Lecture 5

Substitution method, and randomized algorithms!
Announcements

• HW2 is posted! Due Friday.

• Please send any OAE letters to Luna Frank-Fischer (luna16@stanford.edu) by April 28.

• Lines at office hours: we know they are long.
 • We will convert some office hours to “group style.”
 • some will stay as individual using QueueStatus.
 • keep an eye on the Google calendar.
 • Go to office hours earlier in the week.
 • Go with a “buddy” (who has the same questions).
Thanks for filling out that poll!

• Feedback on pace:

<table>
<thead>
<tr>
<th>Option</th>
<th>Votes</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Just right</td>
<td>30</td>
<td>38%</td>
</tr>
<tr>
<td>Fast, but I like the challenge</td>
<td>15</td>
<td>19%</td>
</tr>
<tr>
<td>Slow, but it’s good: I’m really understanding stuff</td>
<td>13</td>
<td>16%</td>
</tr>
<tr>
<td>Too fast: I’m lost</td>
<td>8</td>
<td>10%</td>
</tr>
<tr>
<td>Too slow, I’m bored.</td>
<td>7</td>
<td>9%</td>
</tr>
<tr>
<td>Slow, but it’s good: I’m getting a chance to catch up on Facebook</td>
<td>6</td>
<td>8%</td>
</tr>
</tbody>
</table>

• So I’m not going to change the pace of lectures.
• BUT!!
If you think lectures are too fast

• You are not alone.

• Read the book and lecture notes before coming to lecture.

• Go to discussion sections.

• Go to office hours.
If you think lectures are too slow

• You are not alone.

• I’ll try to put fun problems on the side of slides for you to think about.

 • (Also you can find all the typos in my slides and email them to me) 😊

Note: even if you don’t think lectures are too slow, you can go back and look at these problems afterwards!

Are there functions $f(n)$ and $g(n)$ that are both increasing, but so that $f(n)$ is neither $O(g(n))$ nor $\Omega(g(n))$?
Other things I will change

• From now on, homework questions will all explicitly say what sort of answer we are expecting.

• I recognize I need to do better with pacing lectures.
 • I’ve been getting bogged down with details at the beginning and have to rush at the end.
 • I will try to focus on the high-level points (unless I think the technical details are very important). Please see CLRS, lecture notes, or office hours for omitted technical details.

• I will try to make fewer typos on slides. [sic]

• I will skew slightly toward slides.

• I will post another poll in a few weeks.
Let’s get a move-on...

- **Last time:** we saw a cool (and complex!) recursive algorithm for solving SELECT.

 A is an array of size n, k is in \{1,...,n\}

 - **SELECT**(A, k):

 - Return the k’th smallest element of A.

- **One idea:** Use MergeSort and take the k’th smallest.

 - Time \(O(n \log(n))\). Can we do better??

- **Idea:** pick a **pivot** that’s close to the median, and recurse on either side of the pivot.

- **Cool trick:** Use recursion to also pick the pivot!

- **CLAIM:** This runs in time \(O(n)\).
Last time we ended up with this:

\[T(n) \leq c \cdot n + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10} + 5\right) \]

• How can we solve this?

• The sub-problems don’t have the same size.
 • The master method doesn’t work.
 • Recursion trees get complicated.

• The substitution method gives us a way.
 • fancy “guess-and-check”

The cn is the O(n) work done at each level for PARTITION

The T(n/5) is for the recursive call to get the median in FINDPIVOT

The T(7n/10 + 5) is for the recursive call to SELECT for either L or R.

Try solving this using a recursion tree!
The substitution method (by example)

- **example:** $T(n) \leq 3n + T\left(\frac{n}{5}\right) + T\left(\frac{n}{2}\right)$,
 - with $T(n) = 10n$ for $n < 10$.
- First, make a guess about the answer.
- Check your guess using induction.
 - Suppose that your guess holds for all $k < n$.
 - $T(n) \leq 3n + T\left(\frac{n}{5}\right) + T\left(\frac{n}{2}\right)$
 - $T(n) \leq 3n + 10\left(\frac{n}{5}\right) + 10\left(\frac{n}{2}\right)$
 - $T(n) \leq 3n + 2n + 5n = 10n$.
 - This establishes the inductive hypothesis for n.
 - (And the base case is satisfied: $T(n) \leq 10n$ for $n < 10$.)
- So $T(n) = O(n)$.

This is not the same as our SELECT example; we’ll come back to that.

Inductive hypothesis: $T(k) \leq 10k$. I think $T(k) \leq 10k$. being sloppy about floors and ceilings!
How did we come up with that hypothesis?

• Doesn’t matter for the correctness of the argument, but..
 • Be very lucky.
 • Play around with the recurrence relation to try to get an idea before you start.
 • Start with a hypothesis with a variable in it, and try to solve for that variable at the end.
Example of how to come up with a guess.

• First, make a guess about what the correct term should be: **but leave a variable “C” in it, to be determined later.**

• **Example:** $T(n) \leq 3n + T\left(\frac{n}{5}\right) + T\left(\frac{n}{2}\right)$,
 - with $T(n) = 10n$ for $n < 10$.

• **Check your guess using induction.**
 - Suppose that your guess holds for all $k < n$.
 - $T(n) \leq 3n + T\left(\frac{n}{5}\right) + T\left(\frac{n}{2}\right)$
 - $T(n) \leq 3n + C\left(\frac{n}{5}\right) + C\left(\frac{n}{2}\right)$
 - $T(n) \leq 3n + \frac{Cn}{5} + \frac{Cn}{2}$.
 - If I want that to be Cn, then I can solve for C...
Back to SELECT

• \(T(n) \leq c \cdot n + T\left(\frac{n}{5}\right) + T\left(\frac{7n}{10} + 5\right) \)

The \(cn \) is the \(O(n) \) work done at each level for PARTITION

The \(T(n/5) \) is for the recursive call to get the median in FINDPIVOT

The \(T(7n/10 + 5) \) is for the recursive call to SELECT for either L or R.

• Inductive hypothesis (aka our guess):

\[
T(n) \leq \begin{cases}
 d \cdot 100 & \text{if } n \leq 100 \\
 d \cdot n & \text{if } n > 100
\end{cases}
\]

(aka, \(T(n) = O(n) \)).

for \(d = 20c \).

How on earth did we come up with this? Try to arrive at this guess on your own.

Ollie the over-achieving ostrich
Finally, let’s prove we can do SELECT in time $O(n)$

(*) $T(k) \leq \begin{cases}
 d \cdot 100 & \text{if } k \leq 100 \\
 d \cdot k & \text{if } k > 100
\end{cases}$

for $d = 20c.$

• Base case:
 • If $n \leq 50$, we can assume our alg. takes time $\leq 50d$.
 • (You should justify: WHY IS THIS OKAY?)

• Inductive step: Suppose (*) holds for all sizes $k < n$. Then

\[
T(n) \leq c \cdot n + T \left(\frac{n}{5} \right) + T \left(\frac{7n}{10} + 5 \right)
\leq c \cdot n + d \cdot \frac{n}{5} + d \cdot \left(\frac{7n}{10} + 5 \right)
\leq n \left(c + \frac{d}{5} + \frac{7d}{10} \right) + 5d
\leq n \left(c + \frac{20c}{5} + \frac{140c}{10} \right) + 100 \cdot c
= (19n + 100) \cdot c
\leq 20c \cdot n \text{ whenever } n > 100.
= d \cdot n
\]

This is pretty pedantic! But it’s worth being careful about the constants when doing inductive arguments. (see: your homework).

Here come some computations: no need to pay too much attention, just know that you can do these computations.
 Nearly there!

- By induction, the inductive hypothesis (*) applies for all n.
- **Termination**: Observe that this is exactly what we wanted to show!
 - There exists:
 - a constant $d>0$ *(which depends on the constant c from the running time of PARTITION...)*
 - an n_0 (aka 101)
 - so that for all $n \geq n_0$, $T(n) \leq d \cdot n$.
 - By definition, $T(n) = O(n)$.
 - Hooray!

- **Conclusion**:

 We can implement SELECT in time $O(n)$.

\[
(*) \quad T(n) \leq \begin{cases}
 d \cdot 100 & \text{if } n \leq 100 \\
 d \cdot n & \text{if } n > 100
\end{cases}
\]

for $d = 20c$.
Quick recap before we move on

• We can do SELECT (in particular, MEDIAN) in time $O(n)$.
• We analyzed this with the substitution method.

Next up:

• Randomized algorithms.
Randomized algorithms

• The algorithm gets to use randomness.
• It should always be correct (for this class).
• But the runtime can be a random variable.

• We’ll see a few randomized algorithms for sorting.
 • BogoSort
 • QuickSort

• BogoSort is a pedagogical tool.
• QuickSort is important to know. (in contrast with BogoSort...)
Example of a randomized sorting algorithm

BogoSort(A):
- **While** true:
 - Randomly permute A.
 - Check if A is sorted.
 - **If** A is sorted, **return** A.

This algorithm is always correct:
- If it returns, then it returns a sorted list.

Informal Runtime Analysis (and probability refresher):
- $E[\text{runtime}] = ?$
- $Pr[\text{randomly permuted array is sorted}] = ?$
 - $1/n!$
- We expect to permute A $n!$ times before it’s sorted.
- $E[\text{runtime}] = O(n \cdot n!) = \text{BIG}$.
- Worst-case runtime?
 - Infinity!

Suppose that you can draw a random integer in $\{1,...,n\}$ in time $O(1)$. How would you randomly permute an array in-place in time $O(n)$?

Ollie the over-achieving ostrich

We expect to roll a 6-sided die 6 times before we see a 1.
We expect to flip a fair coin twice before we see heads.

Worst case means that an adversary chooses the randomness.
Example of a better randomized algorithm: **QuickSort**

- Runs in expected time $O(n\log(n))$.
- Worst-case runtime $O(n^2)$.
- **Easier to implement** than MergeSort, and the constant factors inside the $O()$ are very small.
- In practice often more desirable.
Quicksort

We want to sort this array.

First, pick a "pivot." Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"

Arrange them like so:

L = array with things smaller than A[pivot]
R = array with things larger than A[pivot]

Recurse on L and R:
PseudoPseudoCode for what we just saw

- **QuickSort(A):**
 - **If** len(A) <= 1:
 - **return**
 - Pick some \(x = A[i] \) at random. Call this the **pivot**.
 - **PARTITION** the rest of A into:
 - \(L \) (less than \(x \)) and
 - \(R \) (greater than \(x \))
 - Replace A with \([L, x, R] \) (that is, rearrange A in this order)
- **QuickSort(L)**
- **QuickSort(R)**

See CLRS for more detailed pseudocode.

How would you do all this in-place in time \(O(n) \)?

[Ollie the over-achieving ostrich]
Pick 5 as a pivot

Partition on either side of 5

Recurse on [3142] and pick 3 as a pivot.

Partition around 3.

Recurse on [12] and pick 2 as a pivot.

Partition around 2.

Recursively on [7], it has size 1 so we’re done.
How long does this take to run?

• We will count the number of \textit{comparisons} that the algorithm does.
 • This turns out to give us a good idea of the runtime. (Not obvious).

• How many times are any two items compared?

\begin{itemize}
 \item 7 6 3 5 1 2 4
 \item 3 1 4 2 5 7 6
 \item 3 1 2 4 5 7 6
 \item 1 2 3 4 5 6 7
\end{itemize}

In the example before, everything was compared to 5 once in the first step....and never again.

But not everything was compared to 3. 5 was, and so were 1,2 and 4. But not 6 or 7.
Each pair of items is compared either 0 or 1 times. Which is it?

Let’s assume that the numbers in the array are actually the numbers 1,...,n

\[X_{a,b} = \begin{cases}
1 & \text{if } a \text{ and } b \text{ are ever compared} \\
0 & \text{if } a \text{ and } b \text{ are never compared}
\end{cases} \]

- Whether or not \(a, b \) are compared is a random variable, that depends on the choice of pivots. Let’s say

- In the previous example \(X_{1,5} = 1 \), because item 1 and item 5 were compared.
- But \(X_{3,6} = 0 \), because item 3 and item 6 were NOT compared.
- Both of these depended on our random choice of pivot!
Counting comparisons

• The number of comparisons total during the algorithm is

\[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \]

• The expected number of comparisons is

\[E \left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \right] = \sum_{a=1}^{n} \sum_{b=a+1}^{n} E[X_{a,b}] \]

using linearity of expectations.
Counting comparisons

• So we just need to figure out \(E[X_{a,b}] \)

\[
E[X_{a,b}] = P(X_{a,b} = 1) \cdot 1 + P(X_{a,b} = 0) \cdot 0 = P(X_{a,b} = 1)
\]
 • (using definition of expectation)

• So we need to figure out

\[P(X_{a,b} = 1) = \text{the probability that } a \text{ and } b \text{ are ever compared.} \]

Say that \(a = 2 \) and \(b = 6 \). What is the probability that \(2 \) and \(6 \) are ever compared?

This is exactly the probability that either \(2 \) or \(6 \) is first picked to be a pivot out of the highlighted entries.

If, say, \(5 \) were picked first, then \(2 \) and \(6 \) would be separated and never see each other again.
Counting comparisons

\[P(X_{a,b} = 1) \]

= probability \(a, b \) are ever compared

= probability that one of \(a, b \) are picked first out of all of the \(b - a + 1 \) numbers between them.

\[= \frac{2}{b - a + 1} \]
All together now...

Expected number of comparisons

- \[E\left[\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b} \right] \]
- \[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} E[X_{a,b}] \] linearity of expectation
- \[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} P(X_{a,b} = 1) \] definition of expectation
- \[= \sum_{a=1}^{n} \sum_{b=a+1}^{n} \frac{2}{b - a + 1} \] the reasoning we just did

- This is a big nasty sum, but we can do it.
- We get that this is less than \(2n \ln(n) \).
Are we done?

• We saw that $E[\text{number of comparisons}] = O(n \log(n))$
• Is that the same as $E[\text{running time}]$?

• In this case, yes.

• We need to argue that the running time is dominated by the time to do comparisons.

• (See CLRS for details).

• **QuickSort(A):**
 • If len(A) <= 1:
 • return
 • Pick some $x = A[i]$ at random. Call this the pivot.
 • **PARTITION** the rest of A into:
 • L (less than x) and
 • R (greater than x)
 • Replace A with $[L, x, R]$ (that is, rearrange A in this order)
 • QuickSort(L)
 • QuickSort(R)
Worst-case running time for QuickSort (if time)

• Suppose that an adversary is choosing the random pivots for you.
• Then the running time might be $O(n^2)$ [on board]
• In practice, this doesn’t usually happen.

• Aside: We worked really hard last week to get a deterministic algorithm for SELECT, by picking the pivot very cleverly.
• What happens if you pick the pivot randomly?
• Turns out this is also usually a good idea.
Recap

• We can do **SELECT** and **MEDIAN** in time $O(n)$.
• We already knew how to sort in time $O(n \log(n))$ with **MergeSort**.

• The randomized algorithm **QuickSort** also runs in expected time $O(n \log(n))$.
• In practice, **QuickSort** is often nicer.

• **Skills of today:**
 • substitution method
 • analysis of randomized algorithms.

Next time

• Could we sort **faster** than $O(n \log(n))$??

Code up both QuickSort and MergeSort. Which is more of a headache? And which runs faster?

Ollie the over-achieving ostrich