
CS 161 Lecture 16 Min Cut and Karger’s Algorithm
Scribes: Peng Hui How, Virginia Williams (2015) Date: November 28, 2016
Anthony Kim (2016)

1 Minimum Cut Problem

Today, we introduce the minimum cut problem. This problem has many motivations, one of which comes
from image segmentation. Imagine that we have an image made up of pixels – we want to partition the image
into two dissimilar portions. If we think of the pixels as nodes in the graph and add in edges between similar
pixels, the min cut will correspond to a partition of the pixels where the two parts are most dissimilar.

Let us start with the definition of a cut. A cut S of a graph G = (V,E) is a proper subset of V (S ⊂ V
and S 6= ∅, V ). The size of a cut with respect to S is the number of edges between S and the rest of the
graph S̄ = V \S. In the example below, the size of the cut defined by the set S of black nodes and set V \S
of white nodes is 2.

Figure 1: Cut size = 2 (Image Source: Wikipedia)

The minimum cut problem (abbreviated as “min cut”), is defined as follows:
Input: Undirected graph G = (V,E)
Output: A minimum cut S, that is, a partition of the nodes of G into S and V \ S that minimizes the
number of edges going across the partition. Intuitively, we want to “destroy” the smallest number of edges
possible in the image segmentation problem.

Let n be the number of vertices and m be the number of edges. For finding the min-cut, a brute-force
solution is to enumerate over all O(2n) subsets. There is also a flow-based algorithm using the well-known
Max-Flow Min-Cut Theorem which we describe below. However, these algorithms are still inefficient. We
present a more efficient algorithm, Karger’s algorithm, in the next section.

1.1 Connections to Minimum s-t Cut and Maximum Flow

We define the minimum s-t cut problem as follows:
Input: Undirected graph G = (V,E), and vertices s and t
Output: A minimum cut S that separates s and t, that is, a partition of the nodes of G into S and V \ S
with s ∈ S and t ∈ V \ S that minimizes the number of edges going across the partition.

The minimum s-t cut is closely related to the maximum flow from s to t. We consider the pipe network
given by G where the vertices form the junctures and the edges form the pipes of uniform capacity. The
maximum flow from s to t is the maximum amount of flow that can be sent through the pipe network from
source s to sink t subject to the capacity constraints. In fact, the Max-Flow Min-Cut Theorem states that the
minimum s-t cut and the maximum flow amount are equal. Equivalently, finding a solution to one problem
will lead to a solution to the other problem, and vice versa. Intuitively, when no more flow can be routed,
we have found a minimum s-t cut.

We note that the maximum flow problem can be solved in polynomial time. Using the algorithm for
finding the maximum flow as a black-box, we can solve the minimum cut problem as follows. We arbitrarily
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fix a node to be s. For each remaining vertex as t, we find the maximum flow from s to t and the corresponding
minimum s-t cut. We choose the best of these minimum s-t cuts to be the minimum cut. The algorithm
is correct since the optimal minimum cut is a minimum s-t cut for some nodes s and t and the algorithm
iterates over all these possibilities. The run time would be polynomial in n and m and depend on the
black-box routine for solving the maximum flow.

2 Karger’s Algorithm

2.1 Las Vegas and Monte Carlo Algorithms

Karger’s algorithm is a randomized algorithm. It is different from the randomized algorithms that we have
seen before. The randomized algorithms we have seen so far (such as Quicksort) have good running time in
expectation, but may occasionally run for significantly longer. Nevertheless, these algorithms always produce
a correct solution upon termination (or report that they failed). Algorithms with the properties above are
known as “Las Vegas” algorithms.

This is not the case for Karger’s algorithm. Karger’s algorithm is a randomized algorithm whose run
time is deterministic; that is, on every run, we can bound the run time using a function in the size of the
input that will not depend on the random choices made by the algorithm, but the algorithm may return a
wrong answer with a small probability. Such an algorithm is called a “Monte Carlo” algorithm.

2.2 Finding a Min-Cut

Karger’s algorithm will use the notions of “supernodes” and “superedges”. A supernode is a group of nodes.
A superedge connecting two supernodes X and Y consists of all edges between a pair of nodes, one from
X and one from Y . Initially, all nodes will start as their own supernode and every superedge just contains
a single edge. The intuition behind Karger’s Algorithm is to pick any edge at random (among all edges),
merge its endpoints, and repeat the process until there are only two supernodes left. These supernodes will
define the cut.

Algorithm 1: IntuitiveKarger(G)

while there are more than 2 supernodes: do
Pick an edge (u, v) ∈ E(G) uniformly at random;
Merge u and v;

Output edges between the remaining two supernodes

The goal of this lecture will be to show that this simple algorithm can be made to work with good
probability. We use the following notations: We will refer to the set of nodes within a supernode u as
V (u), and the set of edges between two supernodes u, v as Euv (this is the superedge between u and v).
To distinguish the singleton nodes and supernodes, we use u to denote a singleton node and ū to denote a
supernode when necessary.
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The initialization step of Karger’s algorithm is as follows:

Algorithm 2: Initialize(G)

Γ← ∅; // the set of supernodes
F ← ∅; // the set of superedges
foreach v ∈ V do

v̄ ← new supernode;
V (v̄)← {v};
Γ← Γ ∪ {v̄};

foreach (u, v) ∈ E do
Euv ← {(u, v)};
F ← F ∪ {(u, v)};

We merge two supernodes as follows:

Algorithm 3: Merge(a, b,Γ) //Γ is the set of supernodes with a, b ∈ Γ

x← new supernode ;
V (x)← V (a) ∪ V (b); //merge the vertices of a and b
foreach d ∈ Γ\{a, b} do

// O(n) iterations
Exd ← Ead ∪ Ebd; //O(1) operation using linked lists

Γ← (Γ\{a, b}) ∪ {x};

Now, we can present the Karger’s algorithm in full detail.

Algorithm 4: Karger(G)

Initialize(G); //Γ is the set of supernodes, F is the set of edges that are part of the current superedges
while |Γ| > 2 do

(u, v)← uniform random edge from F ;
Merge(ū, v̄,Γ); // Note u ∈ ū, v ∈ v̄
F ← F\Eūv̄;

Return one of the supernodes in Γ and |Exy|; //Γ = {x, y}

The following example illustrates one possible execution of Karger’s Algorithm.
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The example happens to give the correct minimum cut, but only because we carefully picked the edges
for merging. There are many other choices of edges for merging, so it’s possible we could have ended with a
cut with more than 2 edges.

The run time of the algorithm is O(n2) since each merge operation takes O(n) time (going through at
most O(n) edges and vertices), and there are n − 2 merges until there are 2 supernodes left. We can get
a better run time using the union-find data structure used for Kruskal’s algorithm. In each iteration, we
randomly select an edge and merge the two supernodes on the edge in amortized time O(α(n)) where α(n)
is the inverse Ackermann function. Since there are m edges, there are at most m merging operations. For
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the random selection of edges, we generate a random permutation of edges in O(m) in the beginning and
process the edges in that order. In total, the run time is O(mα(n)) with the union-find data structure.

3 Analysis

We prove that we obtain the correct answer with sufficiently high probability under uniformly random
selection of edges.

Claim 1. The probability that Karger’s algorithm returns a min-cut is at least 1

(n2)
.

Proof. Fix a particular min-cut S∗. If Karger’s algorithm picks any edge across this cut to do a merge on,
then S∗ will not be output. However, if all edges that the algorithm selects are not across the cut, then
S∗ will be output. Let e1, . . . , en−2 be the random edges selected by Karger’s algorithm for the merging
operations, i.e., those edges that decreased the number of supernodes. Then,

Pr(Karger’s algorithm outputs S∗) = Pr(e1 does not cross S∗) · Pr(e2 does not cross S∗ | e1 does not cross S∗)·
· · ·Pr(en−2 does not cross S∗ | e1, . . . , en−3 do not cross S∗) .

For the sake of analysis, we say that a cut is alive if it does not cut a supernode and that an edge
is alive if its endpoints are in different supernodes. Note the definitions are with respect to the current
multigraph maintained by Karger’s algorithm. Equivalently, we can write the probability that Karger’s
algorithm outputs S∗ as follows:

Pr(Karger’s algorithm outputs S∗)

= Pr(S∗ is alive after merging on e1) · Pr(S∗ is alive after merging on e2 | S∗ is alive after merging on e1)·
· · ·Pr(S∗ is alive after merging on en−2 | S∗ is alive after merging on e1, . . . , en−3) .

Suppose the size of the minimum cut S∗ is k. Then, the graph has at least nk
2 edges. This is because

each node has a degree at least k and the number of edges is exactly a half of the total degrees of the nodes.
Similarly, if the min-cut S∗ is alive with respect to the current multigraph with, say, t supernodes, there are
at least tk

2 edges that are alive. In particular, if S∗ is alive then the size of any min-cut of the multigraph
is still k. Each supernode has at least k alive edges leaving it and the lower bound on the total number of
alive edges follows.

For i = 1, . . . , n− 2, we compute

pi = Pr(S∗ is alive after merging on ei | S∗ is alive after merging on e1, . . . , ei−1) .

Given that S∗ is alive after merging on e1, . . . , ei−1, we know that there are n − i + 1 supernodes and at

least (n−i+1)k
2 edges are alive after i− 1 merging operations. S∗ is alive after merging on ei if ei is not one

of the k edges in the minimum cut S∗. Hence, the probability that S∗ is alive merging on ei is

pi ≥ 1− k

(n− i+ 1)k/2
= 1− 2

n− i+ 1
=
n− i− 1

n− i+ 1
.

Then, the probability that Karger’s algorithm outputs S∗ is at least

Pr(Karger’s algorithm outputs S∗) = p1 · p2 · · · pn−2

≥ n− 2

n
· n− 3

n− 1
· · · 1

3

=
2

n(n− 1)
,

where the last equality follows from cancellations except the first two denominators and last two numerators.
As S∗ was arbitrary and there exists at least one minimum cut by definition, Karger’s algorithm returns

a min-cut with probability at least 2
n(n−1) . �
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The success probability of 1/Θ(n2) might seem very small. However, we’ll see that we can boost this
probability to an arbitrarily large probability by performing many independent trials of Karger’s algorithm.
Let C > 0 be an arbitrarily large constant.

Algorithm 5: AmplifiedKarger(G) //C is a constant

Run C ·
(
n
2

)
· lnn independent Karger procedures.

Return the best of the cuts computed so far.

The run time of AmplifiedKarger is clearly O(n4 log n) since we run O(n2 log n) trials of an O(n2) time
algorithm.

Claim 2.

P (AmplifiedKarger is correct) ≥ 1− 1

nC

where C is the constant used in the amplification algorithm.

Remark 1 (Useful fact). For any real x, 1 + x ≤ ex.

Proof of Claim 2.

Pr(AmplifiedKarger is incorrect) = Pr(Karger is incorrect for all the C ·
(
n
2

)
· lnn independent runs)

= (Pr(Karger is incorrect))
C·

n
2

·lnn

≤
(

1− 2

n(n− 1)

)C·n
2

·lnn

≤ exp

(
− 2

n(n− 1)
C

(
n
2

)
lnn

)
= exp (−C lnn)

=
1

nC
.

�

More generally, we can repeat a Monte Carlo algorithm with success probability of p for 1
p ln

(
1
δ

)
rounds

to obtain the overall failure probability at most δ. The probability that all the rounds fail is (1 − p) 1
p ln( 1

δ )

which can be upper bounded as follows:

(1− p) 1
p ln( 1

δ ) ≤ exp

(
−p1

p
ln

(
1

δ

))
= δ .

Remark 2 (General Way of Boosting the Success Rate of Monte Carlo Algorithms). If an algorithm is
correct w.p. (with probability) p, we can run it 1

p ln
(

1
δ

)
times and output the best result found, so that the

amplified algorithm is correct w.p. at least δ.

In the proof of Claim 1, we actually proved a stronger statement that for any min-cut of G, Karger’s
algorithm returns that particular min-cut with probability at least 2

n(n−1) . Interestingly, this implies that

there can be at most
(
n
2

)
cuts that have the minimum size.

Corollary 3.1. There can be at most
(
n
2

)
min-cuts.
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Proof. Let C1, C2, . . . be the complete enumeration of all possible cuts of G. Let p1, p2, . . . be the probabilities
such that pi is the probability that Karger’s algorithm returns cut Ci. Without loss of generality, we assume
that there are l cuts with the minimum size and they are C1, . . . , Cl. From the proof of Claim 1, it follows
that pi ≥ 2

n(n−1) for i = 1, . . . , l. Then,

1 =
∑
i

pi ≥
l∑
i=1

pi ≥ l ·
2

n(n− 1)
.

The number of min-cuts l is at most n(n−1)
2 . �

4 Karger-Stein Algorithm

The overall run time of the repeated application of Karger’s algorithm is O(n4 log n), without using the
union-find data structure. We can further improve the run time of Karger’s algorithm. Note that earlier
merging operations are less risky in the sense that a particular min-cut is more likely to be alive after a
merge operation since there are more alive edges. In particular, the probability that a minimum cut is alive

until when there are t supernodes is t(t−1)
n(n−1) . For t = n√

2
, this probability is approximately 1

2 . Essentially, it

is highly likely that a min-cut is alive even after the first n− t merging operations (such that t supernodes
remain). To reduce the amount of work, it makes sense to repeat the random merging operations from the
intermediate multigraph with t supernodes, rather than from the beginning.

In fact, the Karger-Stein algorithm relies on this idea and leads to a better overall run time than running
Karger’s algorithm n2 times independently. We present the Karger-Stein algorithm below:

Algorithm 6: KargerStein(G)

n← |G| ;

if n < 2
√

2 then
Find a min-cut by brute-force in O(1) ;

else
Run Karger’s algorithm on G until n√

2
supernodes remain;

Let G1 and G2 be the two copies of the resulting multigraph ;
S1 ← KargerStein(G1) ;
S2 ← KargerStein(G2) ;
Return the best of cuts S1 and S2

The following bound can be shown for the probability of success of Karger-Stein algorithm.

Claim 3. Pr(Karger-Stein is correct) ≥ 1
Θ(logn) .

Proof. For a fixed min-cut S∗, we compute the probability that Karger-Stein algorithm returns S∗ using a
binary tree representation of the algorithm’s computation. Let the nodes represent the multigraphs with
some particular number of supernodes from intermediate stages of the algorithm. Let edges represent the
series of random merging operations to reduce the number of supernodes in the “parent” multigraph by a
factor of

√
2. The root is the original graph with n nodes, and it has one child that represents a multigraph

of size n√
2
. The child has two children each with n

2 supernodes. Each internal node below has two children.

Note the tree has depth 2 log n and has n2 leaves. See the figure below.
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We interpret the probability that Karger-Stein algorithm returns S∗ as the probability that there exists
a path from the root to a leaf using only “surviving” edges where each edge gets destroyed with probability
1
2 independently. Let pd be the probability that there exists a path consisting of surviving edges from a node
at height d to a leaf. Note the height of a node is measured from the bottom (the leaves). Then,

pd =
1

2
· Pr(∃ a path of surviving edges in at least one subtree)

=
1

2
·
(

Pr(∃ a path of surviving edges in the left subtree)+

Pr(∃ a path of surviving edges in the right subtree)−
Pr(∃ a path of surviving edges in both left and right subtrees)

)
=

1

2

(
2pd−1 − (pd−1)2

)
= pd−1 −

1

2
(pd−1)2 .

We prove pd ≥ 1
d+1 using induction. For the base case, p0 = 1. For the inductive step, we note that if

pd−1 ≥ 1
d , then

pd = pd−1 −
1

2
(pd−1)2

≥ 1

d
− 1

2

1

d2

≥ 1

d
− 1

d(d+ 1)

=
1

d+ 1
,

where the first inequality follows from the fact that f(x) = x− 1
2x

2 is increasing for x ∈ [0, 1] and the second
inequality follows from d ≥ 1.

As the root is at height 2 log n, the probability that Karger-Stein algorithm returns S∗ is p2 logn ≥
1

2 logn+1 . �

We now argue about the run time.

Claim 4. Karger-Stein algorithm runs in O(n2 log n) time.

Proof. On a multigraph with n supernodes, Karger-Stein algorithm does O(n2) amount of work to reduce
the number of supernodes by a factor of

√
2 and also O(n2) work to determine the best of two cuts returned
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by recursive calls. It makes 2 recursive calls on multigraphs with n√
2

supernodes each. The run time T (n)

satisfies the following recurrence:
T (n) = 2T (n/

√
2) +O(n2) .

By Master’s Theorem, T (n) = Θ(n2 log n). �

Using the amplifying strategy, we can repeat Karger-Stein algorithm O(log n) times to obtain the overall
failure rate at most some small constant. The overall run time of the amplified version of Karger-Stein
algorithm is O(n2 log2 n) which is better than the amplified version of Karger’s algorithm.
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