Lecture 3

Big-O notation, more recurrences!!
Announcements!

• **HW1 is posted!** (Due Friday)

• See Piazza for a list of HW clarifications

• First recitation section was this morning, there’s another tomorrow (same material). *(These are optional, it’s a chance for TAs to go over more examples than we can get to in class).*
FAQ

• How rigorous do I need to be on my homework?
 • See our example HW solution online
 • In general, we are shooting for:

 You should be able to give a friend your solution
 and they should be able to turn it into a rigorous proof
 without much thought.

 • This is a delicate line to walk, and there’s no easy answer. Think of it like more like writing a good essay than “correctly” solving a math problem.

• What’s with the array bounds in pseudocode?
 • SORRY! I’m trying to match CLRS and this causes me to make mistakes sometimes. In this class, I’m trying to do:
 • Arrays are 1-indexed
 • A[1..n] is all entries between 1 and n, inclusive
 • I will also use A[1:n] (python notation) to mean the same thing (not python notation).

 • Please call me out when I mess up.
Last time....

- Sorting: InsertionSort and MergeSort
- Analyzing correctness of iterative + recursive algs
 - Via “loop invariant” and induction
- Analyzing running time of recursive algorithms
 - By writing out a tree and adding up all the work done.
Today

• How do we measure the runtime of an algorithm?
 • Worst-case analysis
 • Asymptotic Analysis

• Recurrence relations:
 • Integer Multiplication and MergeSort again

• The “Master Method” for solving recurrences.
Recall from last time...

- We analyzed **INSERTION SORT** and **MERGESORT**.
- They were both correct!
- **INSERTION SORT** took time about \(n^2 \)
- **MERGESORT** took time about \(n \log(n) \).

\(n \log(n) \) is way better!!!
A few reasons to be grumpy

• Sorting

should take zero steps...why nlog(n)??

• What’s with this $T(MERGE) < 2 + 4n \leq 6n$?
Analysis

\[T(n) = \text{time to run MERGESORT on a list of size } n \]

This is called a recurrence relation: it describes the running time of a problem of size \(n \) in terms of the running time of smaller problems.

\[T(n) = T(n/2) + T(n/2) + T(\text{MERGE}) = 2T(n/2) + 6n \]

T(\text{MERGE two lists of size } n/2) is the time to do:

- 3 variable assignments (counters \(\leftarrow 1 \))
- \(n \) comparisons
- \(n \) more assignments
- 2n counter increments

So that’s

\[2T(\text{assign}) + n T(\text{compare}) + n T(\text{assign}) + 2n T(\text{increment}) \]

or \(4n + 2 \) operations

Or \(4n + 3 \)...

We will see later how to analyse recurrence relations like these automagically...but today we’ll do it from first principles.
A few reasons to be grumpy

• Sorting

should take zero steps...why nlog(n)??

• What’s with this \(T(\text{MERGE}) < 2 + 4n \leq 6n \)?
 • The “2 + 4n” operations thing doesn’t even make sense. Different operations take different amounts of time!
 • We bounded 2 + 4n \(\leq 6n \). I guess that’s true, but that seems pretty dumb.
How we will deal with grumpiness

• Take a deep breath...
• Worst case analysis
• Asymptotic notation
Worst-case analysis

• In this class, we will focus on worst-case analysis

Pros: very strong guarantee
Cons: very strong guarantee

Algorithm designer

Algorithm:
Do the thing
Do the stuff
Return the answer

Here is my algorithm!

Sorting a sorted list should be fast!!
Big-O notation

• What do we mean when we measure runtime?
 • We probably care about wall time: how long does it take to solve the problem, in seconds or minutes or hours?

• This is heavily dependent on the programming language, architecture, etc.

• These things are very important, but are not the point of this class.

• We want a way to talk about the running time of an algorithm, independent of these considerations.
Remember this slide?

<table>
<thead>
<tr>
<th>n</th>
<th>n log(n)</th>
<th>n^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>24</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>32</td>
<td>160</td>
<td>1024</td>
</tr>
<tr>
<td>64</td>
<td>384</td>
<td>4096</td>
</tr>
<tr>
<td>128</td>
<td>896</td>
<td>16384</td>
</tr>
<tr>
<td>256</td>
<td>2048</td>
<td>65536</td>
</tr>
<tr>
<td>512</td>
<td>4608</td>
<td>262144</td>
</tr>
<tr>
<td>1024</td>
<td>10240</td>
<td>1048576</td>
</tr>
</tbody>
</table>
Change $n \log(n)$ to $5n \log(n)$...

<table>
<thead>
<tr>
<th>n</th>
<th>$5n \log(n)$</th>
<th>n^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>120</td>
<td>64</td>
</tr>
<tr>
<td>16</td>
<td>320</td>
<td>256</td>
</tr>
<tr>
<td>32</td>
<td>800</td>
<td>1024</td>
</tr>
<tr>
<td>64</td>
<td>1920</td>
<td>4096</td>
</tr>
<tr>
<td>128</td>
<td>4480</td>
<td>16384</td>
</tr>
<tr>
<td>256</td>
<td>10240</td>
<td>65536</td>
</tr>
<tr>
<td>512</td>
<td>23040</td>
<td>262144</td>
</tr>
<tr>
<td>1024</td>
<td>51200</td>
<td>1048576</td>
</tr>
</tbody>
</table>

As n gets large, I’d even take runtime 100 $n \log(n)$ over n^2...
Asymptotic Analysis
How does the running time scale as \(n \) gets large?

One algorithm is “faster” than another if its runtime grows more “slowly” as \(n \) gets large.

Pros:
- Abstracts away from hardware- and language-specific issues.
- Makes algorithm analysis much more tractable.

Cons:
- Only makes sense if \(n \) is large (compared to the constant factors).

This will provide a formal way of saying that \(n^2 \) is “worse” than 100 \(n \log(n) \).

This is especially relevant now, as data get bigger and bigger and bigger...

\[2^{1000000000000000} \text{ is “better” than } n^2?!?! \]
Now for some definitions...

• Quick reminders:
 • ∃: “There exists”
 • ∀: ”For all”
 • Example: ∀ students in CS161, ∃ an algorithms problem that really excites the student.
 • Much stronger statement: ∃ an algorithms problem so that, ∀ students in CS161, the student is excited by the problem.

• We’re going to formally define an upper bound:
 • “T(n) grows no faster than f(n)”
O(...) means an upper bound

• Let T(n), f(n) be functions of positive integers.
 • Think of T(n) as being a runtime: positive and increasing in n.
• We say "T(n) is O(f(n))" if f(n) grows at least as fast as T(n) as n gets large.

• Formally,

\[
T(n) = O(f(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \\
0 \leq T(n) \leq c \cdot f(n)
\]

pronounced “big-oh of ...” or sometimes “oh of ...”
$T(n) = O(f(n))$

\Leftrightarrow

$\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \\
0 \leq T(n) \leq c \cdot f(n)$

$T(n) = O(f(n))$ means:
Eventually, (for large enough n) something that grows like $f(n)$ is always bigger than $T(n)$.
Example 1

- $T(n) = n$, $f(n) = n^2$.
- $T(n) = O(f(n))$

\[T(n) = O(f(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \quad 0 \leq T(n) \leq c \cdot f(n) \]
Examples 2 and 3

• All degree k polynomials with positive leading coefficients are $O(n^k)$.
• For any $k \geq 1$, n^k is not $O(n^{k-1})$.

(On the board)
Take-away from examples

• To prove $T(n) = O(f(n))$, you have to come up with c and n_0 so that the definition is satisfied.

• To prove $T(n)$ is NOT $O(f(n))$, one way is by contradiction:
 • Suppose that someone gives you a c and an n_0 so that the definition is satisfied.
 • Show that this someone must by lying to you by deriving a contradiction.
\(O(...) \) means an upper bound, and
\(\Omega(...) \) means a lower bound

- We say “\(T(n) \) is \(\Omega(f(n)) \)” if \(f(n) \) grows at most as fast as \(T(n) \) as \(n \) gets large.

- Formally,

\[
T(n) = \Omega(f(n)) \\
\iff \\
\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \\
0 \leq c \cdot f(n) \leq T(n)
\]

Switched these!!
Parsing that...

$$T(n) = \Omega(f(n))$$

$$\iff$$

$$\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq c \cdot f(n) \leq T(n)$$
Θ(...) means both!

• We say “T(n) is Θ(f(n))” if:

\[T(n) = O(f(n)) \]

-AND-

\[T(n) = \Omega(f(n)) \]
Yet more examples

- $n^3 - n^2 + 3n = O(n^3)$
- $n^3 - n^2 + 3n = \Omega(n^3)$
- $n^3 - n^2 + 3n = \Theta(n^3)$
- 3^n is not $O(2^n)$
- $n \log(n) = \Omega(n)$
- $n \log(n)$ is not $\Theta(n)$.

Fun exercise: check all of these carefully!!
We’ll be using lots of asymptotic notation from here on out

• This makes both Plucky and Lucky happy.
 • Plucky the Pedantic Penguin is happy because there is a precise definition.
 • Lucky the Lackadaisical Lemur is happy because we don’t have to pay close attention to all those pesky constant factors like “4” or “6”.
• But we should always be careful not to abuse it.
• In the course, (almost) every algorithm we see will be actually practical, without needing to take \(n \geq n_0 = 2^{100000000} \).

Questions about asymptotic notation?
Back to recurrence relations

$T(n) = \text{time to solve a problem of size } n$.

We’ve seen three recursive algorithms so far.

• Needlessly recursive integer multiplication
 • $T(n) = 4 \cdot T(n/2) + O(n)$
 • $T(n) = O(n^2)$

• Karatsuba integer multiplication
 • $T(n) = 3 \cdot T(n/2) + O(n)$
 • $T(n) = O(n^{\log_2 3} \approx n^{1.6})$

• MergeSort
 • $T(n) = 2T(n/2) + O(n)$
 • $T(n) = O(n \log(n))$

What’s the pattern?!?!?!?
The master theorem

• A **formula** that solves recurrences when all of the sub-problems are the same size.

• (We’ll see an example Wednesday when not all problems are the same size).

A useful formula it is. Know why it works you should.
The master theorem

- Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. Then

$$T(n) = \begin{cases} O(n^d \log(n)) & \text{if } a = b^d \\ O(n^d) & \text{if } a < b^d \\ O(n^{\log_b(a)}) & \text{if } a > b^d \end{cases}$$

Three parameters:
- a : number of subproblems
- b : factor by which input size shrinks
- d : need to do n^d work to create all the subproblems and combine their solutions.

Many symbols those are....
Examples
(details on board)

\[T(n) = a \cdot T \left(\frac{n}{b} \right) + O(n^d). \]

\[T(n) = \begin{cases}
O(n^d \log(n)) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^{\log_b(a)}) & \text{if } a > b^d
\end{cases} \]

• Needlessly recursive integer mult.
 \[T(n) = 4 \cdot T(n/2) + O(n) \]
 \[a = 4 \quad b = 2 \quad a > b^d \]
• \[T(n) = O(n^2) \]
 \[a = 3 \quad b = 2 \quad a > b^d \]

• Karatsuba integer multiplication
 \[T(n) = 3 \cdot T(n/2) + O(n) \]
 \[a = 3 \quad b = 2 \quad a > b^d \]
• \[T(n) = O(n^{\log_2(3)} \approx n^{1.6}) \]
 \[a = 3 \quad b = 2 \quad a > b^d \]

• MergeSort
 \[T(n) = 2T(n/2) + O(n) \]
 \[a = 2 \quad b = 2 \quad a = b^d \]
• \[T(n) = O(n \log(n)) \]
 \[a = 2 \quad b = 2 \quad a = b^d \]
Proof of the master theorem

• We’ll do the same recursion tree thing we did for **MergeSort**, but be more careful.

• Suppose that $T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d$.

Hang on! The hypothesis of the Master Theorem was the extra work at each level was $O(n^d)$. That’s NOT the same as work $\leq cn$ for some constant c.

That’s true ... we’ll actually prove a weaker statement that uses this hypothesis instead of the hypothesis that $T(n) = a \cdot T\left(\frac{n}{b}\right) + O(n^d)$. It’s a good exercise try to make this proof work rigorously with the $O()$ notation.
Recursion tree

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d \]

<table>
<thead>
<tr>
<th>Level</th>
<th># problems</th>
<th>Size of each problem</th>
<th>Amount of work at this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>(c \cdot n^d)</td>
</tr>
<tr>
<td>1</td>
<td>a</td>
<td>n/b</td>
<td>(ac \left(\frac{n}{b}\right)^d)</td>
</tr>
<tr>
<td>2</td>
<td>a^2</td>
<td>n/b^2</td>
<td>(a^2c \left(\frac{n}{b^2}\right)^d)</td>
</tr>
<tr>
<td>(t)</td>
<td>(a^t)</td>
<td>n/b^t</td>
<td>(a^t c \left(\frac{n}{b^t}\right)^d)</td>
</tr>
<tr>
<td>(\log_b(n))</td>
<td>(a^{\log_b(n)})</td>
<td>1</td>
<td>(a^{\log_b(n)} c)</td>
</tr>
</tbody>
</table>

(Size 1)
Recursion tree

\[T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d \]

<table>
<thead>
<tr>
<th>Level</th>
<th># problems</th>
<th>Size of each problem</th>
<th>Amount of work at this level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
<td>(c \cdot n^d)</td>
</tr>
<tr>
<td>1</td>
<td>(a)</td>
<td>(n/b)</td>
<td>(ac \left(\frac{n}{b}\right)^d)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Total work (derivation on board) is at most:

\[
c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t
\]
Now let’s check all the cases (on board)

\[T(n) = \begin{cases}
O(n^d \log(n)) & \text{if } a = b^d \\
O(n^d) & \text{if } a < b^d \\
O(n^{\log_b(a)}) & \text{if } a > b^d
\end{cases} \]
Even more generally, for $T(n) = aT(n/b) + f(n)$...

Theorem 3.2 (Master Theorem). Let $T(n) = a \cdot T \left(\frac{n}{b} \right) + f(n)$ be a recurrence where $a \geq 1$, $b > 1$. Then,

- If $f(n) = O \left(n^{\log_b a - \epsilon} \right)$ for some constant $\epsilon > 0$, $T(n) = \Theta \left(n^{\log_b a} \right)$.
- If $f(n) = \Theta \left(n^{\log_b a} \right)$, $T(n) = \Theta \left(n^{\log_b a \log n} \right)$.
- If $f(n) = \Omega \left(n^{\log_b a + \epsilon} \right)$ for some constant $\epsilon > 0$ and if $af(n/b) \leq cf(n)$ for $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.
Recap

- $O()$ notation makes our lives easier.
- The ”Master Method” also make our lives easier.

Next time:

- What if the sub-problems are different sizes?
- And when might that happen?
Extra slides...
Some brainteasers

• Are there functions f, g so that \textbf{NEITHER} $f = O(g)$ nor $f = \Omega(g)$?

• Are there \textit{non-decreasing} functions f, g so that the above is true?

• Define the n’th fibonacci number by $F(0) = 1, F(1) = 1, F(n) = F(n-1) + F(n-2)$ for $n > 2$.
 • $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots$

True or false:

• $F(n) = O(2^n)$
• $F(n) = \Omega(2^n)$
A few more $O()$ examples
Example A

• $g(n) = 2$, $f(n) = 1$.
• $g(n) = O(f(n))$ (and also $f(n) = O(g(n))$)

$T(n) = O(f(n)) \iff \exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0,$

\[0 \leq T(n) \leq c \cdot f(n) \]
Example B

- \(f(n) = 1 \), \(g(n) \) as below.
- \(g(n) = O(f(n)) \) (and also \(f(n) = O(g(n)) \))

\[
T(n) = O(f(n)) \iff \\
\exists c, n_0 > 0 \text{ s.t. } \forall n \geq n_0, \\
0 \leq T(n) \leq c \cdot f(n)
\]