
CS143 Handout 16

Summer 2012 July 11th, 2012

Syntax Directed Translation

Handout written by Maggie Johnson and revised by Julie Zelenski.

Syntax-directed translation refers to a method of compiler implementation where the
source language translation is completely driven by the parser. In other words, the
parsing process and parse trees are used to direct semantic analysis and the translation
of the source program. This can be a separate phase of a compiler or we can augment
our conventional grammar with information to control the semantic analysis and
translation. Such grammars are called attribute grammars.

We augment a grammar by associating attributes with each grammar symbol that
describes its properties. An attribute has a name and an associated value: a string, a
number, a type, a memory location, an assigned register—whatever information we
need. For example, variables may have an attribute "type" (which records the declared
type of a variable, useful later in type-checking) or an integer constant may have an
attribute "value" (which we will later need to generate code).

With each production in a grammar, we give semantic rules or actions, which describe
how to compute the attribute values associated with each grammar symbol in a
production. The attribute value for a parse node may depend on information from its
children nodes below or its siblings and parent node above.

Consider this production, augmented with a set of actions that use the "value" attribute
for a digit node to store the appropriate numeric value. Below, we use the syntax X.a to
refer to the attribute a associated with symbol X.

digit –> 0 {digit.value = 0}

 | 1 {digit.value = 1}

 | 2 {digit.value = 2}

 ...

 | 9 {digit.value = 9}

Attributes may be passed up a parse tree to be used by other productions:

int1 –> digit {int1.value = digit.value}

 | int2 digit {int1.value = int2.value*10 + digit.value}

(We are using subscripts in this example to clarify which attribute we are referring to,
so int1 and int2 are different instances of the same non-terminal symbol.)

 2

There are two types of attributes we might encounter: synthesized or inherited.
Synthesized attributes are those attributes that are passed up a parse tree, i.e., the left-
side attribute is computed from the right-side attributes. The lexical analyzer usually
supplies the attributes of terminals and the synthesized ones are built up for the
nonterminals and passed up the tree.

X –> Y1Y2...Yn

X.a = f(Y1.a, Y2.a, ...Yn.a)

Inherited attributes are those that are passed down a parse tree, i.e., the right-side
attributes are derived from the left-side attributes (or other right-side attributes). These
attributes are used for passing information about the context to nodes further down the
tree.

X –> Y1Y2...Yn

Yk.a = f(X.a, Y1.a, Y2.a, ..., Yk-1.a, Yk+1.a, ..., Yn.a)

Consider the following grammar that defines declarations and simple expressions in a
Pascal-like syntax:

P –> DS

D –> var V; D | 

S –> V := E; S | 
V –> x | y | z

Now we add two attributes to this grammar, name and dl, for the name of a variable and
the list of declarations. Each time a new variable is declared, a synthesized attribute for
its name is attached to it. That name is added to a list of variables declared so far in the
synthesized attribute dl that is created from the declaration block. The list of variables
is then passed as an inherited attribute to the statements following the declarations for
use in checking that variables are declared before use.

int
value = 4*10 + 2 = 42

int digit
value = 2

value = 4
digit

value = 4

4

2

 3

P –> DS { S.dl = D.dl }
D1 –> var V; D2 { D1.dl = addlist(V.name, D2.dl) }

 |  { D1.dl = NULL }
S1 –> V := E; S2 { check(V.name, S1.dl); S2.dl = S1.dl }
 | 
V –> x { V.name = 'x' }

 | y { V.name = 'y' }

 | z { V.name = 'z' }

If we were to parse the following code, what would the attribute structure look like?

var x;

var y;

x := ...;

y := ...;

P

 D S

var V ; D

x var V ; D

y 

V := E ; S

 x

Typically the way we handle attributes is to associate with each symbol some sort of
structure with all the necessary attributes, and we can pick out the attribute of interest
by fieldname.

typedef struct _attribute {

 char *name;

 struct _attribute *list;

} attribute;

P -> DS { $2.list = $1.list }

D -> var V; D { $$.list = add_to_list($2.name, $4.list) }

 |  { $$.list = NULL }

S -> V := E; S { check($1.name, $$.list); $5.list = $$.list }

 | 

V -> x { $$.name = 'x' }

 | y { $$.name = 'y' }

 | z { $$.name = 'z' }

 4

Top-Down SDT

We can implement syntax-directed translation in either a top-down or a bottom-up
parser and we'll briefly investigate each approach. First, let's look at adding attribute
information to a hand-constructed top-down recursive-descent parser. Our example
will be a very simple FTP client, where the parser accepts user commands and uses a
syntax-directed translation to act upon those requests. Here's in the grammar we'll use,
already in an LL(1) form:

Session –> CommandList T_QUIT

CommandList –> Command CommandList | 
Command –> Login | Get | Logout
Login –> User Pass
User –> T_USER T_IDENT
Pass –> T_PASS T_IDENT
Get –> T_GET T_IDENT MoreFiles

MoreFiles –> T_IDENT MoreFiles | 
Logout –> T_LOGOUT

Now, let’s see how the attributes, such as the username, filename, and connection, can
be passed around during the parsing. This recursive-descent parser is using the
lookahead/token-matching utility functions from the top-down parsing handout.

static void ParseCommands()

{

 Connection *conn = NULL;

 int next;

 while ((next = GetLookahead()) != T_QUIT) {

 switch (next) {

 case T_USER:

 conn = ParseLogin(); break;

 case T_GET:

 ParseGet(conn); break;

 case T_LOGOUT:

 ParseLogout(conn); conn = NULL; break;

 default:

 ReportParseFailure("command expected", yytext);

 }

 }

}

static Connection *ParseLogin() // returns attribute of opened connection

{

 char *user = ParseUser();

 char *pass = ParsePassword();

 return Login(user, pass); // uses attributes passed up from below

}

static char *ParseUser() // returns attribute of username given

{

 MatchToken(T_USER);

 char *str = ParseIdentifier(); // gets name from identfier child node

 MatchToken('\n');

 return str;

 5

}

static char *ParsePassword() // similar to username

{

 MatchToken(T_PASS);

 char *str = ParseIdentifier();

 MatchToken('\n');

 return str;

}

static char *ParseIdentifier()

{

 char *str = NULL;

 if (GetLookahead() == T_IDENT) {

 str = strdup(yytext);

 MatchToken(T_IDENT);

 }

 return str; // returns NULL on error

}

static void ParseGet(Connection *conn) // receives conn from above

{

 MatchToken(T_GET);

 char *filename = ParseIdentifier();

 MatchToken('\n');

 Transfer(conn, filename);// reports error if conn NULL

}

static void ParseLogout(Connection *conn) // receives conn from above

{

 MatchToken(T_LOGOUT);

 MatchToken('\n');

 Logout(conn); // reports error if conn NULL

}

During processing of the Login command, the parser gathers the username and
password returned from the children nodes and uses that information to create a new
connection attribute to pass up the tree. In this situation the username, password, and
connection are all acting as synthesized attributes, working their way from the leaves
upward to the parent. That open connection is saved and then later passed downward
into other commands. The connection is being used as an inherited attributed when
processing Get and Logout, those commands are receiving information from the parent
about parts of the parse that have already happened (its left siblings).

 6

Bottom-Up SDT

Here is a simple expression grammar that has associativity and precedence already
built in.

E' –> E
E –> T | E A T
T –> F | T M F
F –> (E) | int
A –> + | -
M –> * | /

During the bottom-up parse, as we push symbols on to the parse stack, we will
associate with each operand/expression symbol (E, T, F, etc.) an integer value. For each
operator (A, M) we will store the operator code. When performing a reduction, we will
synthesize the attribute for the left-side nonterminal from the attributes of the right side
symbol, the handle that is currently on top of the stack. See how the associated actions
below will evaluate the arithmetic expression during parsing?

E' -> E { printf("%d\n", E.val); }

E -> T { E.val = T.val; }

 | E A T { switch(A.op) {

 case ADD: E.val = E.val + T.val; break;

 case SUB: E.val = E.val - T.val; break; }

 }

T -> F { T.val = F.val;}

 | T M F { switch(M.op) {

 case MUL: T.val = T.val * F.val; break;

 case DIV: T.val = T.val / F.val; break; }

 }

F -> (E) { F.val = E.val; }

 | int { F.val = int.val; }

A -> + { A.op = ADD; }

 | - { A.op = SUB; }

M -> * { M.op = MUL; }

 | / { M.op = DIV; }

The attribute value of terminals is assumed to have been assigned by the scanner. The
attribute values for nonterminals are explicitly assigned in the parser action code. The
symbol attributes can usually be stored along with the symbol itself in the bottom-up
parse stack, which is mighty convenient. However, given the way a bottom-up parser
constructs the leaves first and works its way up to the parent, it is trivial to support
synthesized attributes (like those needed in the expression parser), but more awkward
to allow for inherited attributes.

 7

Attributes and yacc

It doesn’t take much to transform the above abstract example into legitimate yacc code.
$1, $2, etc. are all used to access the attribute of the nth token on the right side of the
production. The global variable yylval is set by the scanner and that value is saved
with the token when placed on the parse stack. When a rule is reduced, a new state is
placed on the stack, the default behavior is to just copy the attribute of $1 for that new
state, this can be controlled by assigning to $$ in the action for the rule. By default the
attribute type is an integer, but can be extended to allow for more storage of diverse
types using the %union specification in the yacc input file. Here's a simple infix
calculator that shows all these techniques in conjunction. It parses ordinary arithmetic
expressions, uses a symbol table for setting and retrieving values of simple variables,
and even has some primitive error-handling.

%{

 static int Lookup(const char *name);

 static void Store(const char *name, int val);

%}

%union {

 int intVal;

 char name[32];

}

%token <intVal> T_Int

%token <name> T_Identifier

%type <intVal> E

%left '+' '-'

%left '*' '/'

%right U_minus

%%

S : Stmt | S Stmt

 ;

Stmt : T_Identifier '=' E '\n'

 { Store($1, $3); printf("%d\n", $3);}

 | E '\n'

 { printf("%d\n", $1);}

 | error '\n'

 { printf("Discarding malformed expression.\n");}

 ;

E : E '+' E

 { $$ = $1 + $3;}

 | E '-' E

 { $$ = $1 - $3;}

 | E '*' E

 { $$ = $1 * $3;}

 | E '/' E

 { if ($3 == 0) {

 printf("divide by zero\n");

 $$ = 0;

 8

 } else

 $$ = $1 / $3;}

 | '(' E ')'

 { $$ = $2;}

 | '-' E %prec U_minus

 { $$ = -$2;}

 | T_Int

 { $$ = $1;}

 | T_Identifier

 { $$ = Lookup($1);}

 ;

%%

/* Store/Lookup functions omitted for clarify

 They are just ordinary hash table operations */

Here is the scanner to go with:

%{

 #include "y.tab.h"

%}

%%

[0-9]+ { yylval.intVal = atoi(yytext); return T_Int;}

[a-zA-Z]+ { strncpy(yylval.name, yytext, 32); return T_Identifier;}

[-+*/()\n=] { return yytext[0];}

[\t]* { /* ignore whitespace */ }

Check out the online manual for more details about these and any other features of
yacc/bison.

Bibliography

A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools. Reading, MA:

Addison-Wesley, 1986.

J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill,

1990.

A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold,

1988.

