CS161, Lecture 4 Median and Selection
Scribe: Albert Chen (2015) Date: April 7, 2016

1 Introduction

Today, we introduce the problem of finding the kth smallest element in an unsorted array. First, we show it
can be done in O(nlogn) time via sorting and that any correct algorithm must run in Q(n) time. However,
it is not obvious that a linear-time selection algorithm exists. We present a linear-time select algorithm, with
an intuition for why it has the desired properties to achieve O(n) running time.

2 Selection

Now for main part of this lecture. The selection problem is to find the kth smallest number in an array A.

Input: array A of n numbers, and an integer k € {1,--- ,n}.
Output: the k-th smallest number in A.

One approach is to sort the numbers in ascending order, and then return the kth number in the sorted
list. This takes O(nlogn) time, since it takes O(nlogn) time for the sort (e.g. by mergesort) and O(1) time
to return kth number.

2.1 Minimum Element

As always, we ask if we can do better (i.e. faster in Big-Oh complexity). In the special case where k = 1,
selection is the problem of finding the minimum element. We can do this in O(n) time by scanning through
the array and keeping track of the minimum element so far. If the current element is smaller than the
minimum so far, we update the minimum.

Algorithm 1: SELECTMIN(A)

m < 00;

n < length(A);

for i =1 ton do

L if A(i) < m then

L m <« A(i);

return m;

In fact, this is the best running time we could hope for.

Definition 2.1. A deterministic algorithm is one which, given a fized input, always performs the same
operations (as opposed to an algorithm which uses randomness).

Claim 1. Any deterministic algorithm for finding the minimum has runtime Q(n).

Proof of Claim ??. Intuitively, the claim holds because any algorithm for the minimum must look at all the
elements, each of which could be the minumum. Suppose a correct deterministic algorithm does not look at
A(7) for some i. Then the output cannot depend on A(7), so the algorithm returns the same value whether
A(7) is the minimum element or the maximum element. Therefore the algorithm is not always correct, a
contradiction. So there is no sublinear deterministic algorithm for finding the minimum. (|

So for k = 1, we have an algorithm which achives the best running time possible. By similar reasoning,
this lower bound of Q(n) applies to the general selection problem. So ideally we would like to have a
linear-time selection algorithm in the general case.

2.2 Wishful Selection

In fact, a linear-time selection algorithm does exist. Before showing the linear time selection algorithm, it’s
helpful to build some intuition on how to approach the problem. Suppose we have a black-box algorithm
MAGICMEDIAN that can find the median in linear time (the median is the & = [n/2]th smallest element).
Then we could use MAGICMEDIAN as a subroutine to develop a linear-time selection algorithm. For clarity
we’ll assume all elements are distinct from now on, but the idea generalizes easily.

Algorithm 2: WISHFULSELECT(A, k)

m < MAGICMEDIAN(A);
n < length(A);
if k= [n/2] then
L return m;
Ac —{A®) | A()) <m};
As — {A(@) | A@) > m};
if k£ < [n/2] then
| return WISHFULSELECT(A<, k);
else
| return WisHFULSELECT(A>, k — [n/2]);

Each iteration, we use the median to partition the array into two halves, into all elements smaller than
the median and all elements larger. Since the median is the [n/2]th smallest element, we know which half
contains the kth smallest element. If it’s the smaller half, the kth element is still the kth element; for the
larger half we need to subtract [n/2] because each element in the larger half is greater than the [n/2]
elements which are removed. We repeat, recursively working on a problem of smaller and smaller size until
we find the kth element.

Claim 2. If MAGICMEDIAN runs in O(n) time, then WISHFULSELECT runs in O(n) time.

Proof. Intuitively, the running time is good because we remove half of the elements from consideration each
iteration. It takes linear time for MAGICMEDIAN, linear time to create A- and A~ , and constant time for
the rest. Recusive calls are made on inputs of half the size. As a recurrence relation, T'(n) < en + T'(n/2).
Expanding this, the runtime is T'(n) < cn +en/2 4+ en/4 + ... + ¢ < 2en, which is O(n). O

Unfortunately, however, we do not know how to construct procedure MAGICMEDIAN without solving the
original selection problem. Because of this, the WISHFULSELECT procedure doesn’t actually make sense.

2.3 Linear-Time Selection

Given a linear-time median algorithm, we can solve the selection problem in linear time (and vice versa).
Unfortunately, we don’t have MAGICMEDIAN. But notice that as far as correctness goes, there was nothing
special about partitioning around the median. We could use this same idea of partitioning and recursing
on a smaller problem even if we partition around an arbitrary element. To get a good runtime, however,
we need to guarantee that the subproblems get smaller quickly. In 1973, Blum, Floyd, Pratt, Rivest, and
Tarjan came up with the Median of Medians algorithm. It is similar to the previous algorithm, but rather
than partitioning around the exact median, uses a surrogate “median of medians”. The recursive calls are
updated accordingly.

Algorithm 3: SELECT(A, k) // Median of Medians
n < length(A);
if n =1 then
L return A[1];
Split A into g = [n/5] groups, where g — 1 have 5 elements each, and one has the remaining < 5 elements.;
fori=1 to g do

pi < BRUTEFORCEMEDIAN(g;) ; compute the median of 5 numbers in constant time, say via
sorting
q < SELECT([p1,- - ,pgl), [9/2]) ; find median of medians

Ac —{AQ@) | AGG) < q};
As — {A@) | A6 > g}
a < length(Ac);
if £k < a then

L return SELECT(A«, k);

else if k = a+ 1 then
L return g;

else
L return SELECT(A>,k — (a+1));

2.4 Analysis of Select

What is this algorithm doing? First it divides A into segments of size 5. Within each group, it finds the
median by brute force, for example by first sorting the elements. This takes constant time for each group,
because each group has a constant number of elements. Then it makes a recursive call to SELECT to find the
median q of all these group medians. Intuitively, by partitioning around ¢, we are able to find something that
is close to the true median for partitioning, yet is ‘easier’ to compute, because it is the median of g = [n/5]
elements rather than n. The last part is as before: once we have our pivot element ¢, we split the array and
recurse on the proper subproblem, or halt if we found our answer.

We have devised a slightly complicated method to determine which element to partition around, but the
algorithm remains correct for the same reasons as before. So what is its running time? As before, we're
going to show this by examining the size of the recursive problems. As it turns out, by taking the median of
medians approach, we have a guarantee on how much smaller the problem gets each iteration. The guarantee
is good enough to achieve O(n) runtime.

2.4.1 Running Time
Lemma 2.1. |[A<| <7"n/10+5 and |As| < 7n/10 + 5.

Proof of Lemma 77.

q is the median of py,---,py. Because ¢ is the median of g = [n/5] elements, [¢g/2] — 1 of the p}s are
smaller than ¢. By transitivity, if ¢ is larger than a group median, it is larger than at least three elements in
that group (the median and the two numbers less than it). This applies to all groups except the remainder
group, which might have fewer than 5 elements. Accounting for the remainder group, ¢ is larger than at
least 3- ([g/2] — 2) elements of A. By symmetry, ¢ is smaller than at least the same number.

Now,
|As | = # of elements greater than ¢

= (n — 1) — # elements smaller than ¢
<(n-1)-3-([g/21-2)
n+5—3-[g/2]

<n-—3n/10+5

=Tn/10 + 5.

By symmetry, |[A<| < 7n/10 + 5 as well. O

The recursive call used to find the median of medians has input of size [n/5] < n/5+ 1. The other work
in the algorithm takes linear time: constant time on each of [n/5] groups for BRUTEFORCEMEDIAN —>
linear time in total, O(n) time scanning A to make A. and A-, and O(n) time for finding the length of A
and A.. The sum of this constant amount of linear steps is still linear.

Thus, we can write the full recurrence for the runtime,

T(n) < eaan+Tn/5+1)+T(n/10+5) ifn>5
o Co 1fn§5

This seems good at first glance. Each step does linear work in terms of its input size, and the total
amount of linear work propagated to the next level is about n/5 4+ 7n/10 = 9n/10, so we expect to see an
exponential decay in the runtime of each layer of the recursion tree, just as in WISHFULSELECT. In fact, in
the last lecture we solved exactly the above recurrence and obtained T'(n) = O(n) as claimed.

