
  

Randomized Algorithms
Part Four



  

Announcements

● Problem Set Three due right now.
● Due Wednesday using a late day.

● Problem Set Four out, due next Monday, 
July 29.
● Play around with randomized algorithms!
● Approximate NP-hard problems!
● Explore a recent algorithm and why hashing 

matters!

● Handout: “Guide to Randomized 
Algorithms” also released.



  

Outline for Today

● Chained Hash Tables
● How can you compactly store a small subset 

of a large set of elements?

● Universal Hash Functions
● Groups of functions that distribute elements 

nicely.



  

Associative Structures

● The data structures we've seen so far are 
linear:
● Stacks, queues, priority queues, lists, etc.

● In many cases, we want to store data in 
an unordered fashion.

● Queries like
● Add element x.
● Remove element x.
● Is element x contained?



  

Bitvectors

● A bitvector is a data structure for 
storing a set of integers in the range 
{0, 1, 2, 3, …, Z – 1}.

● Store as an array of Z bits.
● If bit at position x is 0, x does not appear 

in the set.
● If bit at position x is 1, x appears in the 

set.



  

Analyzing Bitvectors

● What is the runtime for
● Inserting an element?
● Removing an element?
● Checking if an element is present?

● How much space is used if the bitvector 
contains all Z possible elements?

● How much space is used if the bitvector 
contains n of the Z possible elements?



  

Another Idea

● Store elements in an unsorted array.
● To determine whether x is contained, 

scan over the array elements and return 
whether x is found.

● To add x, check to see x is contained and, 
if not, append x.

● To remove x, check to see if x is 
contained and, if so, remove x.



  

Analyzing this Approach

● How much space is used if the array 
contains all Z possible elements?

● How much space is used if the array 
contains n of the Z possible elements?

● What is the runtime for
● Inserting an element?
● Removing an element?
● Checking if an element is present?



  

The Tradeoff

● Bitvectors are fast because we know where 
to look to find each element.

● Bitvectors are space-inefficient because we 
store one bit per possible element.

● Unsorted arrays are slow because we have 
to scan every element.

● Unsorted arrays are space-efficient because 
we only store the elements we use.

● This is a time-space tradeoff: we can 
improve performance by using more space.



  

Combining the Approaches

● Bitvectors always use a fixed amount of 
space and support fast lookups.
● Good when number of possible elements is 

low, bad when number of possible elements is 
large.

● Unsorted arrays use variable space and 
don't support fast lookups.
● Good when number of used elements is low, 

bad when number of used elements is large.



  

Chained Hash Tables

● Suppose we have a universe U consisting of all 
possible elements that we could want to store.

● Create m buckets, numbered {0, 1, 2, …, m – 1} as an 
array of length m.  Each bucket is an unsorted array of 
elements.

● Find a rule associating each element in U with some 
bucket.

● To see if x is contained, look in the bucket x is 
associated with and see if x is there.

● To add x, see if x is contained and add it to the 
appropriate bucket if it's not.

● To remove x, see if x is contained and remove it from 
its bucket if it is.



  

Bucket 0

Samuel
Clemens

Bucket 1 Bucket 2 Bucket 3

Malcolm
Little

Mary Ann
Evans

David
Cornwell

Jean-Baptiste
Poquelin

Piers
Jacob

Theodore
Geisel

Moses
Horwitz

Julius
Marx

Association rule:
(length of first name) mod 4

Association rule:
(length of first name) mod 4



  

Bucket 0

Samuel
Clemens

Bucket 1 Bucket 2 Bucket 3

Mary Ann
Evans

David
Cornwell

Jean-Baptiste
Poquelin

Piers
Jacob

Theodore
Geisel

Moses
Horwitz

Julius
Marx

Association rule:
Party in bucket 1!

Association rule:
Party in bucket 1!Malcolm

Little



  

Analyzing Runtime

● The three basic operations on a hash table 
(insert, remove, lookup) all run in time 
O(1 + X), where X is the total number of 
elements in the bucket visited.
● (Why is there a 1 here?)

● Runtime depends on how well the elements 
are distributed.

● If n elements are distributed evenly across all 
the buckets, runtime is O(1 + n / m).

● If there are n elements distributed all into the 
same bucket, runtime is O(n).



  

Hash Functions

● Chained hash tables only work if we have a 
mechanism for associating elements of the 
universe with buckets.

● A hash function is a function

h : U → {0, 1, 2, …, m – 1} 
● In other words, for any x ∈ U, the value of h(x) is 

the bucket that x belongs to.
● Since h is a mathematical function, it's defined 

for all inputs in U and always produces the same 
output given the same input.

● For simplicity, we'll assume hash functions can be 
computed in O(1) time.



  

Choosing Good Hash Functions

● The efficiency of a hash table depends on 
the choice of hash function.

● In the upcoming analysis, we will assume 
|U|  ≫ m (that is, there are vastly more 
elements in the universe than there are 
buckets in the hash table.)
● Assume at least |U| > mn, but probably 

more.



  

A Problem

Theorem: For any hash function h, there is a
series of n values that, if stored in the table,
all hash to the same bucket.

Proof: Because there are m buckets, under the
assumption that |U| > mn, by the pigeonhole
principle there must be at least n + 1
elements that hash to the same bucket. 
Inserting any n of those elements into the
hash table places all those elements into the
same bucket. ■



  

A Problem

● No matter how clever we are with our 
choice of hash function, there will always 
be an input that will degenerate 
operations to worst-case Ω(n) time.

● Theoretically, limits the worst-case 
effectiveness of chained hashing.

● Practically, leads to denial-of-service 
attacks.



  

Randomness to the Rescue

● For any fixed hash function, there is a 
degenerate series of inputs.

● The hash function itself cannot involve 
randomness.
● (Why?) 

● However, what if we choose which hash 
function to use at random?



  

A (Very Strong) Assumption

● Let's suppose that when we create our 
hash table, we choose a totally random 
function h : U → {0, 1, 2, …, m – 1} as 
our hash function.
● This has some issues; more on that later.

● Under this assumption, what would the 
expected cost of the three major hash 
table operations be?



  

Some Notation

● As before, let n be the number of 
elements in a hash table.

● Let those elements be x₁, x₂, …, xₙ.
● Suppose that the element that we're 

looking up is the element z.
● Perhaps z is in the list; perhaps it's not.



  

Analyzing Efficiency

● Suppose we perform an operation (insert, 
lookup, delete) on element z.

● The runtime is proportional to the number of 
elements in the same bucket as z.

● For any xₖ, let Cₖ be an indicator variable that 
is 1 if xₖ and z hash to the same bucket (i.e. 
h(xₖ) = h(z)) and is 0 otherwise.

● Let random variable X be equal to the number 
of elements in the same bucket as z.  Then

X = ∑
xi≠z

Ci



  

Analyzing Efficiency
E[ X ] = E[∑

x i≠z

Ci]

= ∑
x i≠z

E [Ci]              

= ∑
x i≠z

P (h(xi)=h(z))

= ∑
xi≠z

1
m

                 

≤
n
m

                      

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)



  

Analyzing Efficiency

● Assuming we choose a function uniformly 
at random from all functions, the 
expected cost of a hash table operation is 
O(1 + n / m).

● What's the space usage?
● O(m) space for buckets.
● O(n) space for elements.
● Some unknown amount of space to store the 

hash function.



  

A Problem

● We assume h is chosen uniformly at random 
from all functions from U to {0, 1, …, m – 1}.

● There are m|U| possible functions from U to 
{0, 1, …, m – 1}. (Why?)

● How much memory does it take to store h?

● If we assign k bits to store h, there are 2k 
possible combinations of those bits.

● We need at least |U| log₂ m bits to store h.

● Question: How can we get this performance 
without the huge space penalty?



  

Analyzing Efficiency
E[ X ] = E[∑

x i≠z

Ci]

= ∑
x i≠z

E [Ci]              

= ∑
x i≠z

P (h(xi)=h(z))

= ∑
xi≠z

1
m

                 

≤
n
m

                      

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)



  

Universal Hash Functions

● A set  of hash functions from ℋ U to {0, 1, …, 
m – 1} is called a universal family of hash 
functions iff

For any x, y ∈ U where x ≠ y, if h is drawn 
uniformly at random from , thenℋ

P(h(x) = h(y)) ≤ 1 / m
● In other words, the probability of a collision 

between two elements is at most 1 / m as 
long as we choose h from  uniformly at ℋ
random.



  

Universal Hashing

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)

E[ X ] = E[∑
x i≠z

Ci]

= ∑
x i≠z

E [Ci]              

= ∑
x i≠z

P (h(xi)=h(z))

≤ ∑
xi≠z

1
m

                 

≤
n
m

                      



  

Universal Hash Functions

● The set of all possible functions from U to {0, 1, …, 
m – 1} is a universal family of hash functions.

● However, requires Ω(|U| log m) space.
● For certain types of elements, can find families of 

universal hash functions we can evaluate in O(1) 
time and store in O(1) space.

● The Good News: The intuitions behind these 
functions are quite nice.

● The Bad News: Formally proving that they're 
universal requires number theory and/or field 
theory, which is beyond the scope of this class.



  

Simple Universal Hash Functions

● We'll start with a simplifying assumption 
and generalize from there.

● Assume U = {0, 1, 2, …, m – 1} and that 
m is prime.  (We'll relax this later.)

● Let  be the set of all functions of the ℋ
form

h(x) = ax + b (mod m)
● Where a, b ∈ {0, 1, 2, …, m – 1}
● Claim:  is universal.ℋ



  

Showing Universality

● We'll show  is universal by showing it obeys a ℋ
stronger property called 2-independence:

For any x₁, x₂ ∈ U where x₁ ≠ x₂, if h is chosen 
uniformly at random from , then for any ℋ y₁ 
and y₂ we have

P(h(x₁) = y₁ ∧ h(x₂) = y₂) = 1 / m2.
● (The probability that you can guess where any 

two distinct elements will be hashed is 1 / m2).

● Claim: Any 2-independent family of hash 
functions is universal.



  

h(x) = ax + b



  

Showing Universality

● If h(x) = ax + b (mod m), knowing two 
points on the line determines the entire 
line.

● Can only guess the output at two points 
by guessing the coefficients: probability 
is 1 / m2!

● Need to use some more advanced math 
to formalize why this works; revolves 
around the fact that �m is a finite field.



  

Generalizing the Result

● This hash function only works if m is prime and 
|U| = m.

● Suppose we can break apart any x ∈ U into k 
integer “blocks” x₁, x₂, …, xₖ, where each block is 
between 0 and m – 1.

● Then the set  of all hash functions of the formℋ

h(x) = a₁x₁ + a₂x₂ + … + aₖxₖ + b (mod m)

is universal.

● Intuitively, after evaluating k – 1 of the products, 
you're left with a linear function in one remaining 
block and the same argument applies.



  

A Quick Aside

● Most programming languages associate 
“a” hash code with each object:
● Java: Object.hashCode
● Python: __hash__
● C++: std::hash

● Unless special care is taken, there 
always exists the possibility of extensive 
hash collisions!



  

Looking Forward

● This is not the only type of hash table; 
others exist as well:
● Dynamic perfect hash tables have 

worst-case O(1) lookup times and O(n) total 
storage space, but use a bit more memory.

● Open addressing hash tables avoid chaining 
and have better locality, but require stronger 
guarantees on the hash function.

● Hash functions have lots of applications 
beyond hash tables; you'll see one in the 
problem set.



  

Next Time

● Greedy Algorithms
● Interval Scheduling
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