
CS 161, Lecture 6 Sorting Lower Bounds and Counting Sort
Scribe: Sanjana Rajan (2015) Date: April 14, 2016

The plan for this lecture is to finish the analysis of Randomized Quicksort, to show that the sorting algo-
rithms we have seen so far are in some sense optimal, and to give a very different sorting algorithm that can
sort in linear time when the numbers are not too big.

1 QuickSort Review

Here, we finish the analysis of QuickSort. For more details about QuickSort, including the notation used
in these notes, see the notes for Lecture 5. Recall the claims about the runtime of QuickSort proved in the
previous lecture.

Claim 1. The runtime of QuickSort is O(n + X) where X is the total number of comparisons made by the
algorithm.

Claim 2. Let z1 < z2 < ... < zn refer to numbers in the input array A, but in sorted order. Let pij be
the probability that zi and zj are compared at any point of the algorithm. Then, the expected number of
comparisons made by QuickSort is

E[X] =

n−1∑
i=1

n∑
j=i+1

pij .

Last lecture, we used these theorems to argue that if pij = 2
j−i+1 , then the runtime of RandQuickSort is

O(n log n). Thus, to finish our proof of the run time of RandQuickSort, we need to analyze the probabilities
pij and to show that they are indeed pij = 2

j−i+1 .

Claim 3. For any i, j with i < j: pij = 2
j−i+1 .

Proof. We first note that in RandQuickSort, the only time that two elements are compared is when one of
them is selected as a pivot. Consider the set Z = {zi, zi+1, . . . , zj}, that is, the elements between zi and zj
in the sorted order. Let RandQuickSort(A, p, r) be the last call of RandQuickSort for which all elements of
Z are in A(p : r). Thus, in this call, the pivot must be some zk ∈ Z (as otherwise all of Z will be in A < or
A > and RandQuickSort(A, p, r) wouldn’t be the last call for which Z ⊂ A(p : r)).

Let zk be the pivot. We will consider two cases - either zk is one of the endpoints, zi or zj , or zk is some
other element in Z.
Case 1: Either zk = zi or zk = zj

In this case, zi and zj are clearly compared within this call.
Case 2: zk is neither zi nor zj
In this case, zk is one of {zi+1, . . . , zj−1}. Then zk is compared to zi and zj . Since zi < zk and zk < zj , zi
will be in A< and zj will be in A>, so zi and zj will never be compared.

Thus, pij = Pr(zi and zj are compared) = Pr(pivot is zi or zj | pivot is in Z). Because the pivot was
picked uniformly at random, Pr(pivot is zi or zj | pivot is in Z) = 2

|Z| = 2
j−i+1 , completing this proof.

�

2 Lower Bounds for Comparison Sorting Algorithms

We call a sorting algorithm a comparison-based sorting algorithm if the sorted order is determined solely
through pairwise comparisons of elements, and not the actual values that are being compared. The two most
well-known comparison sorting algorithms are MergeSort and QuickSort, but there are many others which
also share this property.

1

i, j

i′′, j′′i′, j′

A[i] ≤ A[j] A[i] > A[j]

leafπ(A)

Figure 1: The general framework for a decision tree. In this case, i is compared to j at the root, which could
lead to i′ being compared to j′ (if A[i] ≤ A[j]) or i′′ being compared to j′′ (if A[i] > A[j]). The leaves of the
tree are permutations of the entries of A.

In this section, we will show that comparison-based sorting algorithms all have inherent limitations. We’ll
show that any deterministic comparison sorting algorithm must perform Ω(n log n) comparisons to sort n
elements. That is, for any sorting algorithm that doesn’t look at the actual values being compared, the
algorithm’s running time is lower bounded by Ω(n log n).

To show this lower bound, we will completely disregard any operations besides comparisons. Then we
can model all comparison sorting algorithms with a class of binary trees called decision trees.

Each node of the decision tree corresponding to a comparison-based algorithm represents a comparison
that the algorithm makes between two elements of the array. The comparison stored at the root is the first
comparison performed by the algorithm. Each node of the tree contains two (ordered) indices i, j of the
array, meaning that A(i) and A(j) are two be compared. There are two possible cases - either A(i) ≤ A(j)
or A(i) > A(j). The left child of the node corresponds to the next comparison that the algorithm would
make if A(i) ≤ A(j), and the right child corresponds to the next comparison whenever A(i) > A(j). This
way any internal node of the decision tree has exactly two children. At each leaf of the decision tree (the
termination of the algorithm), there is a permutation of A representing the final sorted order based on the
root to leaf path.

Each run of the comparison-based sorting algorithm on an input A corresponds to a path from the root
to some leaf in the decision tree. The number of total comparisons made on input A is the length of the
corresponding root to leaf path. Thus, the worst-case number of total comparisons for a comparison sorting
algorithm will be the height of its decision tree. We use this to prove a lower-bound on the number of
comparisons made by an arbitrary comparison sorting algorithm.

2, 0

2, 12, 1

A[2] ≤ A[0] A[2] > A[0]

1, 0 1, 0

A[2], A[1], A[0] A[2], A[0], A[1]

A[1], A[2], A[0]

A[0], A[2], A[1]

A[1], A[0], A[2] A[0], A[1], A[2]

A[2] ≤ A[1]
A[2] > A[1]

A[2] > A[1]A[2] ≤ A[1]

A[1] > A[0]A[1] ≤ A[0]A[1] > A[0]A[1] ≤ A[0]

Figure 2: A decision tree for Quicksort running on an array of length 3.

2

Theorem 2.1. Any comparison sorting algorithm must perform Ω(n log n) comparisons to sort n elements.

Proof. As stated earlier, the worst-case number of total comparisons for a comparison sorting algorithm
will be the height h of its corresponding decision tree. Thus, we will prove this theorem by showing that
h ≥ Ω(n log n).

We first note that every permutation of the n indices of the input must appear at one of the leaves of the
decision tree; otherwise, there would exist some possible input that would not be correctly sorted. There are
n! permutations of these indices, so the number of leaves ` is at least n!. Additionally, because the tree is
binary, a decision tree of height h will have no more than 2h leaves. Thus, n! ≤ ` ≤ 2h which implies that
h ≥ log(n!).

By Stirling’s approximation, n! ≥ Ω((n
e)n). Therefore, log(n!) ≥ Ω(log nn − log en) = Ω(n log(n)). Thus,

we have h ≥ Ω(n log n), completing the proof.
�

3 CountingSort

We now look at an integer sorting algorithm called CountingSort, which requires some additional assumptions
but has a much improved runtime. The main point is that this algorithm actually uses the values stored the
input array to sort instead of purely comparisons. Because of this, for many inputs it can run in linear time.

3.1 Algorithm Description and Intuition

Input: Integer array A of length n where all elements are in {0, ...k}
Output: Sorted integer array B of length n

Given some element x in A, we now consider at which indices it will appear in the sorted array B. Let Ci

be the number of elements that are less than or equal to i. Then, because the number of elements less than
x is equivalent to the number of elements less than or equal to x− 1, we know that the first x in B will be
in position Cx−1. The last occurrence of x will be in position Cx− 1. Thus, to sort A, it suffices to compute
Cx for every x ∈ {0, ..., k}. The pseudocode for CountingSort is below.

Algorithm 1: CountingSort(A, k) // |A| = n

If |A| = 1, return A;
B ← array of length n;
C ← array of length k initialized to the array of all 0s;
for j from 0 to n− 1 do

C[A[j]]← C[A[j]] + 1 ; Find number of occurrences of each element

for j from 1 to k do
C[j]← C[j] + C[j − 1]; Now, C[j] = Cj as defined earlier

for j = n− 1→ 0 do
x← A[j];
B[C[x]− 1]← x;
C[x]← C[x]− 1;

return B;

The correctness proof of the algorithm is as follows. The first for loop computes the number of occurrences
of each x in A, storing the number in C[x]. Then the second for loop computes for each x, the number of
elements ≤ x. It does this inductively. As the base case, C0 is exactly the number of 0s in A, so it equals
C[0]. Suppose that C[i − 1] contains the number of elements ≤ i − 1. Then the number of elements ≤ i is
C[i− 1]+ the number of occurrences of i. Thus, one can compute Ci by summing C[i− 1] and C[i]. Finally,
the last loop places each element x in its correct position, via the argument we made earlier.

3

Claim 4. CountingSort sorts n integer elements between 0 and k in O(n + k) time.

Proof. This runtime follows easily from the above pseudocode. The first for loop from iterates over n
elements and performs constant-time operations on each, so it can be completed in time O(n). Through
similar reasoning, the second for loop can be completed in time O(k), and the third for loop can be completed
in time O(n). Thus, the total runtime will be O(n + k).

�

One nice additional property of CountingSort is that the occurences of some element x will appear in
the same order in the sorted array B as they did in the original array A. This property is known as stability
and is critical to CountingSort’s application to RadixSort, another non-comparison sorting algorithm. It
may also be useful if you are sorting objects by some key, but want to maintain the order of the objects who
share a key.

4

