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Guide to Divide-and-Conquer

Thanks to Julie Tibshirani for helping with this handout!

This handout contains a sample divide-and-conquer problem and a complete solution so that you
can get a better sense for what we're expecting on the problem set. As you'll see, the correctness
proofs of divide-and-conquer algorithms tend to be proofs by induction, and runtime analyses of-
ten cite the Master Theorem.

A Sample Problem: Finding the Non-Duplicate

This question has been floating around as a tricky job interview question for about a year now. 1|
apologize if it doesn't have much practical relevance beyond helping you get a high-paying job
with lots of nice perks. ©®

You are given a sorted array of numbers where every value except one appears ex-
actly twice; the remaining value appears only once. Design an efficient algorithm
for finding which value appears only once.

Here are some example inputs to the problem:
112234455667 788
10 10 17 17 18 18 19 19 21 21 23
1335577889910 10

Clearly, this problem can be solved in O(n) time, where n is the number of elements in the array,
by just scanning across the elements of the array one at a time and looking for one that isn't paired
with the next or previous array element. But can we do better?

Since we know that the array is sorted, we might want to think about approaching this problem us-
ing some sort of binary-search-like algorithm. We can't use an exact copy of binary search to solve
this problem, though, because we don't know what value we're looking for.

The key insight needed to solve this problem is the following: suppose you look at the pairs of el-
ements at positions (0, 1), (2, 3), (4, 5), etc. All pairs that appear before the singleton element
must consist of two copies of the same value. If we look at the pair containing the singleton
value, then the first and second element of the pair will be different, with the singleton element at
the first position. Importantly, if we look at any pair after the singleton element, the values in that
pair will be different, since the pair containing the singleton will have “stolen” an element from
the pair that appears after it, shifting everything down by one position.

Let's see how to formalize this into an algorithm. We can pick a pair of elements close to the mid-
dle of the the array and check whether the two elements there are equal or different. If they're
equal, we can discard that pair and all pairs that come before it, since the singleton element must
come after it. If they're different, we can discard the second element of that pair and everything
that comes after it, since we know that the second element is part of a pair and that the singleton is
either the first element of the pair or comes before it. Finally, when we get down to one element
left, we know that element will be the singleton. We'd expect this to run in time O(log n), since
we're discarding about half the elements on each iteration. Let's begin by formalizing the algo-
rithm:
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Algorithm: Let A be our array and let its length be n = 2k + 1 (since it consists of
k pairs and one singleton). If n = 1, return A[0]. If n > 1, compare A[2|k/2]] and
A[2|k /2] + 1] (using zero-indexing). If the elements are equal, recursively apply
this algorithm to the subarray beginning at position 2|k /2] + 2 and extending to
the end. Otherwise, recursively apply this algorithm to the subarray starting at the
beginning of the array and extending to 2|k / 2], inclusive.

Now that we have a formal version of the algorithm, we need to prove that the algorithm works
correctly. This is a lot trickier than it might initially appear to be. In order to show correctness,
we need to show that we can determine in which half of the array the singleton element appears
simply by looking at the elements at positions 2|k /2] and 2|k /2] + 1. Intuitively:

1. If the singleton appears after positions 2|k / 2] and 2|k / 2| + 1, then all the elements be-
fore the singleton would be paired up correctly. Therefore, A[2lk/ 2]] = A[2lk /2] + 1],
so we can discard the first half of the array.

2. If the singleton appears at or before position 2|k / 2], then all the elements after the single-
ton would be mismatched. Therefore A[2|k/2]] # A[2|lk /2] + 1], so we can discard the
second half of the array (but not A[2| &/ 2]], since it might be the singleton).

Based on these observations, we might want to try to prove the following lemma:
Lemma: A[2m] # A[2m + 1] iff the position of the singleton (denoted s) satisfies s < 2m.

For now, let's hold off on proving this statement (we're pretty sure that it's true). Instead, let's see
if we can prove that the algorithm is correct under the assumption that this lemma holds. If it
doesn't, then we probably shouldn't waste our time trying to prove it!

Useful Tip #1: Before proving any lemmas, confirm that you can prove that your
algorithm is correct under the assumption that those lemmas are true. If so, go
back and prove the lemmas. If not, discard or modify the lemmas.

Since our algorithm is inherently recursive, we are probably best off trying to prove it correct with
induction, showing that the correctness on smaller inputs guarantees correctness on larger inputs.
The algorithm is supposed to find the singleton element, so we should prove this is so:

Theorem: Given an array of size 2k + 1, the algorithm returns the singleton element.

Proof: By induction on k. As a base case, when & = 0, the array has length 1 and the
algorithm will return the only element, which must be the singleton. For the induc-
tive step, assume that for some k that the claim holds for all 0 < &' < k. We will
prove it holds for £.

If A[2]lk/2]] = A[2lk /2] + 1], then by our lemma, we have s > 2|k /2| + 1. Be-
cause A[2|k /2] + 1] is duplicated, this means s > 2|k /2] + 2. In this case, our al-
gorithm recursively invokes itself on the subarray starting at position 2|k / 2] + 2.
This subarray contains 2k + 1 — 2|k /2] — 2 =2(k - |k /2] — 1) + 1 elements.
Therefore, by the inductive hypothesis, the recursive call returns the singleton ele-
ment, so the algorithm returns the singleton element.

Otherwise, A[2|k/ 2]]1 # A[2lk /2] + 1], so by the lemma, s < 2|k / 2]. The algo-
rithm then recursively invokes itself in the subarray ending at position 2|k / 2],
which has 2|k / 2] + 1 elements in it. Therefore, by the inductive hypothesis, the
recursive call returns the singleton element, so the algorithm returns the singleton
element. This completes the induction. m
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Notice how this proof worked via strong induction — we knew that we're going to make a recur-
sive call to some smaller problem, but we weren't sure how small that problem would be.

Useful Tip #2: Use strong induction (also called complete induction) to prove di-
vide-and-conquer algorithms are correct.

Now that we have this theorem in tow, we should come back to prove that the lemma is true. As a
reminder, our lemma is

Lemma: A[2m] # A[2m + 1] iff the position of the singleton (denoted s) satisfies s < 2m.
This is a biconditional, so we can try thinking about how we'd show each direction of implication.

Let's start with the forward direction: if A[2m] # A[2m + 1], then s < 2m. Why is this true? Intu-
itively, if these elements aren't paired up, then the singleton element has to be before them or
equal to one of these two elements. In the latter case, this is easy to show. In the former case, we
would somehow need to argue that the singleton had to have come earlier in order to offset the el-
ements. This is true, but difficult to prove.

Let's try a different tactic: the contrapositive of this statement is
If s > 2m, then A[2m] = A[2m + 1]

In other words, if the singleton comes after position 2m, then A[2m] and A[2m + 1] would have to
be paired with one another. The intuition here is a bit easier to work with: if the singleton appears
after position 2m, then everything before it must be paired up. We could easily prove that this is
true using induction, since

* The first two elements must be paired up, since neither is the singleton.

* If the first 2r elements (where 27 < 2m < s) are paired up and the element at position at 2r
isn't the singleton, it has to be paired with the element at position 2r + 1 or 2r — 1. By the
IH, the element at position 27 — 1 is already paired up, so it has to be paired up with the el-
ement at position 27 + 1.

So now we have to think about the reverse direction: if the singleton appears at or before position
2m, then A[2m] # A[2m + 1]. We can prove this in more or less the same way that we proved the
previous part: use induction to show that if the singleton is at some position 2¢, then all pairs after
position 2¢ will be mismatched. Based on this discussion, we arrive at this formal proof:

Proof: We prove both directions of implication.

(=) By contrapositive; we will show that if s > 2m, then A[2m] = A[2m + 1]. To
do this, we prove the stronger claim that A[27] = A[2r + 1] for all 0 < » < m by in-
duction on 7. As a base case, when r = 0, A[0] can't be the singleton (0 < 2m <),
so A[0] = A[1]. Now suppose that for some  that the claim is true for all ' satis-
fying 0 < ' <r<m. We will prove the claim is true for . We know A[2r] is not
the singleton, since then s = 27 < 2m, contradicting that s > 2m. Therefore, A[27]
must be equal to an adjacent array element. We cannot have A[2r] = A[2r — 1] or
then A[2(r — 1)] # A[2(r — 1) + 1], so we must have A[2r] = A[2r + 1]. Thus the
claim holds for », completing the induction.

(=) Suppose s < 2m. We claim that s must be even; if s were odd (say, s = 2¢ + 1),
then we have A[2¢] # A[2¢ + 1], and by (=) this would mean s <2t < 2¢+ 1, a con-
tradiction. So s is even; let s = 2¢. Then since all elements after the singleton must
be paired, a quick inductive argument shows that A[2¢ + 2k] # A[2t + 2k + 1] for
all k> 0. Setting k = m — t completes the proof. m
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All that's left to do at this point is to analyze the runtime. We've spent a lot of time talking about
how to solve recurrence relations, so we can try to set up a recurrence relation for this problem.

There's one catch — the algorithm works by writing n = 2k + 1 and then chooses a subproblem
whose size is determined from k rather than from n. This makes writing out a precise recurrence
relation in terms of » tricky. But that's nothing to worry about: since n = 2k + 1, if we write out a
recurrence relation in terms of & and find that T(k) = O(f{(k)) we can conclude that the runtime as a
function of n is O(f{(n — 1) / 2)), which, if f'is well-behaved, should be easy to work with.

Useful Tip #3: It's sometimes useful to define recurrence relations in terms of
variables other than n. Just make sure you explain how to use the solution to the
recurrence to learn something about the runtime as a function of n.

This gives the following runtime analysis:

Runtime: Our algorithm's runtime is given by the following recurrence in terms of 4:
T(0) =0O(1)
T(k) < T(Lk/2]) +O(1)

By the Master Theorem, this solves to T(k) = O(log k). Since n =2k + 1, this means that the run-
time as a function of n is O(log n).
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