mathcal{F i r s t}(\alpha)$, for each $t \in \mathcal{F o l l o w}(\mathcal{A})$ do
- $\mathcal{T}[\mathfrak{A}, t]=\alpha$
- If $\varepsilon \in \mathcal{F i r s t}(\alpha)$ and $\$ \in \mathcal{F o l l o w}(\mathcal{A})$ do
- $\mathcal{T}[\mathcal{A}, \$]=\alpha$

An Introductory Example

- Bottom-up parsers don't need left-factored grammars down parsing
- And just as efficient
- Builds on ide as in top-down parsing
- Bottom-up is the preferred method
- Concepts today, algorithms next time

Observation

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

$$
\begin{array}{ll}
\text { int * int +int } & \mathcal{T} \rightarrow \text { int } \\
\text { int }{ }^{*} \mathcal{T}+\text { int } & \mathcal{T} \rightarrow \text { int }{ }^{*} \mathcal{T} \\
\mathcal{T}+\text { int } & \mathcal{T} \rightarrow \text { int } \\
\mathcal{T}+\mathcal{T} & \mathcal{E} \rightarrow \mathcal{T} \\
\mathcal{T}+\mathcal{E} & \mathcal{E} \rightarrow \mathcal{T}+\mathcal{E} \\
\mathcal{E} &
\end{array}
$$

Important Fact \# 1
Important Fact \# 1 about bottom-up parsing:
A Gottom-up parser traces a rightmost
derivation in reverse

A Bottom- up Parse in Detail (2)
int * int + int
int ${ }^{*} \mathcal{T}+$ int

Prof. Aiken CS 143 Lecture 7
28

A Bottom- up Parse in Detail (5)

Prof. Aiken CS 143 Lecture 7
\mathcal{A} Trivial Bottom- Ulp Parsing Algoritfm

Let $I=$ input string
repeat
pick a non-empty substring β of I
where $X \rightarrow \beta$ is a production
if no such β, wacktrack
replace one β by X in I
until $I=$ "S" (the start symbol) or all possibilities are exfrausted

Where Do Reductions Happen?

Important Fact \# 1 fias an interesting consequence:

- Let $\alpha \beta \omega$ be a step of a 6ottom-up parse
- Assume the next reduction is by $X \rightarrow \beta$
- Then ω is a string of terminals

Why? Because $\alpha X \omega \rightarrow \alpha \beta \omega$ is a ste p in a right. most derivation

A Bottom-up Parse in Detail (6)
int ${ }^{*}$ int + int
int ${ }^{*} \mathcal{T}+$ int
$\mathcal{T}+$ int
$\mathcal{T}+\mathcal{T}$
$\mathcal{T}+\mathcal{E}$
\mathcal{E}

Questions

- Does this algoritfim terminate?
- Howfast is the algorithm?
- Does the algorithm handle all cases?
- How do we choose the substring to reduce at each step?

\mathcal{N} otation

- Idea: Split string into two substrings
- Right substring is as yet unexamined by parsing (a string of terminals)
- Left substring fias terminals and non-terminals
- The dividing point is marked by a |
- The \mid is not part of the string
- Initially, all input is unexamine $d \mid x_{1} x_{2} \ldots x_{n}$

Shift-Reduce Parsing actions:
Skift
Reduce
Prof Aiken Cs 143 Lecture 7

Shift	
- Skift: Move \|one place to the right - Shifts a terminal to the left string $\mathfrak{A B C}\|x y z \Rightarrow \mathscr{A B C x}\| y z$	
Prof. Aiken CS 143 Lecture 7	$3 s$

A Shift-Reduce Parse in Detail (2)

$$
\mid i n t{ }^{*} \text { int +int }
$$

int | * int +int

A Sfift-Reduce Parse in $\mathcal{D e t a i l}$ (4)

$$
\begin{aligned}
& \mid \text { int }{ }^{*} \text { int }+ \text { int } \\
& \text { int | * int +int } \\
& \text { int * | int + int } \\
& \text { int * int } \mid+ \text { int } \\
& \text { int * int }+\quad \text { int }
\end{aligned}
$$

A Shift-Reduce Parse in Detail (5)
|int * int +int
int | * int +int
int * |int + int
int *int $\mid+i n t$
int ${ }^{*} \mathcal{T} \mid+i n t$

46

A Sfift-Reduce Parse in $\mathcal{D e t a i l}$ (6)
|int * int +int
int | * int + int
int * \mid int $+i n t$
int * int | + int
int ${ }^{*} \mathcal{T} \mid+$ int
$\mathcal{T} \mid+i n t$

A Skift-Reduce Parse in Detail (7)
\mid int * int $+i n t$
int $\left.\right|^{*}$ int + int
int * \mid int $+i n t$
int *int $\mid+i n t$
int ${ }^{*} \mathcal{T} \mid+$ int
$\mathcal{T} \mid+i n t$
$\mathcal{T}+\mid$ int

Prof. Aiken CS 143 Lecture 7
48

A Sfift-Reduce Parse in Detail (8)

A Shift-Reduce Parse in Detail (9)
$\mid i n t{ }^{*} i n t+i n t$
int $\left.\right|^{*}$ int + int
int * $\mid i n t+i n t$
int *int $\mid+\operatorname{int}$
int ${ }^{*} \mathcal{T} \mid+i n t$
$\mathcal{T} \mid+i n t$
$\mathcal{T}+\mid i n t$
$\mathcal{T}+$ int \mid
$\mathcal{T}+\mathcal{T} \mid$

A Shift-Reduce Parse in Detail (11)

|int * int +int
int | *int + int
int * $\mid i n t+i n t$
int *int $\mid+i n t$
int ${ }^{*} \mathcal{T} \mid+i n t$
$\mathcal{T} \mid+i n t$
$\mathcal{T}+\mid$ int
$\mathcal{T}+$ int \mid
$\mathcal{T}+\mathcal{T} \mid$
$\mathcal{T}+\mathcal{E} \mid$
$\mathcal{E} \mid$

Prof. Aiken CS 143 Lecture 7
52

The Stack

- Left string can be implemented by a stack - Top of the stack is the |
- Shift pushes a terminal on the stack
- Reduce pops 0 or more symbols off of the stack(production rfs) and pushes a non. terminal on the stack (production lfs)

Conflicts

- In a given state, more than one action (sfift or reduce) may lead to a valid parse
- If it is legalto shift or reduce, there is a shift. reduce conflict
- If it is legal to reduce by two different productions, there is a reduce-reduce conflict
- You will see such conflicts in your project! - More next time ..

[^0]: Ceftrost non-terminal

