
  

Intractable Problems
Part Two



  

Announcements

● Problem Set Five graded; will be 
returned at the end of lecture.

● Extra office hours today after lecture 
from 4PM – 6PM in Clark S250.

● Reminder: Final project goes out on 
Monday; we recommend not using a late 
day on Problem Set Six unless necessary.



  

Please evaluate this course on Axess.

Your feedback really makes a difference.



  

Outline for Today

● 0/1 Knapsack
● An NP-hard problem that isn't as hard as it 

might seem.

● Fixed-Parameter Tractability
● What's the real source of hardness in an 

NP-hard problem?

● Finding Long Paths
● A use case for fixed-parameter tractability.



  

The 0/1 Knapsack Problem
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The 0/1 Knapsack Problem

● You are given a list of n items with 
weights w₁, …, wₙ and values v₁, …, vₙ.

● You have a bag (knapsack) that can carry 
W total weight.

● Weights are assumed to be integers.
● Question: What is the maximum value of 

items that you can fit into the knapsack?
● This problem is known to be NP-hard.



  

A Naïve Solution

● One option: Try all possible subsets of the 
items and find the feasible set with the largest 
total value.

● How many subsets are there?
● Answer: 2n.

● Subsets can be generated in O(n) time each.

● Total runtime is O(2n n).
● Slightly better than TSP, but still not 

particularly good!



  

A Greedy Solution

● Sort items by their “unit value:” vₖ / wₖ.
● For all items in descending unit value:

● If that item will fit in the knapsack, add it to 
the knapsack.

● Does this algorithm always return an 
optimal solution?

● Unfortunately, no; in fact, this algorithm 
can be arbitrarily bad!



  

A Recurrence Relation

● Let OPT(k, X) denote the maximum value that 
can be made from the first k items without 
exceeding weight X.
● Note: OPT(n, W) is the overall answer.

● Claim: OPT(k, X) satisfies this recurrence:

OPT(k, X )={
0 if k=0

OPT (k−1, X ) if wk> X

max { OPT (k−1, X ) ,
vk+OPT (k−1, X−wk)} otherwise



  

Let DP be a table of size  (n + 1) × (W + 1).

For X = 0 to W + 1:

Set DP[0][X] = 0

For k = 1 to n:

For X = 0 to W:

If wₖ > W, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = max{
        DP[k – 1][X],
        vₖ + DP[k – 1][X – wₖ]
 }

Return DP[n][W].

Let DP be a table of size  (n + 1) × (W + 1).

For X = 0 to W + 1:

Set DP[0][X] = 0

For k = 1 to n:

For X = 0 to W:

If wₖ > W, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = max{
        DP[k – 1][X],
        vₖ + DP[k – 1][X – wₖ]
 }

Return DP[n][W].

OPT (k , X )={
0 if k=0

OPT (k−1, X ) if wk>X

max { OPT (k−1, X ) ,
vk+OPT (k−1, X−wk)} otherwise



  

Um... Wait...

● Runtime of this algorithm is O(nW) and 
space complexity is O(nW).

● This is a polynomial in n and W.
● This problem is NP-hard.

Did we just prove P = NP?   



  

A Note About Input Sizes

● A polynomial-time algorithm is one that runs in time 
polynomial in the total number of bits required to write 
out the input to the problem.

● How many bits are required to write out the value W?

● Answer: O(log W).

● Therefore, O(nW) is exponential in the number of bits 
required to write out the input.

● Example: Adding one more bit to the end of the 
representation of W doubles its size and doubles the 
runtime.

● This algorithm is called a pseudopolynomial time 
algorithm, since it is a polynomial in the numeric 
value of the input, not the number of bits in the input.



  

That Said...

● The runtime of O(nW) is better than our 
old runtime of O(2n n) assuming that 
W = o(2n).
● That's little-o, not big-O.

● In fact – for any fixed W, this algorithm 
runs in linear time!

● Although there are exponentially many 
subsets to test, we can get away with just 
linear work if W is fixed!



  

Parameterized Complexity

● Parameterized complexity is a branch of 
complexity theory that studies the hardness 
of problems with respect to different 
“parameters” of the input.

● Often, NP-hard problems are not entirely 
infeasible as long as some “parameter” of 
the problem is fixed.

● In our case, O(nW) has two parameters – 
the number of elements (n) and weight (W).



  

Fixed-Parameter Tractability

● Suppose that the input to a problem P can be 
characterized by two parameters n and k.

● P is called fixed-parameter tractable iff 
there is some algorithm that solves P in time 
O(f(k) · p(n)), where
● f(k) is an arbitrary function.
● p(n) is a polynomial in n.

● Intuitively, for any fixed k, the algorithm runs 
in a polynomial in n.
● That polynomial is always the same polynomial 

regardless of the choice of k.



  

Example: Finding Long Paths



  

The Long Path Problem

● Given a graph G = (V, E) and a number k, 
we want to determine whether there is a 
simple path of length k exists in G.

● Known to be NP-hard by a reduction from 
finding Hamiltonian paths: a graph has a 
Hamiltonian path iff it has a simple path of 
length n – 1.

● Applications in biology to finding protein 
signaling cascades.



  

A Naïve Approach

● To find all simple paths of length k, 
enumerate all (k + 1)-permutations of 
nodes in V and check if each is a path.

● How many such permutations are there?
● Answer: n! / (n – k – 1)!

● Time to process each is O(k) when using 
an adjacency matrix.

● Total runtime is O(k · n! / (n – k – 1)!)
● Decent for small k, unbelievably slow for 

larger k.



  

A Better Approach

● We can use a randomized technique 
called color-coding to speed this up.

● Suppose every node in the graph is 
colored one of k + 1 different colors.  A 
colorful path is a simple path of length 
k where each node has a different color.

● Idea: Show how to find colorful paths 
efficiently, then build a randomized 
algorithm for finding long paths that uses 
the colorful path finder as a subroutine.



  

Finding Colorful Paths: Seem Familiar?



  

Finding Colorful Paths

● Using a dynamic programming approach 
similar to TSP, can find all colorful paths 
originating at a node s in time O(2kn2).

● Can find colorful paths between any pair 
of nodes in time O(2kn3) by iterating this 
process for all possible start nodes.

● This is fixed-parameter tractable!



  

Random Colorings

● Suppose you want to find a simple path 
of length k in a graph.

● Randomly color all nodes in the graph 
one of (k + 1) different colors.

● If P is a simple path of length k in G, 
what is the probability that it is a colorful 
path?
● Answer: (k + 1)! / (k + 1)k + 1



  

Stirling's Approximation

● Stirling's approximation states that

● Therefore, (k + 1)! / (k + 1)k + 1 ≥ 1 / ek+1.

● If we randomly color the nodes in G ek+1 times, the 
probability that any simple path of length k never 
becomes colorful is at most 1 / e.

● Doing ek+1 ln n random colorings means we find a 
simple path of length k with high probability.

● Total runtime: O(ek2kn3 log n) = O((2e)k n3 log n).

● Better than naïve solution in many cases!

n! ≥
nn

en √2πn



  

Why All This Matters

● Last lecture: Brute-force search is not 
necessarily optimal for NP-hard problems.

● Today: Can often factor out the complexity 
into a “tractable” part and “intractable” 
part that depend on different parameters.

● Plus, we got to see DP combined with 
randomized algorithms!



  

Next Time

● Approximation Algorithms
● FPTAS's and Other Acronyms
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