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Syntax-directed translation refers to a method of compiler implementation where the 
source language translation is completely driven by the parser.  In other words, the 
parsing process and parse trees are used to direct semantic analysis and the translation 
of the source program.  This can be a separate phase of a compiler or we can augment 
our conventional grammar with information to control the semantic analysis and 
translation.  Such grammars are called attribute grammars. 
 
We augment a grammar by associating attributes with each grammar symbol that 
describes its properties.  An attribute has a name and an associated value: a string, a 
number, a type, a memory location, an assigned register—whatever information we 
need.  For example, variables may have an attribute "type" (which records the declared 
type of a variable, useful later in type-checking) or an integer constant may have an 
attribute "value" (which we will later need to generate code). 
 
With each production in a grammar, we give semantic rules or actions, which describe 
how to compute the attribute values associated with each grammar symbol in a 
production.  The attribute value for a parse node may depend on information from its 
children nodes below or its siblings and parent node above. 
 
Consider this production, augmented with a set of actions that use the "value" attribute 
for a digit node to store the appropriate numeric value.  Below, we use the syntax X.a to 
refer to the attribute a associated with symbol X. 
 

digit    –> 0 {digit.value = 0} 

   |  1 {digit.value = 1} 

   |  2 {digit.value = 2} 

   ... 

   |  9 {digit.value = 9} 

 
Attributes may be passed up a parse tree to be used by other productions: 
 

int1    –> digit     {int1.value = digit.value} 

   |  int2 digit  {int1.value = int2.value*10 + digit.value} 

 
(We are using subscripts in this example to clarify which attribute we are referring to, 
so int1 and int2 are different instances of the same non-terminal symbol.) 
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There are two types of attributes we might encounter: synthesized or inherited. 
Synthesized attributes are those attributes that are passed up a parse tree, i.e., the left-
side attribute is computed from the right-side attributes.  The lexical analyzer usually 
supplies the attributes of terminals and the synthesized ones are built up for the 
nonterminals and passed up the tree. 
 

X –> Y1Y2...Yn 

 
X.a = f(Y1.a, Y2.a, ...Yn.a) 

 
 

 

Inherited attributes are those that are passed down a parse tree, i.e., the right-side 
attributes are derived from the left-side attributes (or other right-side attributes).  These 
attributes are used for passing information about the context to nodes further down the 
tree. 
 

X –> Y1Y2...Yn 

 
Yk.a = f(X.a, Y1.a, Y2.a, ..., Yk-1.a, Yk+1.a, ..., Yn.a) 

 
Consider the following grammar that defines declarations and simple expressions in a 
Pascal-like syntax: 
 

P –>  DS   

D –> var V; D |   

S –> V := E; S |   
V –> x | y | z   

 
Now we add two attributes to this grammar, name and dl, for the name of a variable and 
the list of declarations.  Each time a new variable is declared, a synthesized attribute for 
its name is attached to it.  That name is added to a list of variables declared so far in the 
synthesized attribute dl that is created from the declaration block.  The list of variables 
is then passed as an inherited attribute to the statements following the declarations for 
use in checking that variables are declared before use. 
 

int 
value = 4*10 + 2 = 42 

int digit 
value = 2 

value = 4 
digit 

value = 4 

4 

2 
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P –> DS { S.dl = D.dl } 
D1 –> var V; D2  { D1.dl = addlist(V.name, D2.dl) }  

 |   { D1.dl = NULL } 
S1 –>  V := E; S2  { check(V.name, S1.dl); S2.dl = S1.dl }   
 |   
V –> x  { V.name = 'x' }  

 |  y { V.name = 'y' }  

 |  z  { V.name = 'z' } 

 

If we were to parse the following code, what would the attribute structure look like? 
 

var x; 

var y; 

  

x := ...; 

y := ...; 

 

P 

 
 D                                  S 

var      V     ;       D 

x            var     V   ;     D 

y           

V     :=     E    ;    S 

 x ..... 
 
            

 
 
Typically the way we handle attributes is to associate with each symbol some sort of 
structure with all the necessary attributes, and we can pick out the attribute of interest 
by fieldname. 
 

typedef struct _attribute { 

 char *name; 

 struct _attribute *list; 

} attribute; 

 
P -> DS  { $2.list = $1.list } 

D -> var V; D { $$.list = add_to_list($2.name, $4.list) }  

         |    { $$.list = NULL } 

S -> V := E; S  { check($1.name, $$.list); $5.list = $$.list }  

         |      

V -> x    { $$.name = 'x' }  

   | y  { $$.name = 'y' }  

   | z  { $$.name = 'z' } 
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Top-Down SDT 

We can implement syntax-directed translation in either a top-down or a bottom-up 
parser and we'll briefly investigate each approach.  First, let's look at adding attribute 
information to a hand-constructed top-down recursive-descent parser.  Our example 
will be a very simple FTP client, where the parser accepts user commands and uses a 
syntax-directed translation to act upon those requests. Here's in the grammar we'll use, 
already in an LL(1) form: 
 

Session –>  CommandList T_QUIT 

CommandList –> Command CommandList |  
Command –> Login | Get | Logout 
Login –> User Pass 
User –>  T_USER T_IDENT 
Pass –>  T_PASS T_IDENT 
Get –> T_GET T_IDENT MoreFiles 

MoreFiles –> T_IDENT MoreFiles |  
Logout –> T_LOGOUT 

 
Now, let’s see how the attributes, such as the username, filename, and connection, can 
be passed around during the parsing. This recursive-descent parser is using the 
lookahead/token-matching utility functions from the top-down parsing handout. 
 

static void ParseCommands() 

{ 

 Connection *conn = NULL; 

 int next; 

 

   while ((next = GetLookahead()) != T_QUIT) { 

    switch (next) { 

       case T_USER: 

          conn = ParseLogin(); break; 

       case T_GET: 

          ParseGet(conn); break; 

       case T_LOGOUT: 

          ParseLogout(conn); conn = NULL; break; 

       default: 

          ReportParseFailure("command expected", yytext); 

    } 

 } 

} 

 

static Connection *ParseLogin() // returns attribute of opened connection 

{ 

 char *user = ParseUser();  

 char *pass = ParsePassword(); 

  return Login(user, pass); // uses attributes passed up from below 

} 

 

static char *ParseUser() // returns attribute of username given 

{ 

 MatchToken(T_USER); 

 char *str = ParseIdentifier(); // gets name from identfier child node 

  MatchToken('\n'); 

 return str; 
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} 

 

static char *ParsePassword() // similar to username 

{ 

 MatchToken(T_PASS); 

 char *str = ParseIdentifier(); 

 MatchToken('\n'); 

 return str; 

} 

 

static char *ParseIdentifier() 

{ 

 char *str = NULL; 

    

 if (GetLookahead() == T_IDENT) { 

    str = strdup(yytext); 

   MatchToken(T_IDENT); 

   } 

   

   return str; // returns NULL on error 

} 

 

static void ParseGet(Connection *conn) // receives conn from above 

{ 

 MatchToken(T_GET); 

 char *filename = ParseIdentifier(); 

 MatchToken('\n');  

 Transfer(conn, filename);// reports error if conn NULL 

} 

 

static void ParseLogout(Connection *conn) // receives conn from above 

{ 

 MatchToken(T_LOGOUT); 

 MatchToken('\n'); 

 Logout(conn); // reports error if conn NULL 

} 

 

During processing of the Login command, the parser gathers the username and 
password returned from the children nodes and uses that information to create a new 
connection attribute to pass up the tree.  In this situation the username, password, and 
connection are all acting as synthesized attributes, working their way from the leaves 
upward to the parent. That open connection is saved and then later passed downward 
into other commands. The connection is being used as an inherited attributed when 
processing Get and Logout, those commands are receiving information from the parent 
about parts of the parse that have already happened (its left siblings). 
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Bottom-Up SDT 

Here is a simple expression grammar that has associativity and precedence already 
built in.  

E' –>  E 
E –> T | E A T 
T –> F | T M F 
F –> (E) | int  
A –> + | - 
M –> * | / 

 
During the bottom-up parse, as we push symbols on to the parse stack, we will 
associate with each operand/expression symbol (E, T, F, etc.) an integer value.  For each 
operator (A, M) we will store the operator code.  When performing a reduction, we will 
synthesize the attribute for the left-side nonterminal from the attributes of the right side 
symbol, the handle that is currently on top of the stack.  See how the associated actions 
below will evaluate the arithmetic expression during parsing? 
 

E'  -> E { printf("%d\n", E.val); } 

 

E   -> T  { E.val = T.val; } 

     | E A T { switch(A.op) { 

  case ADD: E.val = E.val + T.val; break; 

  case SUB: E.val = E.val - T.val; break; } 

 } 

T   -> F { T.val = F.val;} 

     | T M F { switch(M.op) { 

  case MUL: T.val = T.val * F.val; break; 

  case DIV: T.val = T.val / F.val; break; } 

 } 

F   -> (E) { F.val = E.val; } 

     | int { F.val = int.val; } 

 

A   -> + { A.op = ADD; } 

     | - { A.op = SUB; } 

  

M   -> * { M.op = MUL; } 

     | / { M.op = DIV; } 

 

The attribute value of terminals is assumed to have been assigned by the scanner.  The 
attribute values for nonterminals are explicitly assigned in the parser action code.  The 
symbol attributes can usually be stored along with the symbol itself in the bottom-up 
parse stack, which is mighty convenient.  However, given the way a bottom-up parser 
constructs the leaves first and works its way up to the parent, it is trivial to support 
synthesized attributes (like those needed in the expression parser), but more awkward 
to allow for inherited attributes. 
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Attributes and yacc 

It doesn’t take much to transform the above abstract example into legitimate yacc code. 
$1, $2, etc. are all used to access the attribute of the nth token on the right side of the 
production.  The global variable yylval is set by the scanner and that value is saved 
with the token when placed on the parse stack.  When a rule is reduced, a new state is 
placed on the stack, the default behavior is to just copy the attribute of $1 for that new 
state, this can be controlled by assigning to $$ in the action for the rule.  By default the 
attribute type is an integer, but can be extended to allow for more storage of diverse 
types using the %union specification in the yacc input file.  Here's a simple infix 
calculator that shows all these techniques in conjunction.  It parses ordinary arithmetic 
expressions, uses a symbol table for setting and retrieving values of simple variables, 
and even has some primitive error-handling. 
 

%{ 

 static int Lookup(const char *name); 

 static void Store(const char *name, int val); 

%} 

 

%union { 

 int intVal; 

 char name[32]; 

} 

 

%token <intVal>  T_Int 

%token <name>    T_Identifier 

 

%type  <intVal>  E 

 

%left  '+'  '-' 

%left  '*'  '/' 

%right  U_minus 

 

%% 

 

S      :   Stmt  | S Stmt  

       ; 

 

Stmt   :  T_Identifier '=' E '\n'  

                { Store($1, $3); printf("%d\n", $3);} 

       |  E '\n'  

                { printf("%d\n", $1);} 

       |  error '\n'  

                { printf("Discarding malformed expression.\n");} 

       ; 

 

E      :  E '+' E  

            { $$ = $1 + $3;} 

       |  E '-' E  

            { $$ = $1 - $3;} 

       |  E '*' E  

            { $$ = $1 * $3;} 

       |  E '/' E  

            { if ($3 == 0) { 

               printf("divide by zero\n");  

               $$ = 0; 
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             } else  

               $$ = $1 / $3;} 

       |  '(' E ')'  

            { $$ = $2;} 

       |  '-' E     %prec U_minus  

            { $$ = -$2;} 

       |  T_Int  

            { $$ = $1;} 

       |  T_Identifier  

            { $$ = Lookup($1);} 

       ; 

%% 

 

/* Store/Lookup functions omitted for clarify  

   They are just ordinary hash table operations */ 

 

Here is the scanner to go with: 
 

%{ 

   #include "y.tab.h" 

%} 

 

%% 

 

[0-9]+       { yylval.intVal = atoi(yytext); return T_Int;} 

[a-zA-Z]+    { strncpy(yylval.name, yytext, 32); return T_Identifier;} 

[-+*/()\n=]  { return yytext[0];} 

[ \t]*       { /* ignore whitespace */ } 

 

Check out the online manual for more details about these and any other features of 
yacc/bison. 
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