
  

Fundamental Graph Algorithms
Part Three



  

Outline for Today

● Topological Sorting, Part II
● How can we quickly compute a topological ordering 

on a DAG?

● Connected Components
● How do we find the “pieces” of an undirected graph?

● Strongly Connected Components
● What are the “pieces” of a directed graph?

● Kosaraju's Algorithm, Part I
● How do we find strongly connected components?



  

A Correction from Last Time



  

Theorem: When DFS(s) returns, the set of
nodes colored green by that call is
precisely the set of nodes reachable from
s along a path consisting purely of gray
nodes (we'll call this a gray path).
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Lemma: Suppose that when DFS(s) is called, v is gray
and there is a path from s to v consisting solely of
gray nodes. Then v is green when DFS(s) returns.

Proof: DFS(s) returns only after all recursive DFS calls have
returned. DFS(v) always colors v green, so if v was gray
when DFS(s) was invoked, the only way v wouldn't be green
when DFS(s) ends is if DFS(v) is never called.

Suppose there is a node v where a gray s-v path P exists 
when DFS(s) is called where DFS(v) is never invoked.  Let x 
be the first node on path P where DFS(x) wasn't invoked. x 
can't be s, since DFS(s) is explicitly invoked, so x is preceded 
by some node y in P.  Consider these cases:

Case 1: DFS(y) is never invoked.  But then x is not the first 
node on path P where DFS was not called.

Case 2: DFS(y) was invoked.  At this time, x would have 
been gray, so DFS(y) would have called DFS(x).

In both cases, we reach a contradiction, so our assumption 
must have been wrong.  Thus all gray nodes reachable by a 
gray path must been green when DFS(x) returns. ■



  

Lemma: Suppose that v was gray when DFS(s)
was called and is green when DFS(s) ends.  Then
there is a path from s to v consisting purely of
gray nodes.

Proof: Since v is green when DFS(s) returns and was
gray when DFS(s) was called, there must have been a
path P = s, x₁, x₂, … , xₙ, v from s to v formed by the
recursive calls to DFS.  This means that x₁, x₂, …, xₙ
must have been gray when DFS(s) was called, since
otherwise these calls would not have been made. 
Consequently, P is a path consisting purely of gray
nodes from s to v, as required. ■



  

Back to Topological Sorting...



  

Topological Sorting

● Goal: Order the nodes of a DAG G such 
that if (u, v) is an edge in G, then u 
appears before v.

● One simple algorithm is as follows: 
repeatedly find a node with no incoming 
edges, remove it, and add it to the result.

● As mentioned in Kleinberg and Tardos, 
can be made to run in Θ(m + n) time.



  

A Completely Different Algorithm



  

DFS on a DAG
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DFS on a DAG, Take II
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DFS on a DAG, Take II
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DFS on a DAG, Take III
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DFS on a DAG, Take III
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DFS on a DAG, Take III
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procedure dfsTopoSort(DAG G):
    for each node v in G:
       color v gray

    let result be an empty list.
    for each node v in G:
       if v is gray:
          run DFS starting from v,
          appending each node to result as
          soon as it is colored green.

    return reverse of result

procedure dfsTopoSort(DAG G):
    for each node v in G:
       color v gray

    let result be an empty list.
    for each node v in G:
       if v is gray:
          run DFS starting from v,
          appending each node to result as
          soon as it is colored green.

    return reverse of result



  

  Question 1: How do we know this actually
produces a topological sort?

  Question 2: How efficiently does this
produce a topological sort?



  

Observation I

Lemma: Every node appears in the
generated list exactly once.

Proof: Nodes are added to the generated
list only when they turn green, which
can happen at most once.  Moreover,
every node has DFS called on it at
least once, either by a recursive call or
when the top-level loop calls it. ■



  

Observation II
Lemma: If there is an edge (u, v) in G, then v will

be colored green before u is colored green.

Proof: Note that there cannot be a path from v to u, since
otherwise there would be a cycle in G (follow the path
from v to u, then cross (u, v) to close the cycle).

Since DFS is called on each node in G, either DFS(u) is 
called before DFS(v) or vice-versa.  So suppose DFS(v) 
is called before DFS(u).  Since there is no path from v 
to u, when DFS(v) terminates v will be green and u will 
not be.  Thus v becomes green before u.

Otherwise, DFS(u) is called before DFS(v).  Since u and 
v are gray at this time, there is a path from u to v of 
gray nodes.  Thus when DFS(u) terminates, v will be 
green.  Since the last step of DFS(u) turns u green, this 
means that v became green before u. ■



  

  Question 1: How do we know this actually
produces a topological sort?

  Question 2: How efficiently does this
produce a topological sort?



  

DFS Topological Sort

● The time complexity of this algorithm is as follows:
● Coloring all nodes gray can be done in Θ(n) time.
● DFS will be invoked exactly once on each node, 

either by a top-level call in the loop or by a recursive 
call.  This means each node and edge will be visited 
at most once by DFS.  This step takes Θ(m + n) 
time.

● The top-level loop visiting nodes requires Θ(n) work.
● Reversing a list of n elements requires Θ(n) work.
● Total work required: Θ(m + n)

● Asymptotically the same as our previous algorithm, 
but a lot easier to code up!



  

Connected Components



  



  

Connected Components

● Let G = (V, E) be an undirected graph.
● Two nodes u, v ∈ V are called connected iff 

there is a path from u to v.
● A connected component of G is a set C ⊆ V 

with the following properties:
● C is nonempty.
● For any u, v ∈ C: u and v are connected.
● For any u ∈ C, v ∈ V – C: u and v are not 

connected.



  

Properties of Connected Components

● All of the following are true; it's an 
interesting exercise to prove them:
● Any two connected components C₁ and C₂ 

are either equal or disjoint.
● Every node in a graph belongs to exactly one 

connected component.
● The connected components of a graph form a 

partition of the nodes of the graph.



  

Finding Connected Components

● Recall: When DFS(u) terminates, u and all gray 
nodes reachable from u by gray paths will have 
turned green and no other nodes will have been 
colored green.

● Suppose that we call DFS in a connected 
component where we have previously not called 
DFS before.

● All nodes in the connected component are 
reachable from one another, and all nodes are 
gray.

● Therefore, DFS terminates having colored all 
nodes in that connected component green and 
coloring no other nodes green.



  

procedure findCCs(graph G):
    for each node v:
        color v gray

    let cc be an array of size n

    let index = 0
    for each node in v:
        if v is gray:
           run DFS(v), setting cc[u] = index
           whenever a node u is colored green
        index = index + 1

    return cc

procedure findCCs(graph G):
    for each node v:
        color v gray

    let cc be an array of size n

    let index = 0
    for each node in v:
        if v is gray:
           run DFS(v), setting cc[u] = index
           whenever a node u is colored green
        index = index + 1

    return cc



  

Analyzing the Runtime

● We do Θ(n) work initially coloring each 
node gray.

● Across all iterations of DFS, each node is 
visited exactly once and each edge is 
visited exactly once.  This takes Θ(m + n) 
time.

● Consequently, total work is Θ(m + n).
● Could we also use BFS here?  If so, what 

would the runtime be?



  

Strongly Connected Components



  

Directed Connectivity

● In a directed graph G, we say v is reachable 
from u iff there is a path from u to v.

● In an undirected graph, if there is a path from 
u to v, there is also a path from v to u.

● In a directed graph, it is possible for there v to 
be reachable from u, but for u not to be 
reachable from v.

● How would we generalize the idea of a 
connected component to a directed graph?



  



  



  



  

Strongly Connected Components

● Let G = (V, E) be a directed graph.
● Two nodes u, v ∈ V are called strongly 

connected iff v is reachable from u and u 
is reachable from v.

● A strongly connected component (or 
SCC) of G is a set C ⊆ V such that
● C is not empty.
● For any u, v ∈ C: u and v are strongly 

connected.
● For any u ∈ C and v ∈ V – C: u and v are not 

strongly connected.



  



  



  



  

Properties of SCCs

● The following properties of SCCs are 
true; it's a good exercise to prove them.
● Two SCCs C₁ and C₂ are either equal or 

disjoint.
● Every node belongs to exactly one SCC.
● The SCCs of a graph form a partition of the 

nodes of the graph.



  

Finding SCCs

● Every graph must have a collection of 
SCCs.

● In the undirected case, it was easy to find 
all the connected components of a graph 
by using DFS or BFS.

● Will this find all SCCs in a directed graph?
● Question: How can we determine all of 

the strongly connected components of a 
directed graph G?



  

A Beautiful Observation



  

Condensation Graphs

● The condensation of a directed graph G 
is the directed graph GSCC whose nodes 
are the SCCs of G and whose edges are 
defined as follows:

(C₁, C₂) is an edge in GSCC iff 
∃u ∈ C₁, v ∈ C₂. (u, v) is an edge in G.

● In other words, if there is an edge in G 
from any node in C₁ to any node in C₂, 
there is an edge in GSCC from C₁ to C₂.



  



  



  



  



  



  



  



  

An Amazing Result

● Theorem: For any directed graph G, the 
condensation GSCC of G is a DAG.

● Proof Sketch:
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SCCs and DAGs

● We now see that there is a close 
connection between SCCs and DAGs:
the SCCs of a graph form a DAG.

● Intuitively, you can think of a graph as a 
two-layer structure:
● At a high level, a graph is a DAG of SCCs 

showing the top-level connections between 
clusters of nodes.

● At a lower level, you can see the connections 
between nodes in the same SCC.



  

SCCs and DAGs

● Now that we have found a connection 
between SCCs and DAGs, can we adapt any 
of our algorithms on DAGs to find SCCs?

● Right now, our main operation on DAGs is 
topological sort, and we have two 
algorithms we can use:
● Repeatedly removing a source node.  That won't 

help us here, since we can't easily tell if a node 
is in a source SCC.

● Running DFS and reversing the result.  So what 
happens if we try that out?
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What's Going On?

● It looks like if we look purely at the last node from 
each SCC to turn green, we get a topological sort 
of GSCC in reverse.

● Here, each SCC is represented by a single node.
● This helps us get a better sense for how the SCCs 

are interlinked!

● However, we still don't have a reliable way to 
determine which node is the last node in each SCC 
to turn green...

● For starters, let's convince ourselves that this isn't 
a coincidence.



  

Some Notation

● We'll denote by f(v) the time at which node v is 
colored green by the algorithm.
● f(u) < f(v) means “node u was colored green 

before node v was colored green.”
● Note that every node is eventually colored 

green, so this notation is well-defined.
● Let C be an SCC.  Define

f(C) = maxv ∈ C f(v)      

● In other words, f(C) is the time at which the 
last node in C was colored green.



  

Lemma: If s is the first node in SCC C visited
by DFS, then f(C) = f(s).

Proof: At the time DFS(s) is called, since s is the
first node in C visited by DFS, all nodes in C are
gray.  Since C is an SCC, every node v ∈ C is
reachable from s.  This means there is a gray 
path from s to v for every v ∈ C.  Thus every
node v ∈ C will be green when DFS(s) returns.

Since the last step of DFS(s) is to color s green, 
this means that s is colored green only after all 
other nodes in C are colored green.  Therefore,
f(s) ≥ f(v) for any v ∈ C.  Since by definition
f(C) = maxv ∈ C f(v), this means f(C) = f(s). ■



  

Theorem: Suppose we run DFS starting at each node in
G.  Let C₁ and C₂ be SCCs in G.  If (u, v) is an edge in
G where u ∈ C₁ and v ∈ C₂, then f(C₂) < f(C₁).

Proof: Let x₁ and x₂ be the first nodes DFS visits in C₁ and C₂,
respectively.  By our lemma, f(C₁) = f(x₁) and f(C₂) = f(x₂).
Therefore, we will show f(x₂) < f(x₁).

Note x₂ is reachable from x₁, since we can go from x₁ to u, 
across (u, v), and from v to x₂. However, x₁ is not reachable 
from x₂, since then x₁ and x₂ would be strongly connected, 
contradicting that they belong to different SCCs.

Now, suppose DFS(x₂) is called before DFS(x₁).  Since x₁ is 
not reachable from x₂, x₁ will not be green when DFS(x₂) 
returns.  Thus x₁ becomes green after x₂, so f(x₂) < f(x₁).

Otherwise, DFS(x₁) was called before DFS(x₂). When 
DFS(x₁) is called, all nodes in C₁ and C₂ are gray, so there 
is a gray path from x₁ to x₂.  Thus when DFS(x₁) returns, x₂ 
will be green. Since DFS(x₁) colors x₁ green just before it 
returns, this means that x₁ was colored green after x₂, so 
f(x₂) < f(x₁). ■
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