
CS161 Lecture 13 Chain Matrix Multiplication, Knapsack, Independent Set
Scribe: Wilbur Yang (2016) Date: November 9, 2016

1 Overview

Last lecture, we talked about dynamic programming (DP), a useful paradigm and one technique that you
should immediately consider when you are designing an algorithm. We covered the Bellman-Ford algorithm
for solving the single source shortest path problem, and we talked about the Floyd-Warshall algorithm for
solving the all pairs shortest path problem. Also, we explored the longest common subsequence problem,
which has important applications in biocomputation.

This lecture, we will cover some more examples of dynamic programming. We will talk about three
problems today: chain matrix multiplication, knapsack, and maximum weight independent set in trees.

2 The Chain Matrix Multiplication Problem

Recall that if you have a matrix A with dimensions p × q and a matrix B with dimensions q × r, then
AB is a p × r matrix, and calculating AB (naively) takes pqr multiplications. Also recall that in general,
matrix multiplication is not commutative; that is, AB 6= BA. In fact, it doesn’t even make sense to multiply
matrices if their dimensions are not compatible. However, matrix multiplication is associative, which means
that (AB)C = A(BC).

A

p× q

B

q × r

= AB

p× r

C

t× u

D

u× v

= CD

t× v

The problem is as follows: given matrices A1, A2, . . . , An, compute A1 × A2 × . . .× An using the fewest
possible scalar multiplications.

A1

a× b

A2

b× c

A3

c× d

A4

d× e

How would you compute this matrix product? If {Ai} were all square k× k matrices, it wouldn’t matter
which order you multiply them in: there would be n − 1 matrix multiplications, each requiring k3 scalar
multiplications. However, the problem becomes interesting when these matrices are not all square matrices.
We want to save operations by multiplying matrices in an efficient order.

Let’s first see how exactly we can multiply a matrix chain in a variety of different ways. Suppose we have
four matrices A1, A2, A3, A4. There are five ways to multiply them, yielding different operation counts:

1. (A1(A2(A3A4))) takes cde + bce + abe multiplications.
2. (A1((A2A3)A4)) takes bcd + bde + abe multiplications.
3. ((A1A2)(A3A4)) takes abc + cde + ace multiplications.
4. ((A1(A2A3))A4) takes bcd + abd + ade multiplications.
5. (((A1A2)A3)A4) takes abc + acd + ade multiplications.

1

Remark 1. The number of ways to multiply a matrix chain is very closely tied to the number of ways to
write valid nested parentheses. This sequence is called the Catalan numbers.

Let’s say that the ith matrix has dimensions pi−1 × pi. How do you compute this matrix product,
minimizing the number of multiplications? The number of ways to compute the product is Ω(2n), so we
can’t simply list them out and try them all.

A1

p0 × p1

A2

p1 × p2

A3

p2 × p3

A4

p3 × p4

One idea is to get rid of large dimensions first by multiplying wide matrices with tall matrices first.
Unfortunately, that intuition isn’t very helpful here as it’s not clear how exactly to do that. As with all
dynamic programming approaches, the key is to consider the subproblems that we need to solve in order to
solve the overall problem.

Here’s an idea: at the very last step, we’ve multiplied (A1, . . . , Ak) and (Ak+1, . . . , An). So, we need to
solve the subproblems of finding the minimum cost to compute Ai× . . .×Aj . Let Ai...j = Ai× . . .×Aj . We
must split the chain at some position k, where i ≤ k < j. That is, we need to compute Ai...k and Ak+1...j

and multiply them. The optimal solution for Ai...j must use the optimal solutions for Ai...k and Ak+1...j .
Then, we have the recurrence Cost(Ai...j) = mink (Cost(Ai...k) + Cost(Ak+1...j) + pi−1pkpj).

If we were to simply use this recursion without memoization to solve the problem, then our algorithm
would take exponential time to finish. However, because the same subproblems show up multiple times,
we can either memoize our subproblem solutions in a top-down way or build up solutions from smaller
subproblems to larger subproblems in a bottom-up fashion. Now let’s turn this recurrence into a bottom-up
dynamic programming algorithm. Let m[i, j] be the minimum cost for computing Ai...j . If k is the optimal
splitting point, then m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj .

Letting m[i, j] represent products of the (j − i + 1) matrices from i to j, the expression for m[i, j] needs
to know the costs for products of strictly less than (j − i+ 1) matrices. Specifically, m[i, j] is determined by
m[i, k] and m[k + 1, j], i ≤ k < j. So,

m[i, j] =

{
mini≤k<j m[i, k] + m[k + 1, j] + pi−1pkpj i < j

0 if i = j

We compute entries of m[i, j] in increasing order of j− i, starting with our base cases that m[i, i] = 0 for
all i. At the end, m[1, n] will be the answer for the overall problem.

Algorithm 1: MinCostMatrixChain(n, p)

for i = 1, . . . , n do
m[i, i]← 0

for ` = 1, . . . , n− 1 do
for i = 1, . . . , n− ` do

j ← i + `
m[i, j]←∞
for k = i, . . . , j − 1 do

m[i, j]← min{m[i, j],m[i, k] + m[k + 1, j] + pi−1pkpj}

return m[1, n]

2

Also, if we do some extra bookkeeping, we can recover the multiplication order at the end. While filling
out the (i, j)th entry of m, we can keep track of the optimal splitting point in another table s at s[i, j].
At the end, we can traverse s backwards using these “pointers” at each s[i, j] to determine how exactly to
multiply our matrices.

The running time is O(n3) since we take O(n) time to compute each entry in the DP table m.

3 The Knapsack Problem

This is a classic problem, defined as the following:
We have n items, each with a value and a positive weight. The ith item has weight wi and value vi. We

have a knapsack that holds a maximum weight of W . Which items do we put in our knapsack to maximize
the value of the items in our knapsack? For example, let’s say that W = 10; that is, the knapsack holds a
weight of at most 10. Also suppose that we have four items, with weight and value:

Item Weight Value
A 6 25
B 3 13
C 4 15
D 2 8

We will talk about two variations of this problem, one where you have infinite copies of each item
(commonly known as Unbounded Knapsack), and one where you have only one of each item (commonly
known as 0-1 Knapsack).

What are some useful subproblems? Perhaps it’s having knapsacks of smaller capacities, or maybe it’s
having fewer items to choose from. In fact, both of these ideas for subproblems are useful. As we will see,
the first idea is useful for the Unbounded Knapsack problem, and a combination of the two ideas is useful
for the 0-1 Knapsack problem.

3.1 The Unbounded Knapsack Problem

In the example above, we can pick two of item B and two of item D. Then, the total weight is 10, and the
total value 42.

We define K(x) to be the optimal solution for a knapsack of capacity x. Suppose K(x) happens to
contain the ith item. Then, the remaining items in the knapsack must have a total weight of at most x−wi.
The remaining items in the knapsack must be an optimum solution. (If not, then we could have replaced
those items with a more highly valued set of items.) This gives us a nice subproblem structure, yielding the
recurrence

K(x) = max
i:wi≤x

(K(x− wi) + vi) .

Developing a dynamic programming algorithm around this recurrence is straightforward. We first ini-
tialize K(0) = 0, and then we compute K(x) values from x = 1, . . . ,W . The overall runtime is O(nW).

Algorithm 2: UnboundedKnapsack(W,n,w, v)

K[0]← 0
for x = 1, . . . ,W do

K[x]← 0
for i = 1, . . . , n do

if wi ≤ x then
K[x]← max{K[x],K[x− wi] + vi}

return K[W]

3

Remark 2. This solution is not actually polynomial in the input size because it takes log(W) bits to represent
W . We call these algorithms “pseudo-polynomial.” If we had a polynomial time algorithm for Knapsack,
then a lot of other famous problems would have polynomial time algorithms. This problem is NP-hard.

3.2 The 0-1 Knapsack Problem

Now we consider what happens when we can take at most one of each item. Going back to the initial
example, we would pick item A and item C, having a total weight of 10 and a total value of 40.

The subproblems that we need must keep track of the knapsack size as well as which items are allowed
to be used in the knapsack. Because we need to keep track of more information in our state, we add
another parameter to the recurrence (and therefore, another dimension to the DP table). Let K(x, j) be
the maximum value that we can get with a knapsack of capacity x considering only items at indices from
1, . . . , j. Consider the optimal solution for K(x, j). There are two cases:

1. Item j is used in K(x, j). Then, the remaining items that we choose to put in the knapsack must be
the optimum solution for K(x− wj , j − 1). In this case, K(x, j) = K(x− wj , j − 1) + vj .

2. Item j is not used in K(x, j). Then, K(x, j) is the optimum solution for K(x, j − 1). In this case,
K(x, j) = K(x, j − 1).

So, our recurrence relation is: K(x, j) = max{K(x − wj , j − 1) + vj ,K(x, j − 1)}. Now, we’re done:
we simply calculate each entry up to K(W,n), which gives us our final answer. Note that this also runs
in O(nW) time despite the additional dimension in the DP table. This is because at each entry of the DP
table, we do O(1) work.

Algorithm 3: ZeroOneKnapsack(W,n,w, v)

for x = 1, . . . ,W do
K[x, 0]← 0

for j = 1, . . . , n do
K[0, j]← 0

for j = 1, . . . , n do
for x = 1, . . . ,W do

K[x, j]← K[x, j − 1]
if wj ≤ x then

K[x, j]← max{K[x, j],K[x− wj , j − 1] + vj}

return K[W,n]

4 The Independent Set Problem

This problem is as follows:
Say that we have an undirected graph G = (V,E). We call a subset S ⊆ V of vertices “independent”

if there are no edges between vertices in S. Let vertex i have weight wi, and denote w(S) as the sum of
weights of vertices in S. Given G, find an independent set of maximum weight argmaxS⊆V w(S).

Actually, this problem is NP-hard for a general graph G. However, if our graph is a tree, then we can
solve this problem in linear time. In the following figure, the maximum weight independent set is highlighted
in blue.

Remark 3. Dynamic programming is especially useful to keep in mind when you are solving a problem that
involves trees. The tree structure often lends itself to dynamic programming solutions.

4

4

57

861

3 9

2

As usual, the key question to ask is, “What should our subproblem(s) be?” Intuitively, if the problem
has to do with trees, then subtrees often play an important role in identifying our subproblems. Let’s pick
any vertex r and designate it as the root. Denoting the subtree rooted at u as Tu, we define A(u) to be the
weight of the maximum weight independent set in Tu. How can we express A(u) recursively? Letting Su be
the maximum weight independent set of Tu, there are two cases:

1. If u /∈ Su, then A(u) =
∑

v A(v) for all children v of u.
2. If u ∈ Su, then A(u) = wu +

∑
v A(v) for all grandchildren v of u.

To avoid solving the subproblem for trees rooted at grandchildren, we introduce B(u) as the weight of the
maximum weight independent set in Tu \ {u}. That is, B(u) =

∑
v A(v) for all children v of u. Equivalently,

we have the following cases:

1. If u /∈ Su, then A(u) =
∑

v A(v) for all children v of u.
2. If u ∈ Su, then A(u) = wu +

∑
v B(v) for all children v of u.

So, we can calculate the weight of the maximum weight independent set:

A(u) = max

 ∑
v∈Children(u)

A(v), wu +
∑

v∈Children(u)

B(v)

To create an algorithm out of this recurrence, we can compute the A(u) and B(u) values in a bottom-up
manner (a post-order traversal on the tree), arriving at the answer, A(r). This takes O(|V |) time.

Algorithm 4: MaxWeightIndependentSet(G) . G is a tree

r ← ArbitraryVertex(G)
T ← RootTreeAt(G, r)
Procedure SolveSubtreeAt(u)

if Children(T, u) = ∅ then
A(u)← wu

B(u)← 0
else

for v ∈ Children(T, u) do
SolveSubtreeAt(v)

A(u)← max
{∑

v∈Children(T,u) A(v), wu +
∑

v∈Children(T,u) B(v)
}

B(u)←
∑

v∈Children(T,u) A(v)

SolveSubtreeAt(r)
return A(r)

5

