
CS161 Lecture 14 Greedy Algorithms
Scribe: Virginia Williams, Sam Kim (2016) Date: November 16, 2016

1 Greedy Algorithms

Suppose we want to solve a problem, and we’re able to come up with some recursive formulation of the
problem that would give us a nice dynamic programming algorithm. But then, upon further inspection, we
notice that any optimal solution only depends on looking up the optimal solution to one other subproblem.
A greedy algorithm is an algorithm which exploits such a structure, ignoring other possible choices. Greedy
algorithms can be seen as a refinement of dynamic programming; in order to prove that a greedy algorithm
is correct, we must prove that to compute an entry in our table, it is sufficient to consider at most one
other table entry; that is, at each point in the algorithm, we can make a “greedy”, locally-optimal choice,
and guarantee that a globally-optimal solution still exists. Instead of considering multiple choices to solve a
subproblem, greedy algorithms only consider a single subproblem, so they run extremely quickly – generally,
linear or close-to-linear in the problem size.

Unfortunately, greedy algorithms do not always give the optimal solution, but they frequently give good
(approximate) solutions. To give a correct greedy algorithm one must first identify optimal substructure (as
in dynamic programming), and then argue that at each step, you only need to consider one subproblem. That
is, even though there may be many possible subproblems to recurse on, given our selection of subproblem,
there is always an optimal solution that contains the optimal solution to the selected subproblem.

1.1 Activity Selection Problem

One problem, which has a very nice (correct) greedy algorithm, is the Activity Selection Problem. In this
problem, we have a number of activities. Your goal is to choose a subset of the activies to participate in.
Each activity has a start time and end time, and you can’t participate in multiple activities at once. Thus,
given n activities a1, a2, ..., an where ai has start time si and finish time fi, we want to find a maximum set
of non-conflicting activities.

The activity selection problem has many applications, most notably in scheduling jobs to run on a single
machine.

1.1.1 Optimal Substructure

Let’s start by considering a subset of the activities. In particular, we’ll be interested in considering the
set of activities Si,j that start after activity ai finishes and end before activity aj starts. That is, Si,j =
{ak|fi ≤ sk, fk ≤ sj}. We can participate in these activities between ai and aj . Let Ai,j be a maximum
subset of non-conflicting activities from the subset Si,j . Our first intuition would be to approach this by
using dynamic programming. Suppose some ak ∈ Ai,j , then we can break down the optimal subsolution Ai,j

as follows
|Ai,j | = 1 + |Ai,k|+ |Ak,j |

where Ai,k is the best set for Si,k (before ak), and Ak,j is the best set for after ak. Another way of interpreting
this expression is to say “once we place ak in our optimal set, we can only consider optimal solutions to
subproblems that do not conflict with ak.”

Thus, we can immediately come up with a recurrence that allows us to come up with a dynamic pro-
gramming algorithm to solve the problem.

|Ai,j | = max
ak∈Si,j

1 + |Ai,k|+ |Ak,j |

1

This problem requires us to fill in a table of size n2, so the dynamic programming algorithm will run in
Ω(n2) time. The actual runtime is O(n3) since filling in a single entry might take O(n) time.

But we can do better! We will show that we only need to consider the ak with the smallest finishing
time, which immediately allows us to search for the optimal activity selection in linear time.

Claim 1. For each Si,j, there is an optimal solution Ai,j containing ak ∈ Si,j of minimum finishing time
fk.

Note that if the claim is true, when fk is minimum, then Ai,k is empty, as no activities can finish before
ak; thus, our optimal solution only depends on one other subproblem Ak,j (giving us a linear time algorithm).

Here, we prove the claim.

Proof. Let ak be the activity of minimum finishing time in Si,j . Let Ai,j be some maximum set of non-
conflicting activities. Consider A′

i,j = Ai,j \ {al} ∪ {ak} where al is the activity of minimum finishing time
in Ai,j . It’s clear that |A′

i,j | = |Ai,j |. We need to show that A′
i,j does not have conflicting activities. We

know al ∈ Ai,j ⊂ Si,j . This implies fl ≥ fk, since ak has the minimum finishing time in Si,j .
All at ∈ Ai,j \ {al} don’t conflict with al, which means that st ≥ fl, which means that st ≥ fk, so this

means that no activity in Ai,j \ {al} can conflict with ak. Thus, A′
i,j is an optimal solution. �

Due to the above claim, the expression for Ai,j from before simplifies to the following expression in terms
of ak ⊆ Si,j , the activity with minimum finishing time fk.

|Ai,j | = 1 + |Ak,j |
Ai,j = Ak,j ∪ {ak}

Algorithm Greedy-AS assumes that the activities are presorted in nondecreasing order of their finishing
time, so that if i < j, fi ≤ fj .

Algorithm 1: Greedy-AS(a)

A← {a1} // activity of min fi
k ← 1
for m = 2→ n do

if sm ≥ fk then
//am starts after last acitivity in A
A← A ∪ {am}
k ← m

return A

By the above claim, this algorithm will produce a legal, optimal solution via a greedy selection of activities.
There may be multiple optimal solutions, but there always exists a solution that includes ak with the
minimum finishing time. The algorithm does a single pass over the activities, and thus only requires O(n)
time – a dramatic improvement from the trivial dynamic programming solution. If the algorithm also needed
to sort the activities by fi, then its runtime would be O(n log n) which is still better than the original dynamic
programming solution.

1.2 Scheduling

Consider another problem that can be solved greedily. We are given n jobs which all need a common resource.
Let wj be the weight (or importance) and lj be the length (time required) of job j. Our output is an ordering
of jobs. We define the completion time cj of job j to be the sum of the lengths of jobs in the ordering up to
and including lj . Our goal is to output an ordering of jobs that minimizes the weighted sum of completion
times

∑
j wjcj .

2

1.2.1 Intuition

Our intuition tells us that if all jobs have the same length, then we prefer larger weighted jobs to appear
earlier in the order. If jobs all have equal weights, then we prefer shorter length jobs in the order.

1 2 3

vs

3 2 1

In the first case, assuming they all have equal weights of 1,
∑3

i=1 wici = 1 + 3 + 6 = 10. In the second case,∑3
i=1 wici = 3 + 5 + 6 = 14.

1.2.2 Optimal Substructure

What do we do in the cases where li < lj and wi < wj? Consider the optimal ordering of jobs. Suppose we
have a job i that is followed by job j in the optimal order. Consider swapping jobs i and j. The example
below swaps jobs 1 and 2.

l1 l2 l2 l1

1 2 → 2 1

Note that swapping jobs i and j does not alter the completion times for every other job and only changes
the completion times for i and j. ci increases by lj and cj decreases by li. This means that our objective
function

∑
i wici changes by wilj − wj li. Since we assumed our order was optimal originally, our objective

function cannot decrease after swapping the jobs. This means,

wilj − wj li ≥ 0

which implies,
lj
wj
≥ li

wi

Therefore, we want to process jobs in increasing order of li
wi

, the ratio of the length to the weight of
each job. The algorithm also does a single pass over jobs, and thus only requires O(n) time, assuming the
jobs were ordered by li

wi
. Like previously, if the algorithm also needed to sort the jobs based on the ratio of

length to weight, then its runtime would be O(n log n).

1.3 Optimal Codes

Our third example comes from the field of information theory. In ASCII, there is a fixed 8 bit code for
each character. Suppose we want to incorporate information about frequencies of characters to obtain
shorter encodings. What if we want to represent characters by codes of different lengths depending on each
character’s frequencies? We explore a greedy solution to find the optimal encoding of characters.

To create optimal codes, we want a way to encode and decode our sequence. To encode the sequence, we
would just have to concatenate the code of each character together. How about for decoding? Consider the
following codes of characters: a → 0, b → 1, c → 01. However, when decoding, when we encounter 01, this
could be decoded as ”ab” or ”c”. Therefore, our codes need to be prefix free: no codeword is a prefix of
another.

3

1.3.1 Tree Representation

It is simple to think of representing our codes in a tree structure, where the codewords represent the leaves
of our tree.

100

a: 45 55

25 30

c: 12 b: 13 14 d:16

f:5 e:9

0

1

0

1

0

1
0

1

0

1

The code for each character can be found by concatenating the bits of the path from the root to the
leaves. By convention, every left branch is given the bit 0 and every right branch is given the bit 1.

1.3.2 Huffman Codes

In 1951, David A. Huffman, in his MIT information theory class, was given the choice of a term paper or
final exam. Huffman chose to do the term paper rather than take the final exam. He quickly proved a
method to find the most efficient binary code, which we know today as Huffman codes.

The basic idea is this: build subtrees for subsets of characters and merge them from the bottom up,
combining the two trees with the characters of minimum total frequency.

Input: Set of characters C = {c1, c2, . . . , cn} of size n, and F = {f(c1), f(c2), . . . , f(cn)}, a set of frequencies.

1. Create nodes for each character ck, labeled by their frequencies f(ck).

2. Find the two nodes ci and cj with the minimum frequencies and create a new intermediate node I with
ci and cj as its children.

3. Label the new node I to have the frequency equal to the sum of frequencies of its children.

4. Repeat steps 2-3 until all characters are part of the tree.

Figure 1: The top level of the Huffman Coding algorithm.

1.3.3 Proof of Correctness

We are given a set of characters C and a set of its associated frequencies F where f(c) is the frequency of
character c. Let x and y be the characters with the two smallest frequencies.

Claim 2. There exists an optimal coding tree for C such that x, y are sibling leaves.

4

Proof. Let T be the optimal coding tree for C. The optimal coding tree must be a full binary tree, that
is, every non-leaf node must have two children. Let a, b be characters that are sibling leaves of maximum
depth. We define the number of bits to encode c as dT (c) and the number of bits needed for the coding tree
as B(T) =

∑
c f(c)dT (c).

We can replace a, b by x, y without increasing the total number of bits needed for the coding tree.1 If we
swap x and a, the change in cost becomes

f(x)dT (a) + f(a)dT (x)− f(x)dT (x)− f(a)dT (a) = (f(x)− f(a))(dT (a)− dT (x)) ≤ 0

Therefore, there swapping a, b with x, y will not increase our objective function B(T). Hence, there exists
an optimal coding tree where x, y are siblings in the tree. �

Claim 2 shows that there exists an optimal coding tree where x and y are sibling leaves, that is, there
is an optimal code that makes the same greedy choice as the algorithm. However, to complete the proof of
correctness, we need to show that combining this greedy choice with an optimal solution to the subprobem
where x and y are replaced with an intermediate node (solved in subsequent iterations of the algorithm)
results in an optimal solution. For a proof, see Lemma 16.3 in CLRS.

1For simplicity, we ignore the case where a, b, x, y are not distinct. For more details, see Lemma 16.2 in CLRS.

5

