

Intractable Problems
Part Two

Announcements

● Problem Set Five graded; will be
returned at the end of lecture.

● Extra office hours today after lecture
from 4PM – 6PM in Clark S250.

● Reminder: Final project goes out on
Monday; we recommend not using a late
day on Problem Set Six unless necessary.

Please evaluate this course on Axess.

Your feedback really makes a difference.

Outline for Today

● 0/1 Knapsack
● An NP-hard problem that isn't as hard as it

might seem.

● Fixed-Parameter Tractability
● What's the real source of hardness in an

NP-hard problem?

● Finding Long Paths
● A use case for fixed-parameter tractability.

The 0/1 Knapsack Problem

The 0/1 Knapsack Problem

$200

20g

$500

45g

$1,500

25g

$400

35g

$900

53g

The 0/1 Knapsack Problem

● You are given a list of n items with
weights w₁, …, wₙ and values v₁, …, vₙ.

● You have a bag (knapsack) that can carry
W total weight.

● Weights are assumed to be integers.
● Question: What is the maximum value of

items that you can fit into the knapsack?
● This problem is known to be NP-hard.

A Naïve Solution

● One option: Try all possible subsets of the
items and find the feasible set with the largest
total value.

● How many subsets are there?
● Answer: 2n.

● Subsets can be generated in O(n) time each.

● Total runtime is O(2n n).
● Slightly better than TSP, but still not

particularly good!

A Greedy Solution

● Sort items by their “unit value:” vₖ / wₖ.
● For all items in descending unit value:

● If that item will fit in the knapsack, add it to
the knapsack.

● Does this algorithm always return an
optimal solution?

● Unfortunately, no; in fact, this algorithm
can be arbitrarily bad!

A Recurrence Relation

● Let OPT(k, X) denote the maximum value that
can be made from the first k items without
exceeding weight X.
● Note: OPT(n, W) is the overall answer.

● Claim: OPT(k, X) satisfies this recurrence:

OPT(k, X)={
0 if k=0

OPT (k−1, X) if wk> X

max { OPT (k−1, X) ,
vk+OPT (k−1, X−wk)} otherwise

Let DP be a table of size (n + 1) × (W + 1).

For X = 0 to W + 1:

Set DP[0][X] = 0

For k = 1 to n:

For X = 0 to W:

If wₖ > W, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = max{
 DP[k – 1][X],
 vₖ + DP[k – 1][X – wₖ]
 }

Return DP[n][W].

Let DP be a table of size (n + 1) × (W + 1).

For X = 0 to W + 1:

Set DP[0][X] = 0

For k = 1 to n:

For X = 0 to W:

If wₖ > W, set DP[k][X] = DP[k – 1][X].

Else, set DP[k][X] = max{
 DP[k – 1][X],
 vₖ + DP[k – 1][X – wₖ]
 }

Return DP[n][W].

OPT (k , X)={
0 if k=0

OPT (k−1, X) if wk>X

max { OPT (k−1, X) ,
vk+OPT (k−1, X−wk)} otherwise

Um... Wait...

● Runtime of this algorithm is O(nW) and
space complexity is O(nW).

● This is a polynomial in n and W.
● This problem is NP-hard.

Did we just prove P = NP?

A Note About Input Sizes

● A polynomial-time algorithm is one that runs in time
polynomial in the total number of bits required to write
out the input to the problem.

● How many bits are required to write out the value W?

● Answer: O(log W).

● Therefore, O(nW) is exponential in the number of bits
required to write out the input.

● Example: Adding one more bit to the end of the
representation of W doubles its size and doubles the
runtime.

● This algorithm is called a pseudopolynomial time
algorithm, since it is a polynomial in the numeric
value of the input, not the number of bits in the input.

That Said...

● The runtime of O(nW) is better than our
old runtime of O(2n n) assuming that
W = o(2n).
● That's little-o, not big-O.

● In fact – for any fixed W, this algorithm
runs in linear time!

● Although there are exponentially many
subsets to test, we can get away with just
linear work if W is fixed!

Parameterized Complexity

● Parameterized complexity is a branch of
complexity theory that studies the hardness
of problems with respect to different
“parameters” of the input.

● Often, NP-hard problems are not entirely
infeasible as long as some “parameter” of
the problem is fixed.

● In our case, O(nW) has two parameters –
the number of elements (n) and weight (W).

Fixed-Parameter Tractability

● Suppose that the input to a problem P can be
characterized by two parameters n and k.

● P is called fixed-parameter tractable iff
there is some algorithm that solves P in time
O(f(k) · p(n)), where
● f(k) is an arbitrary function.
● p(n) is a polynomial in n.

● Intuitively, for any fixed k, the algorithm runs
in a polynomial in n.
● That polynomial is always the same polynomial

regardless of the choice of k.

Example: Finding Long Paths

The Long Path Problem

● Given a graph G = (V, E) and a number k,
we want to determine whether there is a
simple path of length k exists in G.

● Known to be NP-hard by a reduction from
finding Hamiltonian paths: a graph has a
Hamiltonian path iff it has a simple path of
length n – 1.

● Applications in biology to finding protein
signaling cascades.

A Naïve Approach

● To find all simple paths of length k,
enumerate all (k + 1)-permutations of
nodes in V and check if each is a path.

● How many such permutations are there?
● Answer: n! / (n – k – 1)!

● Time to process each is O(k) when using
an adjacency matrix.

● Total runtime is O(k · n! / (n – k – 1)!)
● Decent for small k, unbelievably slow for

larger k.

A Better Approach

● We can use a randomized technique
called color-coding to speed this up.

● Suppose every node in the graph is
colored one of k + 1 different colors. A
colorful path is a simple path of length
k where each node has a different color.

● Idea: Show how to find colorful paths
efficiently, then build a randomized
algorithm for finding long paths that uses
the colorful path finder as a subroutine.

Finding Colorful Paths: Seem Familiar?

Finding Colorful Paths

● Using a dynamic programming approach
similar to TSP, can find all colorful paths
originating at a node s in time O(2kn2).

● Can find colorful paths between any pair
of nodes in time O(2kn3) by iterating this
process for all possible start nodes.

● This is fixed-parameter tractable!

Random Colorings

● Suppose you want to find a simple path
of length k in a graph.

● Randomly color all nodes in the graph
one of (k + 1) different colors.

● If P is a simple path of length k in G,
what is the probability that it is a colorful
path?
● Answer: (k + 1)! / (k + 1)k + 1

Stirling's Approximation

● Stirling's approximation states that

● Therefore, (k + 1)! / (k + 1)k + 1 ≥ 1 / ek+1.

● If we randomly color the nodes in G ek+1 times, the
probability that any simple path of length k never
becomes colorful is at most 1 / e.

● Doing ek+1 ln n random colorings means we find a
simple path of length k with high probability.

● Total runtime: O(ek2kn3 log n) = O((2e)k n3 log n).

● Better than naïve solution in many cases!

n! ≥
nn

en √2πn

Why All This Matters

● Last lecture: Brute-force search is not
necessarily optimal for NP-hard problems.

● Today: Can often factor out the complexity
into a “tractable” part and “intractable”
part that depend on different parameters.

● Plus, we got to see DP combined with
randomized algorithms!

Next Time

● Approximation Algorithms
● FPTAS's and Other Acronyms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

