
CS161 Max Flow: Edmonds-Karp, Bipartite Matching
Scribe: Virginia Date: May 27, 2016

1 Max-Flow Recap

You are given an input graph G = (V,E), where the edges are directed. The edges have positive capacities
c : E → R+. Two special nodes s and t in G are given. The task is to output a flow of maximum value from
s to t.

A flow f is a function f : E → R+
0 such that

1. (Capacity Constraint)
∀(u, v) ∈ E, 0 ≤ f(u, v) ≤ c(u, v)

.

2. (Flow Conservation Constraint)

∀v ∈ V \{s, t},
∑

x∈Nin(v)

f(x, v) =
∑

y∈Nout(v)

f(v, y)

Here Nin(v) denotes the set of nodes with an edge that points to v and Nout(v) denotes the set of
nodes that v points to.

Then value of f is

|f | =
∑

x∈Nout(s)

f(s, x)−
∑

y∈Nin(s)

f(y, s).

The max flow problem is to find a flow f such that |f | is maximized.

Given a flow f , the residual capacity cf : V × V → R+
0 with respect to f is defined as follows.

cf (u, v) =

 c(u, v)− f(u, v) if (u, v) ∈ E(G)
f(v, u) if (v, u) ∈ E(G)

0 otherwise


We define Gf to be a residual network defined with respect to f , where V (Gf) = V (G) and (u, v) ∈ E(Gf)
if cf (u, v) > 0. Gf contains edges of G and reverses of edges of G. In particular, (u, v) ∈ E is also in Gf if
f(u, v) < c(u, v) and the reverse (v, u) of (u, v) ∈ E is in Gf if f(u, v) > 0. The Ford-Fulkerson algorithm
operates on Gf .

The runtime of this algorithm is bounded by the number of times we update our flow. If edge capacities are
all integers, then we can increase the flow by at least 1 each time we update our flow. Therefore, the runtime
if O(|f |m) where |f | is the value of the max flow. If we have rational edge capacities, then we can multiply
all edge capacities by a large enough factor N to make them all integers. However, the runtime blows up by
a factor as well, becoming O(mN |f |). If we have irrational edge capacities, then the algorithm is no longer
guaranteed to terminate.

In this lecture we fix both issues.

Consider the Ford-Fulkerson algorithm. It is actually part of a family of algorithms that depend on how
the path P between s and t in Gf is selected. One can obtain P via DFS, BFS, or any other method for
selecting paths. It turns out that two methods work particularly well: the shortest path method and the
fattest path method. Both methods are due to Edmonds-Karp and to Dinic.

1

Algorithm 1: maxflow(G, s, t)

f ← all zeroes flow;
Gf ← G;
while t is reachable from s in Gf (check using DFS) do

P ← path in Gf from s to t;
F ←min capacity on P ;
For each (u, v) ∈ P : if (u, v) ∈ E, f(u, v)← f(u, v) + F , and otherwise f(v, u)← f(v, u)− F ;
Update Gf ;

return f ;

The fattest path method. This method finds a path between s and t that maximizes mine∈P cf (e)
among all s− t paths P . Finding such a path can be done in O(m + n) time by a clever mix of linear time
median-finding and DFS. We leave it as an exercise.

The shortest path method. This method picks the path between s and t using BFS, thus picking a
path that minimizes the number of edges. Finding such a path also runs in O(m + n) time.

Since both methods of selecting a path run in linear time, the main question becomes, how many iterations
does Ford-Fulkerson perform?

2 The fattest path version of Ford-Fulkerson

In this section we will show that the fattest path method results in a runtime of O(m(m+n) log |f |) when run
on a graph with integer capacities. Thus, when rational capacities are converted to integers by multiplying
by N , we get a runtime of O(m(m + n)(log |f | + logN)) for rational capacities. Thus the effect of large N
is mitigated. This method does not solve the issues when the capacities can be irrational.

To show the runtime, we prove a main claim that states that after each iteration of the algorithm, the
maximum flow value in Gf goes down by a factor of (1 − 1/m). This max flow value starts as |f | since
Gf = G in the beginning of the algorithm, and ends at 0 as in the end s and t are disconnected.

Claim 1 (Main). Let f ′ be the max flow in Gf . Then after one iteration of Ford-Fulkerson on Gf , the max
flow value becomes ≤ |f ′|(1− 1/m)..

Proof. Let P be the fattest path from s to t in Gf . Let F = mine∈P cf (e). Let S be the nodes reachable
from s in Gf via paths composed of edges with residual capacities > F . Thus, any edge (x, y) of Gf with
x ∈ S, y /∈ S must have cf (x, y) ≤ F . In particular, this means that the size of the cut between S and V § is∑

x∈S,y∈V \S cf (x, y) ≤ mF . Thus, the size of the min s-t cut in Gf is at most mF .

By the max-flow-min-cut theorem from last lecture, the size of the min s − t cut is at least the size of the
max-flow |f ′| in Gf , and so |f ′| ≤ mF . Thus F ≥ |f ′|/m.

Now, when we augment (push flow) along P , the flow in G increases by F , while the flow in Gf decreases
by F . Thus, the new flow in Gf after augmenting along P becomes |f ′| − F ≤ |f ′|(1− 1/m). �

Now that the main claim has been proven, we can conclude with a discussion of the runtime. Consider how
the max flow value in Gf evolves after t iterations. It starts as |f | (where f is the max flow in G) and then
after t iterations is

≤ |f | (1− 1/m)
t
.

2

If t = m ln |f |, we het that the max flow value in Gf is

≤ |f | ((1− 1/m)m)
ln |f |

< |f |(1/e)ln |f | = 1.

Since all the capacities are integers, all the residual capacities are also integers, and so the max flow value
in Gf is an integer. Since it is < 1, it must be 0. Hence after m ln |f | iterations, the max flow value in Gf is
zero, s and t are disconnected and the computed flow in G is maximum. The runtime is O((m+n)m log |f |).

3 The shortest path version of Ford-Fulkerson

Here we analyze running Ford-Fulkerson using BFS to find a path between s and t in Gf .

With each augmentation along a path P in Gf , at least one edge is removed from Gf , namely the edge with
residual capacity F = mine∈P cf (e). The main claim that we need to prove the runtime is that the number
of times an edge can be removed from Gf is small. Since each iteration of the algorithm causes at least one
removal, the main lemma will show that the number of iterations is small and hence the runtime is small as
well.

Claim 2 (Main). Fix any (u, v) that is ever an edge in Gf . Then the number of times that (u, v) can
disappear from Gf is at most n/2.

Once this claim is proven, we would get that the total number of edge disappearances is at most mn/2 and
hence the number of iterations of the algorithm is also ≤ mn/2. Because of this, the algorithm runtime is
O((m + n)mn).

To prove the claim, we will need a useful lemma (see below) that shows that as Gf evolves through the
iterations, for any v, the (unweighted) distance from s to v in Gf cannot go down. Let’s begin with some
notation. Let Gi

f be the residual network after the ith iteration of the algorithm; G0
f = G. For a vertex v,

let di(v) be the (unweighted) distance from s to v in Gi
f .

Lemma 3.1. For all i ≥ 1, and all v ∈ V , di−1(v) ≤ di(v).

Proof. Fix i. We will prove the statement for i by induction on d = di(v).

The inductive hypothesis is that for all d and all v with di(v) = d, di−1(v) ≤ di(v). The base case is d = 0.
We note that if di(v) = 0, then v = s since we view Gi

f as an unweighted graph. But then we also have
di−1(s) = 0 ≤ di(s).

For the induction, let’s assume that the inductive hypothesis holds for d − 1, i.e. that for all x with
di(x) = d− 1, di−1(x) ≤ di(x). We want to show that for all v with di(v) = d, we also have di−1(v) ≤ di(v).

Consider some v with di(v) = d. Let u be the node just before v on a shortest s − v path in Gi
f . Then,

di(u) = di(v)− 1 = d− 1 and the inductive hypothesis applies to it so that di−1(u) ≤ di(u).

We consider two cases.

Case 1: (u, v) ∈ Gi−1
f . Then, by the triangle inequality in Gi−1

f , we have that di−1(v) ≤ di−1(u) + 1. Since
di−1(u) ≤ di(u), we get that

di−1(v) ≤ di(u) + 1 = (di(v)− 1) + 1 = di(v).

Case 2: (u, v) /∈ Gi−1
f . Then, since (u, v) ∈ Gi

f , we must have that (v, u) was on the (i − 1)st augmenting
path. Hence di−1(u) = di−1(v) + 1. Hence:

di−1(v) = di−1(u)− 1 ≤ di(u)− 1 = di(v)− 2 ≤ di(v).

In both cases di−1(v) ≤ di(v) and the induction is complete. �

3

Now we are ready to prove the main claim.

Fix some (u, v) that is an edge in Gf at some point. Let’s consider two consecutive disappearences of (u, v).
Suppose that (u, v) ∈ Gi but (u, v) /∈ Gi+1. If after this disappearance (u, v) had another one later on, then
at some point (u, v) must have appeared in Gf again. Let j be the first iteration after i so that the jth

augmenting path made (u, v) appear in Gj+1
f .

Because (u, v) ∈ Gi
f but (u, v) /∈ Gi+1

f , (u, v) must have been in the ith augmenting path Pi.

Because (u, v) /∈ Gj
f but (u, v) ∈ Gj+1

f , (v, u) must have been in the jth augmenting path Pj .

From this we obtain that di(v) = di(u) + 1 and dj(u) = dj(v) + 1. Using the fact that j > i and the key
lemma from above we obtain

dj(u) = dj(v) + 1 ≥ di(v) + 1 = di(u) + 2.

Thus, between (u, v)’s disappearance and its next reappearance, the distance from s to u increased by +2.
Hence between any two consective disappearances the distance to u increases by ≥ 2. The distance starts
as ≥ 0 and can be ≤ n− 1 before becoming ∞. Thus the total number of disappearances of (u, v) is ≤ n/2.
This completes the proof of the main claim and the proof of the runtime.

4 Bipartite perfect matching

Let G = (V,E) be an undirected, unweighted bipartite graph: the set of vertices is partitioned into V1 and V2

so that there are no edges with two endpoints entirely in V1 or entirely in V2. A matching in G is a collection
of edges, no two of which share an end point. A perfect matching is a matching M such that every node in
V has exactly one incident edge in M . In order for G to have a perfect matching, we need that |V1| = |V2|.
The perfect matching problem is, given a bipartite graph G with |V1| = |V2| = n and on m edges, determine
whether G has a perfect matching.

We will solve the bipartite perfect matching problem by creating an instance of max flow and using Ford-
Fulkerson’s algorithm.

Given G = (V1∪V2, E), direct all the edges in E from V1 to V2. Add two extra nodes s and t. Add (directed)
edges from s to every node in V1 and from every node of V2 to t. In this new graph H, let all the edge
capacities be 1 and then run Ford-Fulkerson’s algorithm to compute the max flow.

Suppose that G has a perfect matching M . Then, H has max flow value n = |V1| = |V2|. This is because
we can set f(e) = 1 for every e ∈ M , ell the edges out of s and all the edges out of t. All other flow values
are 0. The capacity constraints are trivially satisfied. The flow conservation constraints are satisfied since
for every x ∈ V1 there is exactly one edge (s, x) into x that has flow 1, and exactly one edge (x, y) ∈M with
flow 1; similarly for every x ∈ V2 there is exactly one edge (x, t) out of x that has flow 1, and exactly one
edge (y, x) ∈M with flow 1.

Suppose now that Ford-Fulkerson returns a flow f of value n. Hence f(s, x) = f(y, t) = 1 for all x ∈ V1, y ∈
V2. Because Ford-Fulkerson causes all flow values on the edges to be integers, the flow values on all edges
are either 1 or 0. Because of this, every node x ∈ V1 gets flow of 1 going into it and a flow of 1 needs to
come out so that there is a single edge (x, y) that has flow value 1 and all other edges out of x have flow
value 0. Similarly, for every y ∈ V2 there is a unique edge into y with positive flow value 1. The edges in
V1 ∪ V2 with positive flow through them must hence form a perfect matching.

4

