Fundamental Graph Algorithms
Part One
Announcements

- Problem Set One out, due **Wednesday, July 3**.
 - Play around with O, Ω, and Θ notations!
 - Get your feet wet designing and analyzing algorithms.
 - Explore today's material on graphs.
- Can be completed using just material from the first two lectures.
- We suggest reading through the handout on how to approach the problem sets. There's a lot of useful information there!
- Office hours schedule will be announced tomorrow.
Announcements

• We will not be writing any code in CS161; we'll focus more on the design and analysis techniques.

• Each week, we will have an optional programming section where you can practice coding up these algorithms.

• Run by TA Andy Nguyen, who coaches Stanford's ACM programming team.

• Meets **Thursdays, 4:15PM - 5:05PM** in **Gates B08**.
Graphs
A Social Network
Chemical Bonds
PANFLUTE FLOWCHART

- **Start**
 - **Diamond**: Do you need one?
 - **Yes**: Green box - no you don't
 - **No**: Red box - no panflute

Notes:
- The diagram flow is from top-left to bottom-right.
A graph is a mathematical structure for representing relationships.
A graph is a mathematical structure for representing relationships.
A graph is a mathematical structure for representing relationships.
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** connected by **edges**.
A graph is a mathematical structure for representing relationships. A graph consists of a set of nodes connected by edges.
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** connected by **edges**.
Some graphs are **directed**.
Some graphs are \textit{undirected}.
Some graphs are **undirected**.

You can think of them as directed graphs with edges both ways.
Formalisms

- A graph is an ordered pair $G = (V, E)$ where
 - V is a set of the vertices (nodes) of the graph.
 - E is a set of the edges (arcs) of the graph.
- E can be a set of ordered pairs or unordered pairs.
 - If E consists of ordered pairs, G is directed
 - If E consists of unordered pairs, G is undirected.
- In an undirected graph, the degree of node v (denoted $\text{deg}(v)$) is the number of edges incident to v.
- In a directed graph, the indegree of a node v (denoted $\text{deg}^-(v)$) is the number of edges entering v and the outdegree of a node v (denoted $\text{deg}^+(v)$) is the number of edges leaving v.
An Application: Six Degrees of Separation
A Social Network
Shortest Paths

- The **length** of a path P (denoted $|P|$) in a graph is the number of edges it contains.
- A **shortest path** between u and v is a path P where $|P| \leq |P'|$ for any path P' from u to v.
- For any nodes u and v, define $d(u, v)$ to be the length of the shortest path from u to v, or ∞ if no such path exists.
- What is $d(v, v)$ for any $v \in V$?
The Shortest Path Problem

• **Input:**
 - A graph $G = (V, E)$, which may be directed or undirected.
 - A start node $s \in V$.

• **Output:**
 - A table $\text{dist}[v]$, where $\text{dist}[v] = d(s, v)$ for any $v \in V$.

An Inefficient Algorithm
A Better Approach
Radiating Outward
A Secondary Idea

- Proceed outward from the source node s in “layers.”
 - The first layer is all nodes of distance 0.
 - The second layer is all nodes of distance 1.
 - The third layer is all nodes of distance 2.
 - etc.
- This gives rise to **breadth-first search**.
Breadth-First Search

The Breadth-First Search algorithm explores the nodes of a graph in a breadth-first manner. This means that it visits all the nodes at a given depth before moving on to the nodes at the next depth. The algorithm typically uses a queue to keep track of the nodes to be visited. Each node is assigned a distance from a starting node or root node. The distances are represented by the numbers inside the nodes in the diagram. The algorithm explores the graph by visiting nodes in order of their distance from the root node, starting with the root node itself, and then moving on to the nodes one level down, and so on. The diagram shows the Breadth-First Search process with the nodes in order of their exploration.
Breadth-First Search

A 0

B 1

C 2

D ∞

E ∞

F 2

G 1

H 2

I 3

J 2

K 2

L 2

M 3

N 3

O 3

P ∞

Q 3

R ∞

S ∞
Breadth-First Search
Breadth-First Search

Diagram showing nodes and edges connecting them, labeled with numbers and symbols.
Breadth-First Search

A 0

B 1

C 2

D 4

E ∞

F 2

G 1

H 2

I 3

J 2

K 2

L 2

M 3

N 3

O 3

P ∞

Q 3

R ∞

S ∞

Q

I

N

O
Breadth-First Search
Breadth-First Search
Breadth-First Search

A 0
B 1
C 2
D 4
E ∞
F 2
G 1
H 2
I 3
J 2
K 2
L 2
M 3
N 3
O 3
P ∞
Q 3
R ∞
S ∞
Breadth-First Search

Graph with nodes labeled A to S and edges connecting them.
Breadth-First Search
Breadth-First Search
Breadth-First Search

Graph representation of Breadth-First Search algorithm.
Breadth-First Search

A 0
B 1
C 2
D 4
E 4
F 2
G 1
H 2
I 3
J 2
K 2
L 2
M 3
N 3
O 3
P 4
Q 3
R 4
S 4

D
P
R
E
S
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

The diagram represents a graph for Breadth-First Search, where each node is labeled with a letter and an integer value indicating its distance from the root node A.

- A (0)
- B (1)
- C (2)
- D (4)
- E (4)
- F (2)
- G (1)
- H (2)
- I (3)
- J (2)
- K (2)
- L (2)
- M (3)
- N (3)
- O (3)
- P (4)
- Q (3)
- R (4)
- S (4)
Breadth-First Search

A 0
B 1
C 2
D 4
E 4
F 2
G 1
H 2
I 3
J 2
K 2
L 2
M 3
N 3
O 3
P 4
Q 3
R 4
S 4

E
S
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

Graph representation:

- A (0)
- B (1)
- C (2)
- D (4)
- E (4)
- F (2)
- G (1)
- H (2)
- I (3)
- J (2)
- K (2)
- L (2)
- M (3)
- N (3)
- O (3)
- P (4)
- Q (3)
- R (4)
- S (4)
Breadth-First Search
Breadth-First Search
These edges form a **breadth-first search tree**: the path from any \(v \) to node \(A \) gives a shortest path from \(v \) to \(A \).
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
Question 1: How do we prove this always finds the right distances?

Question 2: How *efficiently* does this find the right distances?
Question 1: How do we prove this always finds the right distances?

Question 2: How *efficiently* does this find the right distances?
Breadth-First Search
Breadth-First Search

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S
Breadth-First Search
Breadth-First Search
Breadth-First Search

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S
Breadth-First Search
Breadth-First Search

All nodes in the queue are at distance 0 from A.
Breadth-First Search

All nodes at distance 0 from A are in the queue.
Breadth-First Search

All nodes at distance ≤ 0 from A have the right distance set.
Breadth-First Search

All nodes at distance > 0 from A have distance set to ∞
Breadth-First Search
Breadth-First Search

Graph representation of Breadth-First Search.
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

All nodes in the queue are at distance 1 from A.
Breadth-First Search

All nodes at distance 1 from A are in the queue.
All nodes at distance ≤ 1 from A have the right distance set.
Breadth-First Search

All nodes at distance > 1 from A have distance set to ∞
Breadth-First Search

All nodes in the queue are at distance 2 from A.
Breadth-First Search

All nodes at distance 2 from A are in the queue.
Breadth-First Search

All nodes at distance ≤ 2 from A have the right distance set.
Breadth-First Search

All nodes at distance > 2 from A have distance set to ∞.
Breadth-First Search
Breadth-First Search

A 0
B 1
C 2
D ∞
E ∞
F 2
G 1
H 2
I ∞
J 2
K 2
L 2
M ∞
N ∞
O ∞
P ∞
Q ∞
R ∞
S ∞

L
F
H
J
K
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search

A 0

B 1

C 2

D ∞

E ∞

F 2

G 1

H 2

I ∞

J 2

K 2

L 2

M 3

N ∞

O ∞

P ∞

Q 3

R ∞

S ∞

H

J

K

M

Q
Breadth-First Search
Breadth-First Search

[Diagram of a graph with nodes labeled A to S and numbers indicating distances.]
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
Breadth-First Search
All nodes in the queue are at distance 3 from A.
Breadth-First Search

All nodes at distance 3 from A are in the queue.
Breadth-First Search

All nodes at distance ≤ 3 from A have the right distance set.
Breadth-First Search

All nodes at distance > 3 from A have distance set to ∞
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).
Theorem: Breadth-first search always terminates with dist[v] = d(s, v) for all v ∈ V.

Proof: Define “round n” of BFS to be an instance where at the start of the loop, all nodes v in the queue satisfy dist[v] = n.
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \)
for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of
the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove
in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).
Theorem: Breadth-first search always terminates with dist[v] = d(s, v) for all v ∈ V.

Proof: Define “round n” of BFS to be an instance where at the start of the loop, all nodes v in the queue satisfy dist[v] = n. We will prove in an lemma the following are always true after the first n rounds:

1. For any node v, d(s, v) = n iff v is in the queue.
2. All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
3. All nodes v where d(s, v) > n have dist[v] = ∞

Let k be the maximum finite distance of any node from node s.
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:
Theorem: Breadth-first search always terminates with dist[v] = d(s, v) for all v ∈ V.

Proof: Define “round n” of BFS to be an instance where at the start of the loop, all nodes v in the queue satisfy dist[v] = n. We will prove in an lemma the following are always true after the first n rounds:

1. For any node v, d(s, v) = n iff v is in the queue.
2. All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
3. All nodes v where d(s, v) > n have dist[v] = ∞

Let k be the maximum finite distance of any node from node s. Note the following:

- Any node v where d(s, v) is finite satisfies d(s, v) ≤ k, and any node v where d(s, v) > k satisfies d(s, v) = ∞. This follows from the fact that we picked the maximum possible finite k.
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \)

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

- Any node \(v \) where \(d(s, v) \) is finite satisfies \(d(s, v) \leq k \), and any node \(v \) where \(d(s, v) > k \) satisfies \(d(s, v) = \infty \). This follows from the fact that we picked the maximum possible finite \(k \).

- There must be nodes at distances 0, 1, 2, ..., \(k \) from \(s \). A simple inductive argument using property (1) shows that there will be exactly \(k + 1 \) rounds, corresponding to distances 0, 1, ..., \(k \).
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

- Any node \(v \) where \(d(s, v) \) is finite satisfies \(d(s, v) \leq k \), and any node \(v \) where \(d(s, v) > k \) satisfies \(d(s, v) = \infty \). This follows from the fact that we picked the maximum possible finite \(k \).

- There must be nodes at distances 0, 1, 2, ..., \(k \) from \(s \). A simple inductive argument using property (1) shows that there will be exactly \(k + 1 \) rounds, corresponding to distances 0, 1, ..., \(k \).

So consider \(\text{dist}[v] \) for any node \(v \) after the algorithm terminates (that is, after \(k+1 \) rounds).
Theorem: Breadth-first search always terminates with dist[v] = d(s, v) for all v ∈ V.

Proof: Define “round n” of BFS to be an instance where at the start of the loop, all nodes v in the queue satisfy dist[v] = n. We will prove in an lemma the following are always true after the first n rounds:

1. For any node v, d(s, v) = n iff v is in the queue.
2. All nodes v where d(s, v) ≤ n have dist[v] = d(s, v).
3. All nodes v where d(s, v) > n have dist[v] = ∞

Let k be the maximum finite distance of any node from node s. Note the following:

- Any node v where d(s, v) is finite satisfies d(s, v) ≤ k, and any node v where d(s, v) > k satisfies d(s, v) = ∞. This follows from the fact that we picked the maximum possible finite k.

- There must be nodes at distances 0, 1, 2, …, k from s. A simple inductive argument using property (1) shows that there will be exactly k + 1 rounds, corresponding to distances 0, 1, …, k.

So consider dist[v] for any node v after the algorithm terminates (that is, after k+1 rounds). If d(s, v) is finite, then d(s, v) ≤ k ≤ k+1, and so by (1) we have dist[v] = d(s, v).
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v)\) for all \(v \in V\).

Proof: Define “round \(n\)” of BFS to be an instance where at the start of the loop, all nodes \(v\) in the queue satisfy \(\text{dist}[v] = n\). We will prove in an lemma the following are always true after the first \(n\) rounds:

1. For any node \(v\), \(d(s, v) = n\) iff \(v\) is in the queue.
2. All nodes \(v\) where \(d(s, v) \leq n\) have \(\text{dist}[v] = d(s, v)\).
3. All nodes \(v\) where \(d(s, v) > n\) have \(\text{dist}[v] = \infty\).

Let \(k\) be the maximum finite distance of any node from node \(s\). Note the following:

- Any node \(v\) where \(d(s, v)\) is finite satisfies \(d(s, v) \leq k\), and any node \(v\) where \(d(s, v) > k\) satisfies \(d(s, v) = \infty\). This follows from the fact that we picked the maximum possible finite \(k\).
- There must be nodes at distances 0, 1, 2, ..., \(k\) from \(s\). A simple inductive argument using property (1) shows that there will be exactly \(k + 1\) rounds, corresponding to distances 0, 1, ..., \(k\).

So consider \(\text{dist}[v]\) for any node \(v\) after the algorithm terminates (that is, after \(k+1\) rounds). If \(d(s, v)\) is finite, then \(d(s, v) \leq k \leq k+1\), and so by (1) we have \(\text{dist}[v] = d(s, v)\). If \(d(s, v) = \infty\), then \(d(s, v) > k + 1\), so by (2) we have \(\text{dist}[v] = \infty\).
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

- Any node \(v \) where \(d(s, v) \) is finite satisfies \(d(s, v) \leq k \), and any node \(v \) where \(d(s, v) > k \) satisfies \(d(s, v) = \infty \). This follows from the fact that we picked the maximum possible finite \(k \).

- There must be nodes at distances 0, 1, 2, ..., \(k \) from \(s \). A simple inductive argument using property (1) shows that there will be exactly \(k + 1 \) rounds, corresponding to distances 0, 1, ..., \(k \).

So consider \(\text{dist}[v] \) for any node \(v \) after the algorithm terminates (that is, after \(k + 1 \) rounds). If \(d(s, v) \) is finite, then \(d(s, v) \leq k \leq k + 1 \), and so by (1) we have \(\text{dist}[v] = d(s, v) \). If \(d(s, v) = \infty \), then \(d(s, v) > k + 1 \), so by (2) we have \(\text{dist}[v] = \infty \). Thus \(d(s, v) = \text{dist}[v] \) for all \(v \in V \), as required.
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

- Any node \(v \) where \(d(s, v) \) is finite satisfies \(d(s, v) \leq k \), and any node \(v \) where \(d(s, v) > k \) satisfies \(d(s, v) = \infty \). This follows from the fact that we picked the maximum possible finite \(k \).

- There must be nodes at distances 0, 1, 2, ..., \(k \) from \(s \). A simple inductive argument using property (1) shows that there will be exactly \(k + 1 \) rounds, corresponding to distances 0, 1, ..., \(k \).

So consider \(\text{dist}[v] \) for any node \(v \) after the algorithm terminates (that is, after \(k + 1 \) rounds). If \(d(s, v) \) is finite, then \(d(s, v) \leq k \leq k + 1 \), and so by (1) we have \(\text{dist}[v] = d(s, v) \). If \(d(s, v) = \infty \), then \(d(s, v) > k + 1 \), so by (2) we have \(\text{dist}[v] = \infty \). Thus \(d(s, v) = \text{dist}[v] \) for all \(v \in V \), as required. ■
Lemma: After n rounds, the following hold:

1. For any node v, $d(s, v) = n$ iff v is in the queue.
2. All nodes v where $d(s, v) \leq n$ have $\text{dist}[v] = d(s, v)$.
3. All nodes v where $d(s, v) > n$ have $\text{dist}[v] = \infty$

Proof: By induction n. After 0 rounds, $\text{dist}[s] = 0$, $\text{dist}[v] = \infty$ for any $v \neq s$, and the queue holds only s. Since s is the only node at distance 0, (1) – (3) hold.

For the inductive step, assume for some n that (1) – (3) hold after n rounds. We will prove (1) – (3) hold after $n + 1$ rounds. We need to show the following:

(a) For any node v, $d(s, v) = n + 1$ iff v is in the queue.
(b) All nodes v where $d(s, v) \leq n + 1$ have $\text{dist}[v] = d(s, v)$.
(c) All nodes v where $d(s, v) > n + 1$ have $\text{dist}[v] = \infty$

To prove (a), note that at the end of round n, all nodes of distance n will have been dequeued, so we need to show all nodes v where $d(s, v) = n + 1$ are enqueued and nothing else is. Note that if a node u is enqueued in round $n + 1$, then at the start of round $n + 1$ $\text{dist}[u] = \infty$ (so by (2) and (3), its distance is at least $n + 1$) and u must have been adjacent to a node v in the queue (by (1), $d(s, v) = n$). Thus there is a path of length $n + 1$ to u (take the path of length n to v, then follow the edge to u), and there is no shorter path, so this is the shortest path to u. Thus, $d(s, u) = n + 1$. Also note that if a node u satisfies $d(s, u) = n + 1$, then by (3) at the start of round $n + 1$ it must have $\text{dist}[u] = \infty$. Also, it must be adjacent to some node at distance n, which by (1) must be in the queue at the start of the round. Thus at the end of round $n + 1$, u will be enqueued and $\text{dist}[u]$ set to $n + 1$.

By our above argument, we know that (a) must hold. Since we didn't change any dist values for nodes at distance n or less, and we set dist values for all enqueued nodes to $n + 1$, (b) holds. Finally, since we only changed labels for nodes at distance $n + 1$, (c) holds as well. This completes the induction. ■
Question 1: How do we prove this always finds the right distances?

Question 2: How efficiently does this find the right distances?
Question 1: How do we prove this always finds the right distances?

Question 2: How *efficiently* does this find the right distances?
Graph Terminology

- When analyzing algorithms on a graph, there are (usually) two parameters we care about:
 - The number of nodes, denoted n. ($n = |V|$)
 - The number of edges, denoted m. ($m = |E|$)
- Note that $m = O(n^2)$. (Why?)
- A graph is called **dense** if $m = \Theta(n^2)$. A graph is called **sparse** if it is not dense.
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):

let q be a new queue.
for each node v in G:
 dist[v] = \infty

dist[s] = 0
enqueue(s, q)

while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
How are our graphs represented?
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an $n \times n$ matrix M of 0s and 1s, where
 - $M_{uv} = 1$ if $(u, v) \in E$.
 - $M_{uv} = 0$ otherwise.

- Memory usage: $\Theta(n^2)$.
- Time to check if an edge exists: $O(1)$.
- Time to find all outgoing edges for a node: $\Theta(n)$.

$$
\begin{pmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}
$$
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an \(n \times n \) matrix \(M \) of 0s and 1s, where
 - \(M_{uv} = 1 \) if \((u, v) \in E\).
 - \(M_{uv} = 0 \) otherwise.

- Memory usage: \(\Theta(n^2) \).

- Time to check if an edge exists: \(O(1) \).

- Time to find all outgoing edges for a node: \(\Theta(n) \).

\[
\begin{pmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

\[
\begin{array}{c}
1 \\
2 \\
4 \\
3
\end{array}
\]
Adjacency Matrices

• An **adjacency matrix** is a representation of a graph as an $n \times n$ matrix M of 0s and 1s, where
 - $M_{uv} = 1$ if $(u, v) \in E$.
 - $M_{uv} = 0$ otherwise.

• Memory usage: $\Theta(n^2)$.

[[Diagram of a graph with adjacency matrix]]

\[
\begin{pmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]
An **adjacency matrix** is a representation of a graph as an $n \times n$ matrix M of 0s and 1s, where

- $M_{uv} = 1$ if $(u, v) \in E$.
- $M_{uv} = 0$ otherwise.

![Graph with adjacency matrix](image)

- Memory usage: $\Theta(n^2)$.
- Time to check if an edge exists:
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an $n \times n$ matrix M of 0s and 1s, where
 - $M_{uv} = 1$ if $(u, v) \in E$.
 - $M_{uv} = 0$ otherwise.

- Memory usage: $\Theta(n^2)$.
- Time to check if an edge exists: $O(1)$
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an $n \times n$ matrix M of 0s and 1s, where
 - $M_{uv} = 1$ if $(u, v) \in E$.
 - $M_{uv} = 0$ otherwise.

- Memory usage: $\Theta(n^2)$.
- Time to check if an edge exists: $O(1)$
- Time to find all outgoing edges for a node:
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an \(n \times n \) matrix \(M \) of 0s and 1s, where
 - \(M_{uv} = 1 \) if \((u, v) \in E\).
 - \(M_{uv} = 0 \) otherwise.

- Memory usage: \(\Theta(n^2) \).
- Time to check if an edge exists: \(O(1) \)
- Time to find all outgoing edges for a node: \(\Theta(n) \)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let \(q \) be a new queue.
 for each node \(v \) in \(G \):
 \(\text{dist}[v] = \infty \)
 \(\text{dist}[s] = 0 \)
 enqueue(\(s \), \(q \))

 while \(q \) is not empty:
 let \(v = \text{dequeue}(q) \)
 for each neighbor \(u \) of \(v \):
 if \(\text{dist}[u] = \infty \):
 \(\text{dist}[u] = \text{dist}[v] + 1 \)
 enqueue(\(u \), \(q \))

\(O(1) \)
\(O(n) \)
\(O(n) \)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

Why isn’t the runtime $\Theta(n^2)$?
Linear Time on Graphs

- With an adjacency matrix, BFS runs in time $O(n^2)$. Is that efficient?
- In a graph with n nodes and m edges, we say that an algorithm runs in **linear time** iff the algorithm runs in time $O(m + n)$.
 - This is linear in the number of “pieces” of the graph, which is the number of nodes plus the number of edges.
- On a dense graph, this implementation of BFS runs in linear time:
 \[O(n^2) = O(n^2 + n) = O(m + n) \]
- On sparser graphs (say, $m = O(n)$), though, this is not linear time:
 \[O(n^2) \neq O(n) = O(m + n) \]
The Issue

- Our algorithm is slow because this step always takes $\Theta(n)$ time:

 \[
 \text{for each neighbor } u \text{ of } v:
 \]

- Can we refine our data structure for storing the graph so that we can easily find all edges incident to a node?

```
1 2
4 3
0 1 1 1
0 0 0 0
0 0 0 1
0 1 0 0
```
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

![Graph example with adjacency list representation]
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\Theta(n + m)$.

- Time to check if edge (u, v) exists: $O(\text{deg}(u))$.

- Time to find all outgoing edges for a node u: $\Theta(\text{deg}(u))$.

![Diagram](image_url)
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\Theta(n + m)$.
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

![Graph representation]

- Memory usage: $\Theta(n + m)$.
- Time to check if edge (u, v) exists:
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\Theta(n + m)$.

- Time to check if edge (u, v) exists: $O(deg^+(u))$
Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

 ![Graph and Adjacency List Diagram]

 - Memory usage: $\Theta(n + m)$.
 - Time to check if edge (u, v) exists: $O(deg^+(u))$
 - Time to find all outgoing edges for a node u:

Adjacency Lists

- An **adjacency list** is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\Theta(n + m)$.
- Time to check if edge (u, v) exists: $O(deg^+(u))$
- Time to find all outgoing edges for a node u: $\Theta(deg^+(u))$
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = \infty
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = \infty:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let \(q \) be a new queue.
 for each node \(v \) in \(G \):
 \(\text{dist}[v] = \infty \)
 \(\text{dist}[s] = 0 \)
 enqueue(s, q)

 while \(q \) is not empty:
 let \(v = \text{dequeue}(q) \)
 for each neighbor \(u \) of \(v \):
 if \(\text{dist}[u] = \infty \):
 \(\text{dist}[u] = \text{dist}[v] + 1 \)
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let \(q \) be a new queue.
 for each node \(v \) in \(G \):
 \(\text{dist}[v] = \infty \)
 \(\text{dist}[s] = 0 \)
 enqueue(s, \(q \))

 while \(q \) is not empty:
 let \(v = \text{dequeue}(q) \)
 for each neighbor \(u \) of \(v \):
 if \(\text{dist}[u] = \infty \):
 \(\text{dist}[u] = \text{dist}[v] + 1 \)
 enqueue(u, \(q \))

\(O(1) \)
\(O(n) \)
\(O(1) \)
\(O(n^2) \)
\(O(n) \)
procedure breadthFirstSearch(s, G):
 let \(q \) be a new queue.
 for each node \(v \) in \(G \):
 \(\text{dist}[v] = \infty \)
 \(\text{dist}[s] = 0 \)
 enqueue(s, q)

 while \(q \) is not empty:
 let \(v = \text{dequeue}(q) \)
 for each neighbor \(u \) of \(v \):
 if \(\text{dist}[u] = \infty \):
 \(\text{dist}[u] = \text{dist}[v] + 1 \)
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 $\text{dist}[v] = \infty$
 $\text{dist}[s] = 0$
 enqueue(s, q)

 while q is not empty:
 let $v = \text{dequeue}(q)$
 for each neighbor u of v:
 if $\text{dist}[u] = \infty$:
 $\text{dist}[u] = \text{dist}[v] + 1$
 enqueue(u, q)
A Better Analysis
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)

O(n)

O(1)

O(n)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

O(1)
O(n)
O(1)
O(n)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
A Better Analysis

- Using adjacency lists, BFS runs in time $O(m + n)$.
 - This is linear time!
- **Key Idea**: Do a more precise accounting of the work done by an algorithm.
 - Determine how much work is done across all iterations to determine total work.
 - Don't just find worst-case runtime and multiply by number of iterations.
- Going forward, we will use adjacency lists rather than adjacency matrices as our graph representation unless stated otherwise.
Next Time

- Dijkstra's Algorithm
- Depth-First Search
- Directed Acyclic Graphs