Lecture 8

HASHING!!!!!
Announcements

• HW3 due Friday!
• HW4 posted Friday!
Today: hashing

n=9 buckets

1: NIL
2: 22 → NIL
3: 13 → 43 → NIL
9: 9 → NIL

n=9 buckets
Outline

• **Hash tables** are another sort of data structure that allows fast INSERT/DELETE/SEARCH.
 • like self-balancing binary trees
 • The difference is we can get better performance in expectation by using randomness.
 • Like QuickSort vs. MergeSort

• **Hash families** are the magic behind hash tables.

• **Universal hash families** are even more magic.
Goal:
Just like on Monday

• We are interesting in putting nodes with keys into a data structure that supports fast INSERT/DELETE/SEARCH.
On Monday:

• Self balancing trees:
 • $O(\log(n))$ deterministic INSERT/DELETE/SEARCH

Today:

• Hash tables:
 • $O(1)$ expected time INSERT/DELETE/SEARCH
 • Worse worst-case performance, but often great in practice.

#prettysweet

eg, Python’s dict, Java’s HashSet/HashMap, C++’s unordered_map

Hash tables are used for databases, caching, object representation, ...
One way to get $O(1)$ time

- Say all keys are in the set $\{1,2,3,4,5,6,7,8,9\}$.
- **INSERT:**
 - 9
 - 6
 - 3
 - 5
- **DELETE:**
 - 6
- **SEARCH:**
 - 3
 - 2

This is called “direct addressing”.
That should look familiar

- Kind of like **BUCKETSORT** from Lecture 6.
- Same problem: if the keys may come from a universe $U = \{1, 2, \ldots, 10000000000\}$....
The solution then was...

- Put things in buckets based on one digit.

INSERT:

1 2 3 4 5 6 7 8 9 0

Now **SEARCH** 21

It’s in this bucket somewhere... go through until we find it.
Problem:

INSERT:

Now SEARCH

....this hasn’t made our lives easier...
Hash tables

• That was an example of a hash table.
 • not a very good one, though.

• We will be more clever (and less deterministic) about our bucketing.

• This will result in fast (expected time) INSERT/DELETE/SEARCH.
But first! Terminology.

• We have a universe \(U \), of size \(M \).
 • \(M \) is really big.

• But only a few (say at most \(n \) for today’s lecture) elements of \(M \) are ever going to show up.
 • \(M \) is waaaayyyyyyyyy bigger than \(n \).

• But we don’t know which ones will show up in advance.

All of the keys in the universe live in this blob.

A few elements are special and will actually show up.

Example: \(U \) is the set of all strings of at most 140 ascii characters. (\(128^{140} \) of them).

The only ones which I care about are those which appear as trending hashtags on twitter. #hashhashtags

There are way fewer than \(128^{140} \) of these.
The previous example with this terminology

- We have a **universe** U, of size M.
 - at most n of which will show up.
- M is **waaaayyyyy** bigger than n.
- We will put items of U into n **buckets**.
- There is a **hash function** $h : U \rightarrow \{1, \ldots, n\}$ which says what element goes in what bucket.

For this lecture, I’m assuming that the number of things is the same as the number of buckets, both are n. This doesn’t have to be the case, although we do want:

$\#\text{buckets} = O(\ #\text{things which show up} \)$
This is a **hash table** (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- $h: U \rightarrow \{1, \ldots, n\}$ can be any function:
 - but for concreteness let’s stick with $h(x) = \text{least significant digit of } x$.

INSERT:

13 22 43 9

SEARCH 43:
Scan through all the elements in bucket $h(43) = 3$. For demonstration purposes only! This is a terrible hash function! Don’t use this!
Aside: Hash tables with open addressing

• The previous slide is about hash tables with chaining.
• There’s also something called “open addressing”
• You’ll see it on your homework 😊

This is a “chain”
This is a hash table (with chaining)

- Array of n buckets.
- Each bucket stores a linked list.
 - We can insert into a linked list in time $O(1)$
 - To find something in the linked list takes time $O(\text{length(list)})$.
- $h: U \rightarrow \{1, \ldots, n\}$ can be any function:
 - but for concreteness let’s stick with $h(x) = \text{least significant digit of } x$.

INSERT:

```
13
22
43
9
```

SEARCH 43:

Scan through all the elements in bucket $h(43) = 3$.

This is a good idea as long as there are not too many elements in that bucket!
The main question

- How do we pick that function so that this is a good idea?
 1. We want there to be not many buckets (say, n).
 - This means we don’t use too much space
 2. We want the items to be pretty spread-out in the buckets.
 - This means it will be fast to SEARCH/INSERT/DELETE

1. vs. 2.
Worst-case analysis

• Design a function \(h: U \rightarrow \{1,\ldots,n\} \) so that:
 • No matter what input (fewer than \(n \) items of \(U \)) \textbf{Darth Vader} chooses, the buckets will be \textbf{balanced}.
 • Here, \textit{balanced} means \(O(1) \) entries per bucket.

• If we had this, then we’d achieve our dream of \(O(1) \) \texttt{INSERT/DELETE/SEARCH}

Take a minute to talk to the person next to you. Can you come up with such a function?
YOU CANNOT ESCAPE THE DARK SIDE

WITH DETERMINISTIC HASH FUNCTIONS
We really can’t beat Darth Vader here.

- The universe U has M items
- They get hashed into n buckets
- At least one bucket receives at least $\frac{M}{n}$ items
- M is WAAYYYYY bigger than n, so $\frac{M}{n}$ is bigger than n.
- Darth Vader chooses n of the items that landed in this very full bucket.
Solution:
Randomness
The game

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a random hash function $h : U \to \{1, \ldots, n\}$.

3. HASH IT OUT

INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92
Why should this help?

- Say that \(h \) is uniformly random.
 - That means that \(h(1) \) is a uniformly random number between 1 and \(n \).
 - \(h(2) \) is also a uniformly random number between 1 and \(n \), independent of \(h(1) \).
 - \(h(3) \) is also a uniformly random number between 1 and \(n \), independent of \(h(1), h(2) \).
 - ...
 - \(h(n) \) is also a uniformly random number between 1 and \(n \), independent of \(h(1), h(2), ..., h(n-1) \).
What do we want?

It’s **bad** if lots of items land in u_i’s bucket. So we want **not that**.
More precisely

- Suppose that for all u_i that the bad guy chose
 - $E[\text{number of items in } u_i \text{'s bucket }] \leq 2.$
- Then for each operation involving u_i
 - $E[\text{time of operation }] = O(1)$

- By linearity of expectation,
 - $E[\text{time to do a bunch of operations}]$
 - $= E[\sum_{\text{operations}} \text{time of operation}]$
 - $= \sum_{\text{operations}} E[\text{time of operation}]$
 - $= \sum_{\text{operations}} O(1)$
 - $= O(\text{number of operations})$

aka, $O(1)$ per operation!
So we want:

- For all $i=1, \ldots, n$,

 $E[\text{number of items in } u_i \text{'s bucket }] \leq 2.$
Aside: why not just:

- For all $i=1,...,n$:

$$E[\text{number of items in bucket } i] \leq 2?$$

Suppose:

Then $E[\text{number of items in bucket } i] = 1$ for all i. But $P\{\text{the buckets get big}\} = 1$.

this happens with probability $1/n$

and this happens with probability $1/n$

etc.
So we want:

• For all i=1, ..., n,
 \[E[\text{number of items in } u_i \text{ 's bucket}] \leq 2. \]
Expected number of items in u_i’s bucket?

- $E[\cdot] = \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j \neq i} 1/n$
- $= 1 + \frac{n-1}{n} \leq 2.$

That’s what we wanted.

You will verify this on HW.
That’s great!

- For all $i = 1, \ldots, n$,

 - $E[\text{number of items in } u_i \text{'s bucket}] \leq 2$

This implies (as we saw before):

For any sequence of L INSERT/DELETE/SEARCH operations on any n elements of U, the expected runtime (over the random choice of h) is $O(L)$.

aka, anything Darth Vader might pick in Step 1 of the game.

aka, O(1) per operation.
The elephant in the room
The elephant in the room

“Pick a uniformly random hash function”

h(1) = 2 h(11) = 4 h(4511) = 3
h(2) = 7 h(12) = 5 h(4512) = 7
h(3) = 9 h(13) = 7 h(4513) = 2
h(4) = 1 h(14) = 3 h(4514) = 6
h(5) = 0 h(15) = 2 h(4515) = 3
h(6) = 7 h(16) = 9 h(4516) = 1
h(7) = 2 h(17) = 3 h(4517) = 0
h(8) = 3 h(18) = 2 h(4518) = 0
h(9) = 7 h(19) = 1 h(4519) = 3
h(10) = 3 h(20) = 5 h(4520) = 1
Randomization is fine... but we need to be able to store our choice of h!

- Say that this elephant-shaped blob represents the set of all hash functions.
- How big is this set?
 - $n^{|U|} = n^M = \text{REALLY BIG}$.
- In order to write down an arbitrary element of a set of size A, we need $\log(A)$ bits.
- So we’d need about $M \log(n)$ bits to remember one of these hash functions. **THAT’S ENOUGH TO DO DIRECT ADDRESSING!!!!**
Another thought...

• Just remember h on the relevant values

But that’s what we wanted to begin with...

We need some way of storing keys and values with $O(1)$ INSERT/DELETE/SEARCH...

Algorithm now

Algorithm later
Solution

• Pick from a smaller set of functions.

A cleverly chosen subset of functions. We call such a subset a hash family.

We need only \(\log |H| \) bits to store an element of \(H \).
How to pick the hash family?

• Let’s go back to that computation from earlier....
Expected number of items in u_i’s bucket?

- $E[\cdot] = \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j\neq i} P\{ h(u_i) = h(u_j) \}$
- $= 1 + \sum_{j\neq i} 1/n$
- $= 1 + \frac{n-1}{n} \leq 2.$

So the number of items in u_i’s bucket is $O(1)$.

You will verify this on HW!
How to pick the hash family?

• Let’s go back to that computation from earlier....

• \[E[\text{ number of things in bucket } h(u_i)] \]

• \[= \sum_{j=1}^{n} P\{ h(u_i) = h(u_j) \} \]

• \[= 1 + \sum_{j \neq i} P\{ h(u_i) = h(u_j) \} \]

• \[\leq 1 + \sum_{j \neq i} 1/n \]

• \[= 1 + \frac{n-1}{n} \leq 2. \]

• All we needed was that this \leq 1/n.
Strategy

• Pick a small hash family H, so that when I choose h randomly from H,

$$\text{for all } u_i, u_j \in U \text{ with } u_i \neq u_j,$$

$$P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

• Then we still get $O(1)$-sized buckets in expectation.

• But now the space we need is $\log(|H|)$ bits.
 • Hopefully pretty small!
So the whole scheme will be

Choose h randomly from a **universal hash family** H

We can store h in small space since H is so small.

Probably these buckets will be pretty balanced.
What is this universal hash family?

Here’s one:

• Pick a prime \(p \geq M \).

• Define

\[
 f_{a,b}(x) = ax + b \quad \text{mod } p
\]

\[
 h_{a,b}(x) = f_{a,b}(x) \quad \text{mod } n
\]

• Claim:

\[
 H = \{ h_{a,b}(x) : a \in \{1, \ldots, p - 1\}, b \in \{0, \ldots, p - 1\} \}
\]

is a universal hash family.
Say what?

• Example: \(M = p = 5, \ n = 3 \)

• To draw \(h \) from \(H \):
 • Pick a random \(a \) in \(\{1, \ldots, 4\} \), \(b \) in \(\{0, \ldots, 4\} \)

• As per the definition:
 • \(f_{2,1}(x) = 2x + 1 \mod 5 \)
 • \(h_{2,1}(x) = f_{2,1}(x) \mod 3 \)

This step just scrambles stuff up. No collisions here!

This step is the one where two different elements might collide.
Ignoring why this is a good idea...

how big is H?

• We have $p-1$ choices for a, and p choices for b.
• So $|H| = p(p-1) = O(M^2)$
• This is much better than n^M!!!!
• space needed to store h: $O(\log(M))$.

$O(M \log(n))$ bits

$O(\log(M))$ bits
Why does this work?

• This is actually a little complicated.
• I’ll go over the argument now, because it’s a good example of how to reason about hash functions.
 • Fancy counting!
• BUT! don’t worry if you don’t follow all the calculations right now.
 • You can always take a look back at the slides or lecture notes later.

• The important part is the structure of the argument.
Why does this work?

• Want to show:
 • for all $u_i, u_j \in U$ with $u_i \neq u_j$, $P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$
 • aka, the probability of any two elements colliding is small.
 • Let’s just fix two elements and see an example.
 • Let’s consider $u_i=0$, $u_j=1$.

Let’s consider $U = \{0, 1, 2, 3, 4\}$ with $f_{a,b}(x) = ax + b \mod p$, where $a = 2$, $b = 1$, and $p = 3$.

Apply $f_{a,b}(x)$ to U.

- $f_{2,1}(0) = 2 \mod 3 = 2$
- $f_{2,1}(1) = 2 \mod 3 = 2$
- $f_{2,1}(2) = 2 \mod 3 = 2$
- $f_{2,1}(3) = 2 \mod 3 = 2$
- $f_{2,1}(4) = 2 \mod 3 = 2$

The result is $\{2, 2, 2, 2, 2\}$.

Convince yourself that it will be the same for any pair!
The probability that 0 and 1 collide is small

• Want to show:
 • \(P_{h \in H} \{ h(0) = h(1) \} \leq \frac{1}{n} \)

• For any \(y_0 \neq y_1 \in \{0,1,2,3,4\} \), how many \(a,b \) are there so that \(f_{a,b}(0) = y_0 \) and \(f_{a,b}(1) = y_1 \) ?

• **Claim**: it’s exactly one.
 • Proof: solve the system of eqs. for \(a \) and \(b \).

\[
\begin{align*}
 a \cdot 0 + b &= y_0 \mod p \\
 a \cdot 1 + b &= y_1 \mod p
\end{align*}
\]

eg, \(y_0 = 3, y_1 = 1 \).
The probability that 0 and 1 collide is small

- Want to show:
 - \(P_{h \in H}\{ h(0) = h(1)\} \leq \frac{1}{n} \)
 - For any \(y_0 \neq y_1 \in \{0, 1, 2, 3, 4\} \), exactly one pair \(a, b \) have \(f_{a, b}(0) = y_0 \) and \(f_{a, b}(1) = y_1 \).
 - If 0 and 1 collide it’s b/c there’s some \(y_0 \neq y_1 \) so that:
 - \(f_{a, b}(0) = y_0 \) and \(f_{a, b}(1) = y_1 \).
 - \(y_0 = y_1 \mod n \).

\(U = \) \[
\begin{array}{c}
0 \\
1 \\
2 \\
3 \\
4 \\
\end{array}
\]

\(f_{a, b}(x) = \) \[
ax + b \mod p
\]

\(\mod 3 \)

eg, \(y_0 = 3, y_1 = 1 \).
The probability that 0 and 1 collide is small

- Want to show:
 - $P_{h \in H}\{ h(0) = h(1) \} \leq \frac{1}{n}$
- The number of a,b so that 0,1 collide under $h_{a,b}$ is at most the number of $y_0 \neq y_1$ so that $y_0 = y_1 \mod n$.
- How many is that?
 - We have p choices for y_0, then at most $1/n$ of the remaining $p-1$ are valid choices for y_1...
 - So at most $p \cdot \left(\frac{p-1}{n} \right)$.

\[f_{a,b}(x) = ax + b \mod p \]

$U = \{ 0, 1, 2, 3, 4 \}$

eg, $y_0 = 3$, $y_1 = 1$.
The probability that 0 and 1 collide is small

- Want to show:
 \[
P_{h \in H} \{ h(0) = h(1) \} \leq \frac{1}{n}
 \]

- The # of \((a, b)\) so that 0, 1 collide under \(h_{a,b}\) is \(\leq p \cdot \left(\frac{p-1}{n} \right)\).

- The probability (over \(a, b\)) that 0, 1 collide under \(h_{a,b}\) is:

 \[
P_{h \in H} \{ h(0) = h(1) \} \leq \frac{p \cdot \left(\frac{p-1}{n} \right)}{|H|} = \frac{p \cdot \left(\frac{p-1}{n} \right)}{p(p-1)} = \frac{1}{n}.
 \]
The same argument goes for any pair

for all $u_i, u_j \in U$ with $u_i \neq u_j$,

$$P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

That’s the definition of a universal hash family.

So this family H indeed does the trick.
So the whole scheme will be

Choose \(h \) randomly from \(H \)

Universe \(U \) of size \(M \)

We can store \(h \) in space \(O(\log(M)) \).

The expected time to do any \(L \) operations on these \(n \) elements is \(O(L) \).
Recap
Want $O(1)$

INSERT/DELETE/SEARCH

- We are interested in putting nodes with keys into a data structure that supports fast **INSERT/DELETE/SEARCH**.

- **INSERT**
 - 5

- **DELETE**
 - 4

- **SEARCH**
 - 52

HERE IT IS

data structure
We studied this game

1. An adversary chooses any n items $u_1, u_2, \ldots, u_n \in U$, and any sequence of L INSERT/DELETE/SEARCH operations on those items.

2. You, the algorithm, chooses a **random** hash function $h: U \to \{1, \ldots, n\}$.

3. **HASH IT OUT**

 - INSERT 13, INSERT 22, INSERT 43, INSERT 92, INSERT 7, SEARCH 43, DELETE 92, SEARCH 7, INSERT 92
Uniformly random h was good

- If we choose h uniformly at random, for all $u_i, u_j \in U$ with $u_i \neq u_j$,
 $$P_{h \in H} \{ h(u_i) = h(u_j) \} \leq \frac{1}{n}$$

- That was enough to ensure that, in expectation, a bucket isn’t too full.

A bit more formally:

For any sequence of L INSERT/DELETE/SEARCH operations on any n elements of U, the expected runtime (over the random choice of h) is $O(L)$.

aka, $O(1)$ per operation.
Uniformly random h was bad

• If we actually want to implement this, we have to store the hash function h!

• That takes a lot of space!
 • We may as well have just initialized a bucket for every single item in U.

• Instead, we chose a function randomly from a smaller set.

All of the hash functions $h: U \rightarrow \{1, ..., n\}$
We needed a **smaller set** that still has this property

- If we choose \(h \) uniformly at random,

 for all \(u_i, u_j \in U \) with \(u_i \neq u_j \),

 \[
 P_{h \in H}\{ h(u_i) = h(u_j) \} \leq \frac{1}{n}
 \]

 This was all we needed to make sure that the buckets were balanced in expectation!

- We call any set with that property a **universal hash family**.

- We were able to come up with a really small one!
Conclusion:

• We can build a hash table that supports \texttt{INSERT/DELETE/SEARCH} in $O(1)$ expected time,
 • if we know that only n items are every going to show up, where n is waaaayyyyyy less than the size M of the universe.

• The space to implement this hash table is $O(n \log(M))$.

• M is waaayyyyyy bigger than n, but $\log(M)$ probably isn’t.
Next Week

• Graph algorithms!