Greedy Algorithms
Part Three
Announcements

• Problem Set Four due right now.
 • Due on Wednesday with a late day.

• Problem Set Five out, due Monday, August 5.
 • Explore greedy algorithms, exchange arguments, “greedy stays ahead,” and more!
 • *Start early*. Greedy algorithms are tricky to design and the correctness proofs are challenging.

• Handout: “Guide to Greedy Algorithms” also available.

• Problem Set Three graded; will be returned at the end of lecture.
 • Sorry for the mixup from last time!
Outline for Today

- **Implementing Prim's Algorithm**
 - Efficiently finding MSTs.
- **Kruskal's Algorithm**
 - A different algorithm for finding MSTs.
- **Disjoint-Set Forests**
 - A specialized data structure for speeding up Kruskal's algorithm.
Recap: **Prim's Algorithm**
Prim's Algorithm

- **Prim's Algorithm** is the following:
 - Choose some $v \in V$ and let $S = \{v\}$.
 - Let $T = \emptyset$.
 - While $S \neq V$:
 - Choose a least-cost edge e with one endpoint in S and one endpoint in $V - S$.
 - Add e to T.
 - Add both endpoints of e to S.
 - Naive implementation takes time $O(mn)$.
A Faster Implementation

• Can speed up using binary heaps:
 • Create a priority queue initially holding all edges incident to v.
 • At each step, dequeue edges from the priority queue until we find an edge (x, y) where $x \in S$ and $y \notin S$.
 • Add (x, y) to T.
 • Add to the queue all edges incident to y whose endpoints aren't in S.
• Each edge is enqueued and dequeued at most once. (Why?)
• Total runtime: $O(m \log m)$.
A Note on Runtimes

• In any graph, $m = O(n^2)$.

• Therefore:

$$O(m \log m) = O(m \log (n^2)) = O(m \log n)$$

• This version is more common and we will use it going forward.
A Different Approach: Kruskal's Algorithm
Kruskal's Algorithm

- **Kruskal's Algorithm** is the following:
 - Let $T = \emptyset$.
 - For each edge (u, v) sorted by cost:
 - If u and v are not already connected in T, add (u, v) to T.

- Can prove by induction that the result is a spanning tree by showing that
 - Exactly $n - 1$ edges are added.
 - No edges are added that close a cycle.
Showing Correctness

- The correctness proof for Kruskal's algorithm uses an exchange argument similar to that for Prim's algorithm.

- **Recall**: Prove Prim's algorithm is correct by looking at cuts in the graph:
 - Can swap an edge added by Prim's for a specially-chosen edge crossing some cut.
 - Since that edge is the lowest-cost edge crossing the cut, this cannot increase the cost.
Correctness Proof Intuition

- **Claim:** Every edge added by Kruskal's algorithm is a least-cost edge crossing some cut \((S, V - S)\).
 - When the edge was chosen, it did not close a cycle.
 - Choose \(S\) to be the CC of nodes on one end of the edge to get cut \((S, V - S)\).
 - Edge must be cheapest edge crossing this cut, since otherwise we would have selected a different edge.
Theorem: Kruskal's algorithm always produces an MST.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let \(T \) be the tree produced by Kruskal's algorithm and \(T^* \) be an MST. We will prove \(c(T) = c(T^*) \). If \(T = T^* \), we are done.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$.

Note that $|T - T^*| = |T - T^*| - 1$. Therefore, if we repeat this process once for each edge in $|T - T^*|$, we will have converted T^* into T while preserving $c(T^*)$. Thus $c(T) = c(T^*)$. ■
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$. Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v).
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$. Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V - S$, so it contains an edge (x, y) crossing the cut.
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T-T^* \neq \emptyset$. Let (u, v) be an edge in $T-T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V-S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V-S$, so it contains an edge (x, y) crossing the cut. Then $T^* = T^* \cup \{(u, v)\} - \{(x, y)\}$ is an ST of G and $c(T^*) = c(T^*) + c(u, v) - c(x, y)$.

Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V - S$, so it contains an edge (x, y) crossing the cut. Then $T^* = T^* \cup \{(u, v)\} - \{(x, y)\}$ is an ST of G and $c(T^*) = c(T^*) + c(u, v) - c(x, y)$. Since $c(x, y) \geq c(u, v)$, we have $c(T^*) \leq c(T^*)$. ■
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V - S$, so it contains an edge (x, y) crossing the cut. Then $T'^* = T^* \cup \{(u, v)\} - \{(x, y)\}$ is an ST of G and $c(T'^*) = c(T^*) + c(u, v) - c(x, y)$. Since $c(x, y) \geq c(u, v)$, we have $c(T'^*) \leq c(T^*)$. Since T^* is an MST, $c(T'^*) = c(T^*)$. ■
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V - S$, so it contains an edge (x, y) crossing the cut. Then $T^* = T^* \cup \{(u, v)\} - \{(x, y)\}$ is an ST of G and $c(T^*) = c(T^*) + c(u, v) - c(x, y)$. Since $c(x, y) \geq c(u, v)$, we have $c(T^*) \leq c(T^*)$. Since T^* is an MST, $c(T^*) = c(T^*)$.

Note that $|T - T^*| = |T - T^*| - 1$. Therefore, if we repeat this process once for each edge in $T - T^*$, we will have converted T^* into T while preserving $c(T^*)$. ■
Theorem: Kruskal's algorithm always produces an MST.

Proof: Let T be the tree produced by Kruskal's algorithm and T^* be an MST. We will prove $c(T) = c(T^*)$. If $T = T^*$, we are done. Otherwise $T \neq T^*$, so $T - T^* \neq \emptyset$. Let (u, v) be an edge in $T - T^*$.

Let S be the CC containing u at the time (u, v) was added to T. We claim (u, v) is a least-cost edge crossing cut $(S, V - S)$. First, (u, v) crosses the cut, since u and v were not connected when Kruskal's algorithm selected (u, v). Next, if there were a lower-cost edge e crossing the cut, e would connect two nodes that were not connected. Thus, Kruskal's algorithm would have selected e instead of (u, v), a contradiction.

Since T^* is an MST, there is a path from u to v in T^*. The path begins in S and ends in $V - S$, so it contains an edge (x, y) crossing the cut. Then $T^* = T^* \cup \{(u, v)\} - \{(x, y)\}$ is an ST of G and $c(T^*) = c(T^*) + c(u, v) - c(x, y)$. Since $c(x, y) \geq c(u, v)$, we have $c(T^*) \leq c(T^*)$. Since T^* is an MST, $c(T^*) = c(T^*)$.

Note that $|T - T^*| = |T - T^*| - 1$. Therefore, if we repeat this process once for each edge in $T - T^*$, we will have converted T^* into T while preserving $c(T^*)$. Thus $c(T) = c(T^*)$. ■
Implementing Kruskal's Algorithm
Kruskal's Algorithm

- High-level overview of Kruskal's algorithm:
 - Let $T = \emptyset$.
 - For each edge (u, v) sorted by cost:
 - If u and v are not connected by T, add (u, v) to T.
- Can visit edges in order by sorting them in time $O(m \log n)$.
- Can check whether u and v are connected in time $O(n)$ by doing DFS. (*Why?*)
- Total time required: $O(mn)$.
The “bottleneck” in Kruskal's algorithm is checking whether a pair of nodes are connected to one another.

Goal: Optimize queries of the form “are x and y connected?”

To do this, we will introduce a new data structure called the disjoint-set forest.
Set Partitions

- A **partition** of a set S is a family X of nonempty sets where each element of S belongs to exactly one set in X.

- **Goal:** Build a data structure (called a *disjoint-set data structure*) that efficiently supports three operations:
 - **make-set**(v), which places v into its own set,
 - **union**(u, v), which combines the sets containing u and v into one set, and
 - **in-same**(u, v), which returns whether u and v belong to the same set.
Kruskal's Algorithm

- Using our new data structure:
 - Let $T = \emptyset$.
 - Let S be a disjoint-set data structure.
 - For each $v \in V$:
 - Call S.make-set(v)
 - For each edge (u, v) sorted by cost:
 - If S.in-same(u, v) is false:
 - Add (u, v) to T.
 - Call S.union(u, v).
Representatives

- Given a partition of a set S, we can choose one **representative** from each of the sets in the partition.
- Representatives give a simple proxy for which set an element belongs to: two elements are in the same set in the partition iff their set has the same representative.
Representatives

• Given a partition of a set S, we can choose one representative from each of the sets in the partition.

• Representatives give a simple proxy for which set an element belongs to: two elements are in the same set in the partition iff their set has the same representative.
Data Structure Idea

- **Idea:** Associate each element in a set with a representative from that set.

- To determine if two nodes are in the same set, check if they have the same representative.

- To link two sets together, change all elements of the two sets so they reference a single representative.
Using Representatives

- If there are n total elements, what is the cost of looking up a representative?
 - $O(1)$
- If there are n total elements, what is the cost of merging two sets together?
 - $O(n)$
- Can we improve this?
Hierarchical Representatives

- If there are n total elements, what is the cost of looking up a representative?
 - $O(n)$

- If there are n total elements, what is the cost of merging two sets together?
 - $O(n)$

- The inefficiency arises because the path from any node to its representative can be very large.

- Can we fix that?
Union by Size

Diagram showing a Union by Size process with nodes labeled 1, 2, 4, and 1 connected in various ways.
Union by Size

• **Idea:** Store in each node the number of nodes that count it as a representative.

• To merge the sets containing two nodes together:
 • Find the representatives of each.
 • Choose one of the representatives with the least number of nodes below it.
 • Set its representative to the other node.
 • Update the total number of nodes below the other node.
Analyzing Union by Size

- The runtime of these operations depends on the height of the trees formed this way.

- **Claim:** A tree with height k contains at least 2^k nodes.

- **Proof Idea:** Use induction.
 - Trees with height 0 start with $2^0 = 1$ nodes.
 - Merging two trees of unequal heights always results in a single tree of the height of the larger of the two.
 - Merging two trees of height k into a tree of height $k + 1$ results in a tree with at least $2 \cdot 2^k = 2^k + 1$ nodes.

- **Corollary:** If there are n total nodes, all operations take $O(\log n)$ time.
Kruskal's Algorithm

• Using our new data structure:
 • Let $T = \emptyset$.
 • Let S be a disjoint-set data structure.
 • For each $v \in V$:
 – Call S.make-set(v)
 • For each edge (u, v) sorted by cost:
 – If S.in-same(u, v) is false:
 • Add (u, v) to T.
 • Call S.union(u, v).
• Total runtime: $O(m \log n)$.
Looking Forward

- It is possible to speed up our data structure by using two modifications:
 - **Path Compression**: After looking up a representative, change the pointers of all visited nodes to directly point to the representative.
 - **Union-by-Rank**: Link trees based on *height* rather than number of nodes.

- New runtime: *m* total operations takes time $O(m \, \alpha(m))$, where $\alpha(m)$ is a *ridiculously slowly-growing* function.
Next Time

- Dynamic Programming
- Purchasing Cell Towers
- A Different Approach to Recursion