

Randomized Algorithms
Part Four

Announcements

● Problem Set Three due right now.
● Due Wednesday using a late day.

● Problem Set Four out, due next Monday,
July 29.
● Play around with randomized algorithms!
● Approximate NP-hard problems!
● Explore a recent algorithm and why hashing

matters!

● Handout: “Guide to Randomized
Algorithms” also released.

Outline for Today

● Chained Hash Tables
● How can you compactly store a small subset

of a large set of elements?

● Universal Hash Functions
● Groups of functions that distribute elements

nicely.

Associative Structures

● The data structures we've seen so far are
linear:
● Stacks, queues, priority queues, lists, etc.

● In many cases, we want to store data in
an unordered fashion.

● Queries like
● Add element x.
● Remove element x.
● Is element x contained?

Bitvectors

● A bitvector is a data structure for
storing a set of integers in the range
{0, 1, 2, 3, …, Z – 1}.

● Store as an array of Z bits.
● If bit at position x is 0, x does not appear

in the set.
● If bit at position x is 1, x appears in the

set.

Analyzing Bitvectors

● What is the runtime for
● Inserting an element?
● Removing an element?
● Checking if an element is present?

● How much space is used if the bitvector
contains all Z possible elements?

● How much space is used if the bitvector
contains n of the Z possible elements?

Another Idea

● Store elements in an unsorted array.
● To determine whether x is contained,

scan over the array elements and return
whether x is found.

● To add x, check to see x is contained and,
if not, append x.

● To remove x, check to see if x is
contained and, if so, remove x.

Analyzing this Approach

● How much space is used if the array
contains all Z possible elements?

● How much space is used if the array
contains n of the Z possible elements?

● What is the runtime for
● Inserting an element?
● Removing an element?
● Checking if an element is present?

The Tradeoff

● Bitvectors are fast because we know where
to look to find each element.

● Bitvectors are space-inefficient because we
store one bit per possible element.

● Unsorted arrays are slow because we have
to scan every element.

● Unsorted arrays are space-efficient because
we only store the elements we use.

● This is a time-space tradeoff: we can
improve performance by using more space.

Combining the Approaches

● Bitvectors always use a fixed amount of
space and support fast lookups.
● Good when number of possible elements is

low, bad when number of possible elements is
large.

● Unsorted arrays use variable space and
don't support fast lookups.
● Good when number of used elements is low,

bad when number of used elements is large.

Chained Hash Tables

● Suppose we have a universe U consisting of all
possible elements that we could want to store.

● Create m buckets, numbered {0, 1, 2, …, m – 1} as an
array of length m. Each bucket is an unsorted array of
elements.

● Find a rule associating each element in U with some
bucket.

● To see if x is contained, look in the bucket x is
associated with and see if x is there.

● To add x, see if x is contained and add it to the
appropriate bucket if it's not.

● To remove x, see if x is contained and remove it from
its bucket if it is.

Bucket 0

Samuel
Clemens

Bucket 1 Bucket 2 Bucket 3

Malcolm
Little

Mary Ann
Evans

David
Cornwell

Jean-Baptiste
Poquelin

Piers
Jacob

Theodore
Geisel

Moses
Horwitz

Julius
Marx

Association rule:
(length of first name) mod 4

Association rule:
(length of first name) mod 4

Bucket 0

Samuel
Clemens

Bucket 1 Bucket 2 Bucket 3

Mary Ann
Evans

David
Cornwell

Jean-Baptiste
Poquelin

Piers
Jacob

Theodore
Geisel

Moses
Horwitz

Julius
Marx

Association rule:
Party in bucket 1!

Association rule:
Party in bucket 1!Malcolm

Little

Analyzing Runtime

● The three basic operations on a hash table
(insert, remove, lookup) all run in time
O(1 + X), where X is the total number of
elements in the bucket visited.
● (Why is there a 1 here?)

● Runtime depends on how well the elements
are distributed.

● If n elements are distributed evenly across all
the buckets, runtime is O(1 + n / m).

● If there are n elements distributed all into the
same bucket, runtime is O(n).

Hash Functions

● Chained hash tables only work if we have a
mechanism for associating elements of the
universe with buckets.

● A hash function is a function

h : U → {0, 1, 2, …, m – 1}
● In other words, for any x ∈ U, the value of h(x) is

the bucket that x belongs to.
● Since h is a mathematical function, it's defined

for all inputs in U and always produces the same
output given the same input.

● For simplicity, we'll assume hash functions can be
computed in O(1) time.

Choosing Good Hash Functions

● The efficiency of a hash table depends on
the choice of hash function.

● In the upcoming analysis, we will assume
|U| ≫ m (that is, there are vastly more
elements in the universe than there are
buckets in the hash table.)
● Assume at least |U| > mn, but probably

more.

A Problem

Theorem: For any hash function h, there is a
series of n values that, if stored in the table,
all hash to the same bucket.

Proof: Because there are m buckets, under the
assumption that |U| > mn, by the pigeonhole
principle there must be at least n + 1
elements that hash to the same bucket.
Inserting any n of those elements into the
hash table places all those elements into the
same bucket. ■

A Problem

● No matter how clever we are with our
choice of hash function, there will always
be an input that will degenerate
operations to worst-case Ω(n) time.

● Theoretically, limits the worst-case
effectiveness of chained hashing.

● Practically, leads to denial-of-service
attacks.

Randomness to the Rescue

● For any fixed hash function, there is a
degenerate series of inputs.

● The hash function itself cannot involve
randomness.
● (Why?)

● However, what if we choose which hash
function to use at random?

A (Very Strong) Assumption

● Let's suppose that when we create our
hash table, we choose a totally random
function h : U → {0, 1, 2, …, m – 1} as
our hash function.
● This has some issues; more on that later.

● Under this assumption, what would the
expected cost of the three major hash
table operations be?

Some Notation

● As before, let n be the number of
elements in a hash table.

● Let those elements be x₁, x₂, …, xₙ.
● Suppose that the element that we're

looking up is the element z.
● Perhaps z is in the list; perhaps it's not.

Analyzing Efficiency

● Suppose we perform an operation (insert,
lookup, delete) on element z.

● The runtime is proportional to the number of
elements in the same bucket as z.

● For any xₖ, let Cₖ be an indicator variable that
is 1 if xₖ and z hash to the same bucket (i.e.
h(xₖ) = h(z)) and is 0 otherwise.

● Let random variable X be equal to the number
of elements in the same bucket as z. Then

X = ∑
xi≠z

Ci

Analyzing Efficiency
E[X] = E[∑

x i≠z

Ci]

= ∑
x i≠z

E [Ci]

= ∑
x i≠z

P (h(xi)=h(z))

= ∑
xi≠z

1
m

≤
n
m

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)

Analyzing Efficiency

● Assuming we choose a function uniformly
at random from all functions, the
expected cost of a hash table operation is
O(1 + n / m).

● What's the space usage?
● O(m) space for buckets.
● O(n) space for elements.
● Some unknown amount of space to store the

hash function.

A Problem

● We assume h is chosen uniformly at random
from all functions from U to {0, 1, …, m – 1}.

● There are m|U| possible functions from U to
{0, 1, …, m – 1}. (Why?)

● How much memory does it take to store h?

● If we assign k bits to store h, there are 2k
possible combinations of those bits.

● We need at least |U| log₂ m bits to store h.

● Question: How can we get this performance
without the huge space penalty?

Analyzing Efficiency
E[X] = E[∑

x i≠z

Ci]

= ∑
x i≠z

E [Ci]

= ∑
x i≠z

P (h(xi)=h(z))

= ∑
xi≠z

1
m

≤
n
m

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)

Universal Hash Functions

● A set of hash functions from ℋ U to {0, 1, …,
m – 1} is called a universal family of hash
functions iff

For any x, y ∈ U where x ≠ y, if h is drawn
uniformly at random from , thenℋ

P(h(x) = h(y)) ≤ 1 / m
● In other words, the probability of a collision

between two elements is at most 1 / m as
long as we choose h from uniformly at ℋ
random.

Universal Hashing

So the expected cost of an operation is
O(1 + E[X]) = O(1 + n / m)

E[X] = E[∑
x i≠z

Ci]

= ∑
x i≠z

E [Ci]

= ∑
x i≠z

P (h(xi)=h(z))

≤ ∑
xi≠z

1
m

≤
n
m

Universal Hash Functions

● The set of all possible functions from U to {0, 1, …,
m – 1} is a universal family of hash functions.

● However, requires Ω(|U| log m) space.
● For certain types of elements, can find families of

universal hash functions we can evaluate in O(1)
time and store in O(1) space.

● The Good News: The intuitions behind these
functions are quite nice.

● The Bad News: Formally proving that they're
universal requires number theory and/or field
theory, which is beyond the scope of this class.

Simple Universal Hash Functions

● We'll start with a simplifying assumption
and generalize from there.

● Assume U = {0, 1, 2, …, m – 1} and that
m is prime. (We'll relax this later.)

● Let be the set of all functions of the ℋ
form

h(x) = ax + b (mod m)
● Where a, b ∈ {0, 1, 2, …, m – 1}
● Claim: is universal.ℋ

Showing Universality

● We'll show is universal by showing it obeys a ℋ
stronger property called 2-independence:

For any x₁, x₂ ∈ U where x₁ ≠ x₂, if h is chosen
uniformly at random from , then for any ℋ y₁
and y₂ we have

P(h(x₁) = y₁ ∧ h(x₂) = y₂) = 1 / m2.
● (The probability that you can guess where any

two distinct elements will be hashed is 1 / m2).

● Claim: Any 2-independent family of hash
functions is universal.

h(x) = ax + b

Showing Universality

● If h(x) = ax + b (mod m), knowing two
points on the line determines the entire
line.

● Can only guess the output at two points
by guessing the coefficients: probability
is 1 / m2!

● Need to use some more advanced math
to formalize why this works; revolves
around the fact that �m is a finite field.

Generalizing the Result

● This hash function only works if m is prime and
|U| = m.

● Suppose we can break apart any x ∈ U into k
integer “blocks” x₁, x₂, …, xₖ, where each block is
between 0 and m – 1.

● Then the set of all hash functions of the formℋ

h(x) = a₁x₁ + a₂x₂ + … + aₖxₖ + b (mod m)

is universal.

● Intuitively, after evaluating k – 1 of the products,
you're left with a linear function in one remaining
block and the same argument applies.

A Quick Aside

● Most programming languages associate
“a” hash code with each object:
● Java: Object.hashCode
● Python: __hash__
● C++: std::hash

● Unless special care is taken, there
always exists the possibility of extensive
hash collisions!

Looking Forward

● This is not the only type of hash table;
others exist as well:
● Dynamic perfect hash tables have

worst-case O(1) lookup times and O(n) total
storage space, but use a bit more memory.

● Open addressing hash tables avoid chaining
and have better locality, but require stronger
guarantees on the hash function.

● Hash functions have lots of applications
beyond hash tables; you'll see one in the
problem set.

Next Time

● Greedy Algorithms
● Interval Scheduling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

