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Homework Advice for Algorithms
Based on a handout by Tim Roughgarden, with edits by Keith Schwarz and Sophia Westwood

This handout contains information about the homework sets for CS161 – how to approach them,
what we're looking for when grading, and so on.  We hope that this will prove useful as you work
on the homework.

General Advice
Here are some general pointers about how to approach the problems on the the homework:

• Look over the problems early.  Algorithm design takes time, and even simple algorithms
can be surprisingly tricky to develop.  We suggest reading over all the problems as soon as
the homework goes out. Starting the night before is a particularly bad idea in this class,
where insights often come only after taking a break from a problem and returning to it
later on.

• Don't submit your first draft.  When you come up with an algorithm and a correctness /
runtime proof for it, your first iteration will likely have some rough edges or unnecessary
parts (similar to a first draft of an essay).  We strongly advise against submitting your very
first draft of your answers.  Taking the time to clean up your proofs and clarify your algo-
rithm will both cement your understanding of the material and help your overall assign-
ment grade.

• Work on your own before discussing in a group.  Although you are allowed to discuss
the assignments in groups of up to three, we strongly recommend against doing so until
you have already thought in-depth about each of the problems on your own. We recom-
mend spending perhaps an hour working through each problem on your own before con-
sulting others. This time is crucial for developing your algorithmic problem-solving skills,
a key part of the class (and of course necessary for the exams as well!). Just to reiterate, if
you do collaborate you still must write up solutions individually and acknowledge anyone
with whom you have discussed the problems.

Submission Instructions
When submitting homework sets, please be sure to put each problem on its own page or pages,
each with your SUNet user name.  This makes the assignment easier to divvy up across TAs.

Send an email with a PDF copy of your answers to the submission mailing list 
(psetCS161@gmail.com) Please submit your assignment as a single PDF under 5MB. 
Send from your Stanford email address with the subject line “yoursuid : HOMEWORK 
#hwid” – for example, “sophiasw : HOMEWORK #1”

mailto:cs161-aut1314-staff@lists.stanford.edu
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Citation Policy
When writing up your solutions, you are free to use any result from lecture that you would like as
long as you provide a citation. If you are uncertain about whether you may cite a result not cov -
ered in lecture, ask via a private post on Piazza.

If you work in a group, please make sure to cite all people you worked with.  As mentioned be -
fore, you must write up your own solutions to each problem.

How We Grade and Writing Proofs
In your assignments, aim to be clear, precise, and concise. Understandability is an important fac -
tor in the grading, so be sure to present a logical argument using the proof-writing skills learned in
CS103. If you feel like you could use a refresher on how to write proofs, or on the different types
of proofs (direct proof, proof by contradiction, proof by induction, etc) you are encouraged to re -
visit the slides from the current offering of CS103 (cs103.stanford.edu) and even the SCPD videos
recorded for the class this quarter (myvideosu.stanford.edu). It can also help to take results proved
in the textbook, rewrite these proofs on your own, and then compare back with the textbook.

Of course, your answer must also be correct, with a working algorithm complete with a valid cor-
rectness proof and runtime analysis. If your algorithm is buggy, or your correctness proof is
flawed, or your runtime analysis is incorrect, you will lose some of these points. You may also
lose points if your algorithm is correct but has unnecessary special-cases or could easily be sim -
plified.  Similarly, we will deduct points for proofs that are unclear or are far more complicated
than necessary.

Writing strong proofs is a key skill to develop to succeed in this course. We encourage you to ap -
proach the homework as an opportunity to spend time finessing your proof-writing skills. While
many students are intimidated by writing proofs, it is a skill you can develop and learn via prac -
tice and attention. If at any point you're curious whether one of your answers is sufficiently clean,
you can always stop by office hours to have one of us look over it.

Describing Algorithms
When writing up an algorithm, you'll need to provide a description of how that algorithm works,
often via a combination of English and psuedocode.

As you write up an algorithm, you need to present enough detail so that you can accurately ana -
lyze the algorithm's correctness and runtime, but not so much detail that the high-level idea isn't
clear.  It's perfectly fine to describe an algorithm in plain English as long as there's enough detail
to recover how the algorithm works; in fact, we'd prefer this if possible.

You should try to avoid unnecessarily detailed pseudocode unless it's absolutely necessary for
your analysis.  Low-level detailed pseudocode is hard to understand, so if you do provide pseu -
docode be sure to provide lots of comments!

Proving Correctness
When designing algorithms, we require that you write a proof of correctness.  This should be a
rigorous mathematical proof, rather than a general idea about why the algorithm works.
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In many cases, we will ask a problem in plain English without providing any mathematical nota -
tion.  In that case, we suggest introducing symbols or terminology as appropriate when writing the
proof.  Just make sure that what you have is still easy to read!

Writing a correctness proof doesn't necessarily require going line-by-line through your algorithm
and confirming that each step works.  If the operation of the algorithm is clear, you can just prove
that the general process it follows will work correctly without referring to why each particular
step in the algorithm is correct.

Analyzing Runtime
When analyzing the runtime of an algorithm, you do not need to call down to the underlying defi -
nition of O, Ω, or Θ notation when proving upper or lower bounds.  It's fine to do an informal
analysis (e.g. multiplying work done across all iterations by the number of iterations, or account -
ing for the work done by various code blocks across the entire algorithm runtime).  If you want to
show that a function runs in time Θ(f(n)), be sure to justify why your bound is tight.  One option
would be to prove that the function runs in time O(f(n)) and Ω(f(n)).  Another option would be to
do a more precise accounting of the total work done by the function.

In some cases, we will ask you to use the formal definition of O, Ω, or Θ notation in a proof.  In
that case, be sure to use the formal definitions of these terms.

Sample Problem
To give you a sense for what a good homework solution might look like, here is a sample prob -
lems along with a solution that would earn full credit.  We suggest taking some time to work
through this problem so that you have a sense for how to solve it.

Sample Problem: Array Partitioning

You are given an array A and a predicate P.  Design an algorithm that rearranges
the elements of A so that all elements for which P is false appear before all ele-
ments for which P is true.  Your algorithm should run in O(n) time and use O(1)
additional space, where n is the size of the array.

Solution to Sample Problem
Our algorithm is as follows: maintain two indices r and w, both initially 0.  Then, repeat the fol-
lowing:

• If r = n, the algorithm terminates.

• If P(A[r]) is false:

• Swap A[r] and A[w]

• Set w = w + 1

• Set r = r + 1

Correctness:

To show correctness, we will prove that the following is always true at the top of the loop:

(★) P is false for all elements in A[0 … w–1] and true for all elements in A[w, r–1]
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Assuming (★) is always true at the top of the loop, then when the loop terminates (that is, r = n),
we have that P is false for all elements in A[0 … w – 1] and true for all elements in A[w, n – 1].
Thus all elements for which P is false precede the elements for which P is true.

To show that (★) always holds, we proceed by induction.  After 0 iterations of the loop, (★) is
vacuously true because A[0 … w–1] = A[0 … -1] is empty and A[w, r–1] = A[0 … -1], which is
also empty.

Now assume that after some number of iterations that (★) is true.  We will prove that (★) is true
after the next iteration.  Let r₀ be the initial value of r on entry to the loop and w₀ be the initial
value of w on entry to the loop.  Now, either P(A[r₀]) is true or it is false.  We consider these inde-
pendently:

Case 1: P(A[r₀]) is true.  By (★), we know P is false for all A[0 … w₀ – 1] and true for all
A[w₀ … r₀ – 1].  Since P(A[r₀]) is true, we know that P is true for all A[w₀ … r₀].  Since at
the end of the loop w = w₀ and r = r₀ + 1, this means (★) still holds at the end of this itera-
tion.

Case 2: P(A[r₀]) is false.  By (★), we know P is false for all A[0 … w₀ – 1] and true for all
A[w₀ … r₀ – 1].  We then swap A[r₀] and A[w₀].  Since A[r₀] is false, this now means that P is
false for all A[0 … w₀].  If w₀ = r₀, then it's vacuously true that P is true for all elements in
the range A[w₀ … r₀ – 1].  Otherwise, if w₀ ≠ r₀, then since we know that A[w₀] was true on
entry to the loop iteration, we now know that P is true for all elements in A[w₀ + 1, r₀].  Since
at the end of this iteration w = w₀ + 1 and r = r₀ + 1, this means(★) still holds at the end of
this iteration. ■

Runtime:

To show that this algorithm terminates in O(n) time, note that the loop runs n times, each time do-
ing O(1) work.  Therefore, the algorithm runs in O(n) time.

Space Usage:

Since the algorithm only needs to store r, w, and O(1) temporary variables beyond its parameters,
it uses only O(1) additional space.


