
CS 161, Lecture 3 Divide and Conquer, Solving Recurrences, Integer Multiplication
Scribe: Juliana Cook (2015), Virginia Williams, Ofir Geri (2016) Date: October 3, 2016

1 Introduction

Today we will continue to talk about divide and conquer, and go into detail on how to solve recurrences.
Recall that divide and conquer algorithms divide up a problem into a number of subproblems that are

the smaller instances of the same problem, solve those problems recursively, and combine the solutions to
the subproblems into a solution for the original problem. When a subproblem size is small enough, the
subproblem is solved in a straightforward manner. In the past lectures we have seen two examples of divide
and conquer algorithms: MergeSort and Karatsuba’s algorithm for integer multiplication.

The running time of divide and conquer algorithms can be naturally expressed in terms of the running
time of smaller inputs. Today we will show a powerful method called the master method to solve these
recurrences. This method can only be used when the size of all the subproblems is the same (as was the case
in the examples). In the next lecture we will see an algorithm that does not fall into this category, and how
to analyze its running time using another method, the substitution method.

2 Recurrences

Stated more technically, a divide and conquer algorithm takes an input of size n and does some operations
all running in O(f(n)) time for some f and runs itself recursively on k ≥ 1 instances of size n1, n2, ..., nk,
where ni < n for all i. To talk about what the runtime of such an algorithm is, we can write a runtime
recurrence . Recurrences are functions defined in terms of themselves with smaller arguments, as well as
one or more base cases. We can define a recurrence more formally as follows:

Let T (n) be the worst-case runtime on instances of size n. If we have k recursive calls on a given step

(of sizes ni) and each step takes time O(f(n)), then we can write the runtime as T (n) ≤ c · f(n) +
k∑
i=1

T (ni)

for some constant c, where our base case is T (c′) ≤ O(1).
Now let’s try finding recurrences for some of the divide and conquer algorithms we have seen.

2.1 Integer Multiplication

Recall the integer multiplication problem, where we are given two n-digit integers x and y and output the
product of the two numbers. The long multiplication/grade school algorithm runs in O(n2) time. In lecture
1 we saw two divide and conquer algorithms for solving this problem. In both of them, we divided each of x
and y into two (n/2)-digit numbers in the following way: x = 10

n
2 a+ b and y = 10

n
2 c+d. Then we compute

xy = ac · 10n + 10
n
2 (ad+ bc) + bd.

In the first algorithm, which we call M ult1, we simply computed the four products ac, ad, bc, bd. Karat-
suba found that since we only need the sum of ad and bc, we can save one multiplication operation by noting
that ad+ bc = (a+ b)(c+ d)− ac− bd.

We now express the running time of these two algorithms using recurrences. Adding two n digit integers
is an O(n) operation, since for each position we add at most three digits: the ith digit from each number
and possibly a carry from the additions due to the (i− 1)th digits.

Let T1(n) and T2(n) denote the worst-case runtime of Mult1 and Karatsuba, respectively, on inputs of
size n. Then, the runtime of Mult1 can be written as the recurrence

T1(n) = 4T1

(n
2

)
+O(n),

1

Algorithm 1: Mult1(x, y)

Split x and y into x = 10
n
2 a+ b and y = 10

n
2 c+ d

z1 = Mult1(a, c)
z2 = Mult1(a, d)
z3 = Mult1(b, c)
z4 = Mult1(b, d)
return z1 · 10n + 10

n
2 (z2 + z3) + z4

Algorithm 2: Karatsuba(x, y)

Split x = 10
n
2 a+ b and y = 10

n
2 c+ d

z1 = Karatsuba(a, c)
z2 = Karatsuba(b, d)
z3 = Karatsuba(a+ b, c+ d)
z4 = z3 − z1 − z2
return z1 · 10n + z4 · 10

n
2 + z2

and Karatsuba’s runtime can be written as the recurrence

T2(n) = 3T2

(n
2

)
+O(n).

Note that the constant “hidden” in the O(n) term in T2 may be greater than in T1, but for asymptotic
analysis of the running time, these constants are not important.

2.2 MergeSort

Consider the basic steps for algorithm MergeSort(A), where |A| = n.

1. If |A| = 1, return A.

2. Split A into A1, A2 of size n
2 .

3. Run MergeSort(A1) and MergeSort(A2).

4. Merge(A1, A2)

Steps 2 and 4 each take time O(n). In step 3, we are splitting the work up into two subproblems of size
n
2 . Therefore, we get the following recurrence:

T (n) = 2T
(n

2

)
+O(n).

In the previous lecture, we saw that the running time of MergeSort is O(n log n). In this lecture we will
show how to derive this using the master method.

3 The Master Method

We now introduce a general method, called the master method, for solving recurrences where all the sub-
problems are of the same size. We assume that the input to the master method is a recurrence of the
form

T (n) = a · T
(n
b

)
+O(nd).

In this recurrence, there are three constants:

2

• a is the number of subproblems that we create from one problem, and must be an integer greater than
or equal to 1.

• b is the factor by which the input size shrinks (it must hold that b > 1).

• d is the exponent of n in the time it takes to generate the subproblems and combine their solutions.

There is another constant “hidden” in the big-O notation. We will introduce it in the proof and see that it
does not affect the result.

In addition, we need to specify the “base case” of the recurrence, that is, the runtime when the input
gets small enough. For a sufficiently small n (say, when n = 1), the worst-case runtime of the algorithm is
constant, namely, T (n) = O(1).

We now state the master theorem, which is used to solve the recurrences.

Theorem 3.1 (Master Theorem). Let T (n) = a · T
(
n
b

)
+O(nd) be a recurrence where a ≥ 1, b > 1. Then,

T (n) =


O(nd log n) if a = bd

O(nd) if a < bd

O(nlogb a) if a > bd

Remark 1. In some cases, the recurrence may involve subproblems of size dnb e, b
n
b c, or n

b + 1. The master
theorem holds for these cases as well. However, we do not prove that here.

Before we turn to the proof of the master theorem, we show how it can be used to solve the recurrences
we saw earlier.

• Mult1: T (n) = 4T
(
n
2

)
+O(n).

The parameters are a = 4, b = 2, d = 1, so a > bd, hence T (n) = O(nlog2 4) = O(n2).

• Karatsuba: T (n) = 3T
(
n
2

)
+O(n).

The parameters are a = 3, b = 2, d = 1, so a > bd, hence T (n) = O(nlog2 3) = O(n1.59).

• MergeSort: T (n) = 2T
(
n
2

)
+O(n).

The parameters are a = 2, b = 2, d = 1, so a = bd, hence T (n) = O(n log n).

• Another example: T (n) = 2T
(
n
2

)
+O(n2).

The parameters are a = 2, b = 2, d = 2, so a < bd, hence T (n) = O(n2).

We see that for integer multiplication, Karatsuba is the clear winner!

Proof of the Master Theorem. Let T (n) = a · T
(
n
b

)
+ O(nd) be the recurrence we solve using the master

theorem. For simplicity, we assume that T (1) = 1 and that n is a power of b. From the definition of big-O,
we know that there is a constant c > 0 such that for sufficiently large n, T (n) ≤ a · T

(
n
b

)
+ c · nd. The

proof of the master theorem will use the recursion tree in a similar way to our analysis of the running time
of MergeSort.

3

Level 0: n

vv }}
 ((

Level 1: n/b

vv }} �� !!

n/b . . . n/b

Level 2: n/b2 n/b2 · · · n/b2 · · ·

vv ~~ �� !!

...

Level logb n: 1 1 · · · 1 · · ·

The recursion tree drawn above has logb n+ 1 level. We analyze the amount of work done at each level,
and then sum over all levels in order to get the total running time. Consider level j. At level j, there are aj

subproblems. Each of these subproblems is of size n
bj , and will take time at most c

(
n
bj

)d
to solve (this only

considers the work done at level j and does not include the time it takes to solve the subsubproblems). We

conclude that the total work done at level j is at most aj · c
(
n
bj

)d
= cnd

(
a
bd

)j
.

Writing the running time this way shows us where the terms a and bd come from: a is the branching
factor and measures how the number of subproblems grows at each level, and bd is the shrinkage in the work
needed (per subproblem).

Summing over all levels, we get that the total running time is at most cnd
∑logbn
j=0

(
a
bd

)j
. We now consider

each of the three cases.

1. a = bd. In this case, the amount of work done at each level is the same: cnd. Since there are logb n+ 1
levels, the total running time is at most (logb n+ 1)cnd = O(nd log n).

2. a < bd. In this case, a
bd
< 1, hence,

∑logb n
j=0

(
a
bd

)j ≤ ∑∞j=0

(
a
bd

)j
= 1

1− a

bd
= bd

bd−a . Hence, the total

running time is cnd · bd

bd−a = O(nd).

Intuitively, in this case the shrinkage in the work needed per subproblem is more significant, so the
work done in the highest level “dominates” the other factors in the running time.

3. a > bd. In this case,
∑logb n
j=0

(
a
bd

)j
=

(a

bd
)
logb n+1−1
a

bd
−1 . Since a, b, c, d are constants, we get that the total

work done is O
(
nd ·

(
a
bd

)logb n
)

= O
(
nd · a

logb n

bd logb n

)
= O

(
nd · n

logb a

nd

)
= O(nlogb a).

Intuitively, here the branching factor is more significant, so the total work done at each level increases,
and the leaves of the tree “dominate”.

�

We conclude with a more general version of the master theorem.

Theorem 3.2 (Master Theorem). Let T (n) = a · T
(
n
b

)
+ f(n) be a recurrence where a ≥ 1, b > 1. Then,

• If f(n) = O
(
nlogb a−ε

)
for some constant ε > 0, T (n) = Θ

(
nlogb a

)
.

• If f(n) = Θ
(
nlogb a

)
, T (n) = Θ

(
nlogb a log n

)
.

• If f(n) = Ω
(
nlogb a+ε

)
for some constant ε > 0 and if af(n/b) ≤ cf(n) for c < 1 and all sufficiently

large n, then T (n) = Θ(f(n)).

4

