Fundamental Graph Algorithms
Part One
Announcements

• Problem Set One out, due **Wednesday, July 3**.
 • Play around with O, Ω, and Θ notations!
 • Get your feet wet designing and analyzing algorithms.
 • Explore today's material on graphs.
• Can be completed using just material from the first two lectures.
• We suggest reading through the handout on how to approach the problem sets. There's a lot of useful information there!
• Office hours schedule will be announced tomorrow.
Announcements

- We will not be writing any code in CS161; we'll focus more on the design and analysis techniques.
- Each week, we will have an optional programming section where you can practice coding up these algorithms.
- Run by TA Andy Nguyen, who coaches Stanford's ACM programming team.
- Meets **Thursdays, 4:15PM - 5:05PM** in **Gates B08**.
Graphs
A Social Network
Chemical Bonds
PANFLUTE FLOWCHART

1. **Do you need one?**
 - **YES**
 - **No, you don't.**
 - **NO**
 - **No panflute.**
A **graph** is a mathematical structure for representing relationships.

A graph consists of a set of **nodes** connected by **edges**.
Some graphs are directed.
Some graphs are **undirected**.

You can think of them as directed graphs with edges both ways.
Formalisms

- A **graph** is an ordered pair $G = (V, E)$ where
 - V is a set of the **vertices** (nodes) of the graph.
 - E is a set of the **edges** (arcs) of the graph.
- E can be a set of ordered pairs or unordered pairs.
 - If E consists of ordered pairs, G is **directed**
 - If E consists of unordered pairs, G is **undirected**.
- In an **undirected** graph, the **degree** of node v (denoted $\text{deg}(v)$) is the number of edges incident to v.
- In a **directed** graph, the **indegree** of a node v (denoted $\text{deg}^-(v)$) is the number of edges entering v and the **outdegree** of a node v (denoted $(\text{deg}^+(v)$) is the number of edges leaving v.

An Application: Six Degrees of Separation
A Social Network
A Social Network
A Social Network
Shortest Paths

- The **length** of a path P (denoted $|P|$) in a graph is the number of edges it contains.
- A **shortest path** between u and v is a path P where $|P| \leq |P'|$ for any path P' from u to v.
- For any nodes u and v, define $d(u, v)$ to be the length of the shortest path from u to v, or ∞ if no such path exists.
- What is $d(v, v)$ for any $v \in V$?
The Shortest Path Problem

- **Input:**
 - A graph $G = (V, E)$, which may be directed or undirected.
 - A start node $s \in V$.

- **Output:**
 - A table $\text{dist}[v]$, where $\text{dist}[v] = d(s, v)$ for any $v \in V$.

Radiating Outward
Radiating Outward
Radiating Outward
Radiating Outward
Radiating Outward
A Secondary Idea

• Proceed outward from the source node s in “layers.”
 • The first layer is all nodes of distance 0.
 • The second layer is all nodes of distance 1.
 • The third layer is all nodes of distance 2.
 • etc.
• This gives rise to breadth-first search.
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
Question 1: How do we prove this always finds the right distances?

Question 2: How efficiently does this find the right distances?
Theorem: Breadth-first search always terminates with \(\text{dist}[v] = d(s, v) \) for all \(v \in V \).

Proof: Define “round \(n \)” of BFS to be an instance where at the start of the loop, all nodes \(v \) in the queue satisfy \(\text{dist}[v] = n \). We will prove in an lemma the following are always true after the first \(n \) rounds:

1. For any node \(v \), \(d(s, v) = n \) iff \(v \) is in the queue.
2. All nodes \(v \) where \(d(s, v) \leq n \) have \(\text{dist}[v] = d(s, v) \).
3. All nodes \(v \) where \(d(s, v) > n \) have \(\text{dist}[v] = \infty \).

Let \(k \) be the maximum finite distance of any node from node \(s \). Note the following:

- Any node \(v \) where \(d(s, v) \) is finite satisfies \(d(s, v) \leq k \), and any node \(v \) where \(d(s, v) > k \) satisfies \(d(s, v) = \infty \). This follows from the fact that we picked the maximum possible finite \(k \).
- There must be nodes at distances 0, 1, 2, ..., \(k \) from \(s \). A simple inductive argument using property (1) shows that there will be exactly \(k + 1 \) rounds, corresponding to distances 0, 1, ..., \(k \).

So consider \(\text{dist}[v] \) for any node \(v \) after the algorithm terminates (that is, after \(k + 1 \) rounds). If \(d(s, v) \) is finite, then \(d(s, v) \leq k \leq k + 1 \), and so by (1) we have \(\text{dist}[v] = d(s, v) \). If \(d(s, v) = \infty \), then \(d(s, v) > k + 1 \), so by (2) we have \(\text{dist}[v] = \infty \). Thus \(d(s, v) = \text{dist}[v] \) for all \(v \in V \), as required. ■
Lemma: After n rounds, the following hold:

(1) For any node v, $d(s, v) = n$ iff v is in the queue.
(2) All nodes v where $d(s, v) \leq n$ have $\text{dist}[v] = d(s, v)$.
(3) All nodes v where $d(s, v) > n$ have $\text{dist}[v] = \infty$

Proof: By induction n. After 0 rounds, $\text{dist}[s] = 0$, $\text{dist}[v] = \infty$ for any $v \neq s$, and the queue holds only s. Since s is the only node at distance 0, (1) – (3) hold.

For the inductive step, assume for some n that (1) – (3) hold after n rounds. We will prove (1) – (3) hold after $n + 1$ rounds. We need to show the following:

(a) For any node v, $d(s, v) = n + 1$ iff v is in the queue.
(b) All nodes v where $d(s, v) \leq n + 1$ have $\text{dist}[v] = d(s, v)$.
(c) All nodes v where $d(s, v) > n + 1$ have $\text{dist}[v] = \infty$

To prove (a), note that at the end of round n, all nodes of distance n will have been dequeued, so we need to show all nodes v where $d(s, v) = n + 1$ are enqueued and nothing else is. Note that if a node u is enqueued in round $n + 1$, then at the start of round $n + 1$ $\text{dist}[u] = \infty$ (so by (2) and (3), its distance is at least $n + 1$) and u must have been adjacent to a node v in the queue (by (1), $d(s, v) = n$). Thus there is a path of length $n + 1$ to u (take the path of length n to v, then follow the edge to u), and there is no shorter path, so this is the shortest path to u. Thus, $d(s, u) = n + 1$. Also note that if a node u satisfies $d(s, u) = n + 1$, then by (3) at the start of round $n + 1$ it must have $\text{dist}[u] = \infty$. Also, it must be adjacent to some node at distance n, which by (1) must be in the queue at the start of the round. Thus at the end of round $n + 1$, u will be enqueued and $\text{dist}[u]$ set to $n + 1$.

By our above argument, we know that (a) must hold. Since we didn't change any dist values for nodes at distance n or less, and we set dist values for all enqueued nodes to $n + 1$, (b) holds. Finally, since we only changed labels for nodes at distance $n + 1$, (c) holds as well. This completes the induction. ■
Question 1: How do we prove this always finds the right distances?

Question 2: How *efficiently* does this find the right distances?
Graph Terminology

• When analyzing algorithms on a graph, there are (usually) two parameters we care about:
 • The number of nodes, denoted n. ($n = |V|$)
 • The number of edges, denoted m. ($m = |E|$)
• Note that $m = O(n^2)$. (Why?)
• A graph is called **dense** if $m = \Theta(n^2)$. A graph is called **sparse** if it is not dense.
procedure breadthFirstSearch(s, G):

 let q be a new queue.

 for each node v in G:
 dist[v] = ∞

 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
How are our graphs represented?
Adjacency Matrices

- An **adjacency matrix** is a representation of a graph as an \(n \times n \) matrix \(M \) of 0s and 1s, where
 - \(M_{uv} = 1 \) if \((u, v) \in E\).
 - \(M_{uv} = 0 \) otherwise.
- Memory usage: \(\Theta(n^2) \).
- Time to check if an edge exists: \(O(1) \)
- Time to find all outgoing edges for a node: \(\Theta(n) \)
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)

Why isn’t the runtime $\Theta(n^2)$?
Linear Time on Graphs

- With an adjacency matrix, BFS runs in time $O(n^2)$. Is that efficient?
- In a graph with n nodes and m edges, we say that an algorithm runs in **linear time** iff the algorithm runs in time $O(m + n)$.
 - This is linear in the number of “pieces” of the graph, which is the number of nodes plus the number of edges.
- On a dense graph, this implementation of BFS runs in linear time:
 \[
 O(n^2) = O(n^2 + n) = O(m + n)
 \]
- On sparser graphs (say, $m = O(n)$), though, this is not linear time:
 \[
 O(n^2) \neq O(n) = O(m + n)
 \]
The Issue

- Our algorithm is slow because this step always takes $\Theta(n)$ time:

 \[
 \text{for each neighbor } u \text{ of } v:
 \]

- Can we refine our data structure for storing the graph so that we can easily find all edges incident to a node?
Adjacency Lists

- An adjacency list is a representation of a graph as an array A of n lists. The list $A[u]$ holds all nodes v where (u, v) is an edge.

- Memory usage: $\Theta(n + m)$.
- Time to check if edge (u, v) exists: $O(\text{deg}^+(u))$
- Time to find all outgoing edges for a node u: $\Theta(\text{deg}^+(u))$
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)

 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
A Better Analysis
procedure breadthFirstSearch(s, G):
 let q be a new queue.
 for each node v in G:
 dist[v] = ∞
 dist[s] = 0
 enqueue(s, q)
 while q is not empty:
 let v = dequeue(q)
 for each neighbor u of v:
 if dist[u] = ∞:
 dist[u] = dist[v] + 1
 enqueue(u, q)
A Better Analysis

- Using adjacency lists, BFS runs in time $O(m + n)$.
 - This is linear time!
- **Key Idea**: Do a more precise accounting of the work done by an algorithm.

 - Determine how much work is done *across all iterations* to determine total work.

 - Don't just find worst-case runtime and multiply by number of iterations.

- Going forward, we will use adjacency lists rather than adjacency matrices as our graph representation unless stated otherwise.
Next Time

- Dijkstra's Algorithm
- Depth-First Search
- Directed Acyclic Graphs