
Lecture 7 Binary Search Trees
Scribes: Ilan Goodman (2015), Virginia Date: April 20, 2016

1 Binary Search Trees.

Definition 1.1. A binary search tree (BST) is a data structure that stores some elements that have names
from a totally ordered universe (say, the integers). We will assume that each element has a distinct name.
A BST supports the following operations:

• search(i): Returns an element in the data structure associated with i

• insert(i): Inserts an element with name i into the data structure

• delete(i): Deletes an element with name i from the data structure, if such an element exists

A BST stores the numbers in a binary tree with a root r. Each node x has key(x) (the name of the element
stored in x), p(x) (the parent of x, where p(r) = NIL), left(x) (the left child of x), and right(x) (the right
child of x). The children of x are either other nodes or NIL.

The key BST property is that for every node x, the keys of all nodes under left(x) are ≤ key(x) and the
keys of all nodes under right(x) are ≥ key(x).

Example In the following example, the root node r stores 3 in it (key(r) = 3), its left child left(x) stores
1, its right child right(x) stores 7, and all leaf nodes (storing 1, 4, and 8, respectively) have NIL as their two
children.
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Example The following binary tree is not a BST since 2 > 3 and 2 is a child of 7, which is the right child
of 3:
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Some properties. Relationship to Quicksort:: We can think of each node x as a pivot for quicksort for
the keys in its subtree. The left subtree contains A< for key(x) and the right subtree contains A> for key(x).

Sorting the keys: We can do an inorder traversal of the tree to recover the nodes in sorted order from
left to right (the smallest element is in the leftmost node and the largest element is in the rightmost node).
The Inorder procedure takes a node x and returns the keys in the subtree under x in sorted order. We can
recursively define Inorder(x) as: (1) If left(x) 6= NIL, then run Inorder(left(x)), then: (2) Output key(x) and
then: (3) If right(x) 6= NIL, run Inorder(right(x)). With this approach, for every x, all keys in its left subtree
will be output before x, then x will be output and then every element in its right subtree.

Subtree property: If we have a subtree where x has y as a left child, y has z as a right child, and z is the
root for the subtree Tz, then our BST property implies that all keys in Tz are ≥ y and ≤ x. Similarly, if we
have a subtree where x has y as a right child, y has z as a left child, and z is the root of the subtree Tz, then
our BST property implies that all keys in Tz are between x and y.

1.1 Basic Operations on BSTs.

The three core operations on a BST are search, insert, and delete. For this lecture, we will assume that the
BST stores distinct numbers, i.e. we will identify the objects with their names and we will have each name
be represented by a number.

1.1.1 search

To search for an element, we start at the root and compare the key of the node we are looking at to the
element we are searching for. If the node’s key matches, then we are done. If not, we recursively search in
the left or right subtree of our node depending on whether this node was too large or too small, respectively.
If we ever reach NIL, we know the element does not exist in our BST. In the following algorithm in this case,
we simply return the node that would be the parent of this node if we inserted it into our tree.

Algorithm 1: search(i)

return search(root, i);

Example If we call search(5.5) on the following BST, we will return the node storing 5 (by taking the path
in bold). This also corresponds to the path taken when calling search(4.5) or search(5).
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Algorithm 2: search(x, i)

if key(x) == i then
return x

else if i < key(x) then
if left(x) == NIL then

return x
else

return search(left(x), i)

else if i > key(x) then
if right(x) == NIL then

return x
else

return search(right(x), i)
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Claim 1. search(i) returns a node containing i if i ∈ BST, otherwise a node x such that either key(x) is the
smallest in BST > i or the largest in BST < i. This follows directly from the BST property.

1.1.2 insert

As before, we will assume that all keys are distinct. We will search(i) for a node x to be the parent and
create a new node y, placing it as a child of x where it would logically go according to the BST property.

Algorithm 3: insert(i)

x← search(i);
y ← new node with key(y)← i, left(y)← NIL, right(y)← NIL, p(y)← x;
if i < key(x) then

left(x)← y;
else

right(x)← y;

Remark 1. Notice that x needed to have NIL as a child where we want to put y by the properties of our
search algorithm.
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1.1.3 delete

Deletion is a bit more complicated. To delete a node x that exists in our tree, we consider several cases:

1. If x has no children, we simply remove it by modifying its parent to replace x with NIL.

2. If x has only one child c, either left or right, then we elevate c to take x’s position in the tree by
modifying the appropriate pointer of x’s parent to replace x with c, and also fixing c’s parent pointer
to be x’s parent.

3. If x has two children, a left child c1 and right child c2, then we find x’s successor z and have z take
x’s position in the tree. Notice that z is in the subtree under x’s right child c2 and we can find it by
running z ← search(c2, key(x)). Note that since z is x’s successor, it doesn’t have a left child, but it
might have a right child. If z has a right child, then we make z’s parent point to that child instead
of z (also fixing the child’s parent pointer). Then we replace x with z, fixing up all relevant pointers.:
the rest of x’s original right subtree becomes z’s new right subtree, and x’s left subtree becomes z’s
new left subtree.

For simplicity, we will leave out case 1 and the symmetric case of case 2 (swapping left and right).
In case 3, x has two children, so we find the smallest element in its right subtree (its successor, call it z)

and replace x with z. Clearly z does not have a left child, otherwise it could not be x’s successor. Therefore
we can cut z out, replacing it with its right subtree (case 1 or 2, which we already know how to handle),
and then swap x out for z.

In the following algorithm, if p is the parent of x, child(p) refers to left(p) if x was the left child of p and
t0 right(p) otherwise.

Algorithm 4: delete(i)

x← search(i);
if key(x) 6= i then return;
if left(x) == NIL then

y ← right(x);
p(y)← p(x);
child(p(y))← y;
delete-node(x);

else if right(x) == NIL then
y ← left(x);
p(y)← p(x);
child(p(y))← y;
delete-node(x);

else x has two children
z ← search(right(x), key(x));
z′ ← right(z);
left(p(z))← z′;
p(z′)← p(z);
replace x with z;
delete-node(x);

1.1.4 Runtimes

The worst-case runtime for search is O(height of tree). As both insert, and delete call search a constant
number of times (once or twice) and otherwise perform O(1) work on top of that, their runtimes are also
O(height of tree).
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In the best case, the height of the tree is O(log n), e.g. when the tree is completely balanced, but in the
worst case it can be Θ(n) (a long rightward path, for example). This could happen because insert can increase
the height of the tree by 1 every time it is called. Currently our operations do not guarantee logarithmic
runtimes. To get O(log n) height we would need to rebalance our tree. There are many examples of self-
balancing BSTs, including AVL trees, red-black trees, splay trees (somewhat different but super cool!), etc.
All such BSTs use a concept called rotation.

1.2 Rotations

A tree rotation restructures the tree shape locally, usually for the purpose of balancing the tree better. A
rotation preserves the BST property (as shown in the following two diagrams). Notably, tree rotations can
be performed in O(1) time.
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Moving from the first picture to the second is known as a right rotation of x. The other direction (from
the second picture to the first) is a left rotation of q. Notice that we only move the q′ subtree, which is why
we preserve the BST property.

2 Red-Black Trees

One of the most popular balanced BST is the Red-Black tree developed by Guibas and Sedgewick in 1978.
In a Red-Black tree, all leaves are assumed to have NILs as children.

Definition 2.1. A red-black tree is a BST with the following additional properties:

1. Every node is red or black

2. The root is black

5



3. NILs are black

4. The children of a red node are black

5. For every node x, all x to NIL paths have the same number of black nodes on them

Example (B means a node is black, R means a node is red.) The following tree is not a red-black tree
since property 5 is not satisfied:
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Example (B means a node is black, R means a node is red.) The following tree is not a red-black tree
since property 4 is not satisfied:
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Example (B means a node is black, R means a node is red.) The following tree is a red-black tree:
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Remark 2. Intuitively, red nodes represent when a path is becoming too long.

Claim 2. Any valid red-black tree on n nodes (non-NIL) has height ≤ 2 log(n + 1) = O(log n).

Proof. For some node x, let b(x) be the “black height” of x, which is the number of black nodes on a x→ NIL
path excluding x. We first show that the number of descendents of x is ≥ 2b(x) − 1 via induction on the
black height of x.

Base case: NIL node has b(x) = 0 and 20 − 1 = 0 non-NIL descendents.
√

For our inductive step, let d(x) be the number of descendents of x. Then

d(x) = 1 + d(left(x)) + d(right(x))

≥ 1 + (2b(x)−1 − 1) + (2b(x)−1 − 1) (by induction)

= 2b(x) − 1
√

Notice that b(x) ≥ h(x)
2 (where h(x) is the height of x) since on any root to NIL path there are no two

consecutive red nodes, so the number of black nodes is at least the number of red nodes, and hence the
black height is at least half of the height. We apply this and the above descendents inequality to the root r
(h(r) = h) to obtain n ≥ 2b(r) − 1 ≥ 2

h
2 − 1, and hence h ≤ 2 log(n + 1). �

Next lecture we will show that Red-Black trees augment the regular BST insert and delete operations to
maintain invariants 1 to 5 in O(h) time where h is the height of the tree. Together with the Claim above,
we get:

Claim 3. Red-black trees support insert, delete, and search in O(log n) time.
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