
CS 161
Design and Analysis of Algorithms

Lecture 1: 

Logistics, introduction, and multiplication!



Welcome to CS161!  

Who are we?

• Instructor: 

• Mary Wootters

• Awesome TAs:

• Michael Chen

• Steven Chen

• Shawn Hu

• Sam Kim

• Dana Murphy

• Jessica Su (Head TA)

Who are you?

• CS majors…

• Physics

• Applied Physics

• BioE

• Biomedical informatics

• Civil + Env. Engineering

• CME

• EE

• Materials Science

• Econ

• Linguistics

• Mech E

• MS&E

• Math

• Stats

• Music

• Biology

• English

• Comp. Lit.

• International 

Policy Studies

• History

• Philosophy

• Symbolic Systems



Today

• Why are you here?

• Course overview, logistics, and how to succeed in 
this course.

• Some actual computer science.



Why are you here?

• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

• CS161 is a required course.

Why is CS161 required?

• Algorithms are fundamental.

• Algorithms are useful.

• Algorithms are fun!

You are better equipped to 

answer this question than I am, 

but I’ll give it a go anyway…



Algorithms are fundamental

Operating Systems (CS 140)

Compilers (CS 143)

Networking (CS 144)

Machine learning (CS 229) Cryptography (CS 255)

Computational Biology (CS 262)

The 

Computational 

Lens



Algorithms are useful

• All those things, without 

Stanford CS class numbers

• As we get more and more 
data and problem sizes get 

bigger and bigger, 
algorithms become more 
and more important.

• Will help you get a job.



Algorithms are fun!

• Algorithm design is both an art and a science.

• Many surprises!

• A young field, lots of exciting research questions!



Today

• Why are you here?

• Course overview, logistics, and how to succeed in 
this course.

• Some actual computer science.



Course goals

• The design and analysis of algorithms

• These go hand-in-hand

• In this course you will:

• Learn to think analytically about algorithms

• Flesh out an “algorithmic toolkit”

• Learn to communicate clearly about algorithms



The algorithm designer’s question

Can I do better?

Algorithm designer



The algorithm designer’s internal monologue…

Can I do better?

Plucky the 

Pedantic Penguin

Lucky the 

Lackadaisical Lemur

Algorithm designerDetail-oriented

Precise

Rigorous

Big-picture

Intuitive

Hand-wavey

Dude, this is just like 
that other time.  If you 

do the thing and the 
stuff like you did then, 

it’ll totally work real fast!

What	exactly	do	we	

mean	by	better?		And	

what	about	that	corner	

case?		Shouldn’t	we	be	

zero-indexing?

Both sides are necessary!



Roadmap

Sorting

Graphs!
Longest, Shortest, 
Max and Min…

D
ata 

structures

Asymptotic 

Analysis

Recurrences

Randomized 

Algs

Dynamic 

ProgrammingGreedy Algs

5 le
ctu

re
s 2 lectures

9 lectures

Today

Divide and 

conquer

MIDTERM

1 lectu
re

The

Future!

More detailed schedule on the website!



Course elements and resources

• Course website:

• cs161.stanford.edu

• Lectures

• Textbook

• Homework

• Exams

• Office hours, recitation sections, and Piazza

• New this quarter!  A bit of Python throughout!



Lectures

• Right here, M/W, 1:30-2:50!

• Resources available:

• Slides, Lecture Notes, IPython notebooks

• Goal of lectures:

• Hit the most important points of the week’s material

• Sometimes high-level overview

• Sometimes detailed examples

Lecture notes have 

mathy details that 

slides may omit

IPython notebooks have 

implementation details 

that slides may omit.

Slides are the 

slides from 

lecture.  



How to get the most out of lectures

• During lecture:
• Show up, ask questions, put your phone away.

• May be helpful: take notes on printouts of the slides.

• Before lecture:
• Do the pre-lecture exercises listed on the website.

• After lecture:
• Go through the exercises on the slides.

• Do the reading
• either before or after lecture, whatever works best for you.

• do not wait to “catch up” the week before the exam.

Siggi the Studious Stork

(recommended exercises)

Ollie the Over-achieving Ostrich

(challenge questions)

These guys will pop up 

on the slides and ask 

questions – those 

questions are for you!



Textbook

• CLRS:

• Introduction to Algorithms, 

by Cormen, Leiserson, 

Rivest, and Stein.

•

• Available FOR FREE ONLINE 

via

• Link on course website

• Hard copies on reserve at 
Terman Eng. library.

We will also 

sometimes refer to 

Kleinberg and Tardos



Homework!

Weekly assignments in two parts:

1. Exercises:
• Check-your-understanding and computations

• Should be pretty straightforward

• Do these on your own

2. Problems:
• Proofs and algorithm design

• Not straightforward

• You may collaborate with your classmates…
• …WITHIN REASON: See website for collaboration policy!



How to get the most out of homework

• Do the exercises on your own.

• Try the problems on your own before talking to a 
classmate.

• You must write up your solutions on your own.

• If you get help from a TA at office hours:

• Try the problem first.  And then try a few more times.

• Ask: “I was trying this approach and I got stuck here.”

• After you’ve figured it out, write up your solution from scratch, 

without the notes you took during office hours.



Exams

• There will be a midterm and a final.

• MIDTERM: 10/30, in class

• FINAL: 12/13, 3:30-6:30pm

• We will release practice exams and hold review 
sessions before each.

• If you have a conflict with these exams, contact 
me (marykw) and Jessica Su (jtysu) ASAP!!!!!



Talk to us 

• Sign up for Piazza:

• Course announcements will be posted there

• Discuss material with TAs and your classmates

• Office hours:

• See website for schedule

• Suggestion: do not go to office hours for nonspecific 

“homework help.”  Go with a specific question.

• Recitation sections:

• Optional, for your benefit only

• Extra practice with the material, example problems, etc.



New this quarter!  A bit of Python.

• Lectures and homework will occasionally use IPython
notebooks.

• Mostly, I will write Python code, you will read/modify it.

• However, you will need to learn some Python.

• For next lecture, the pre-lecture exercise is to get started with 
Jupyter Notebooks and with Python.

• See course website for details.

• The goal is to make the algorithms (and their runtimes) 
more tangible.

• It is not the goal to become a super Python programmer. 

• (Although if that happens that’s cool).



Course elements and resources

• Course website:

• cs161.stanford.edu

• Lectures

• Textbook

• Homework

• Exams

• Office hours, recitation sections, and Piazza

• New this quarter!  A bit of Python throughout!



Bug bounty!

• We hope all PSETs and slides will be 

bug-free.

• Howover, I sometmes maek typos.

• If you find a typo (that affects 

understanding*) on slides, IPython
notebooks, lecture notes, or PSETs:

• Let us know! (Email jtysu and marykw, 
or post on Piazza).

• The first person to catch a bug gets a 
bonus point.

*So, typos lke thees onse don’t count, although please 

point those out too.  Typos like 2 + 2 = 5 do count, as does 

pointing out that we omitted some crucial information.

Bug Bounty Hunter



Feedback!

• There is an 

anonymous 
Google form on 
the course 

website.

• Please help us 
improve the 

course!

• Give feedback 

early and often!



A note on course policies

• Course policies are listed on the website.

• Read them and adhere to them.

• That’s all I’m going to say about course policies.



Everyone can succeed in this class!

1. Work hard

2. Ask for help

3. Work hard



Today

• Why are you here?

• Course overview, logistics, and how to succeed in 
this course.

• Some actual computer science.



Today’s goals

• Think analytically about algorithms

• Flesh out an “algorithmic toolkit”

• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Technique: Divide and conquer

• Meta points: 

• How do we measure the speed of an algorithm?



Let’s start at the beginning



Etymology of “Algorithm”
• Al-Khwarizmi was a 9th-century scholar, born in present-

day Uzbekistan, who studied and worked in Baghdad

during the Abbassid Caliphate.

• Among many other contributions in mathematics, 

astronomy, and geography, he wrote a book about how 

to multiply with Arabic numerals.

• His ideas came to Europe in the 12th century.

Dixit algorizmi
(so says Al-Khwarizmi)

• Originally, “Algorisme” [old French] referred to 

just the Arabic number system, but eventually it 

came to mean “Algorithm” as we know today.



This was kind of a big deal

XLIV ×	XCVII = ?

44

97x



Integer Multiplication

44

97x



Integer Multiplication

1234567895931413

4563823520395533x



Integer Multiplication

1233925720752752384623764283568364918374523856298

4562323582342395285623467235019130750135350013753x

???

n

About !"	one-digit operations

At most !"	multiplications,

and then at most !" additions (for carries) 

and then I have to add n different 2n-digit numbers…

How long would this take you?



Is that a useful answer?

• How do we measure the runtime of an algorithm?

• We measure how the runtime scales with the size of 

the input.

All running the same algorithm…



For grade school multiplication, 
with python, on my laptop…

highly non-optimized 

Looks like it’s roughly

Tlaptop(n) = 0.0063 n2 – 0.5 n + 12.7 ms...



I am a bit slower than my laptop

Tme(n) = 
!"

#$
+ 100

(I made this up)

Tlaptop(n) = 

0.0063 n2 – 0.5 n + 12.7 ms

But the runtime scales like n2 either way.



Is this a useful answer?

• How does the runtime scale with the size of the input?

• Runtime of grade school multiplication scales like n2

• We’ll see a more formal definition on Wednesday

Asymptotic analysis



Hypothetically…
A magic algorithm that scales like n1.6

!"# $ = 	
$'

10
+ 100

!"
+,
-.
$
=
	
$
/.
1

10

+
10
0

Tlaptop(n) = 

0.0063 n2 – 0.5 n + 12.7 ms



Let n get bigger…

No matter what the constant factors are, for large enough n, it would be faster to do the magic algorithm by hand than the grade school algorithm on a computer!

!"#$%
&
' = 	

'
*.,

10
+ 10

0

T la
pto

p
(n

) =
 

0.0
063 n

2 –
0.5

 n
 +

 1
2.7

 m
s



Asymptotic analysis
is a useful notion…

• How does the runtime scale with the size of the input?

• This is our measure of how “fast” an algorithm is.

• We’ll see a more formal definition Wednesday

• So the question is…



Can we do better?

!

!
"

(than n2?)



Let’s dig in to our algorithmic toolkit…



Divide and conquer
Break problem up into smaller (easier) sub-problems

Big problem

Smaller 

problem

Smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Yet smaller 

problem

Often recursively!



Divide and conquer for multiplication

1234	×	5678

Break up an integer:

1234 = 12×100 + 34

= ( 12×100 + 34 ) ( 56×100 + 78 )

= ( 12	×	56 )10000 + ( 34	×	56  +  12	×	78 )100 + ( 34	×	78 )

1 2 3 4

One 4-digit multiply Four 2-digit multiplies



More generally

1 2 3 4

One n-digit multiply Four (n/2)-digit multiplies

Break up an n-digit integer:

Suppose n is even



Divide and conquer algorithm
not very precisely…

• If n=1:

• Return xy

• Write ! = #	10
'

( + *

• Write + = ,	10
'

( + -

• Recursively compute #,, #-, *,, *-:

• ac = Multiply(a, c), etc…

• Add them up to get !+:

• xy = ac 10n + (ad + bc) 10n/2 + bd

Multiply(!, +):

a, b, c, d are 

n/2-digit numbers

Base case: I’ve 

memorized my 1-

digit multiplication 

tables…

x,y are n-digit numbers

Say n is even…

Siggi the Studious Stork

Make this pseudocode 

more detailed! How 

should we handle odd n?  

How should we implement 

“multiplication by 10n”?

See the Lecture 1 Python notebook for actual code!



How long does this take?

• Better or worse than the grade school algorithm?

• That is, does the number of operations grow like n2 ?

• More or less than that?

• How do we answer this question?

1. Try it.

2. Try to understand it analytically.



1. Try it.
Check out the Lecture 1 IPython Notebook

Conjectures about 

running time?

Concerns with the 

conclusiveness of this 

approach?

Maybe one implementation 

is slicker than the other?

Maybe if we were to run it 

to n=10000, things would 

look different.

Doesn’t look too good 

but hard to tell…

Something funny is happening at powers of 2…



2. Try to understand the running 

time analytically 

• Proof by meta-reasoning:

It must be faster than the grade school 

algorithm, because we are learning it in 
an algorithms class.

Not sound logic!

Plucky the Pedantic Penguin



2. Try to understand the running 

time analytically 

• Claim: 

The running time of this algorithm is 

AT LEAST n2 operations.



How many one-digit multiplies?

12345678 × 87654321

1234	× 8765 5678	× 8765 1234	× 4321 5678	× 4321

12	× 87

34	× 87

12	× 65

34	× 65

56	× 87

78	× 87

56	× 65

78	× 65

12	× 43

34	× 43

12	× 21

34	× 21

56	× 43

78	× 43

56	× 21

78	× 21

1×8

1×7

2×8

2×7

etc...

3×4… …

Claim: there are n2 one-digit problems. 

Every pair of digits still gets multiplied together separately.

So the running time is still at least )*.



Another way to see this*

1 problem 

of size n

4 problems 

of size n/2

4t problems 

of size n/2t

____ problems 

of size 1

*we will come back to 

this sort of analysis later 

and still more rigorously.

…

• If you cut n in half 

log2(n) times,           

you get down to 1.

• So we do this 

log2(n) times and 

get…

4log_2(n) = n2 

problems of size 1.

This is just a lower 

bound – we’re just 

counting the number 

of size-1  problems!



That’s a bit disappointing
All that work and still (at least) n2…

!

!
"

But wait!!



Divide and conquer can actually make progress

• Karatsuba figured out how to do this better!

• If only we recurse three times instead of four…

Need these three things



Karatsuba integer multiplication

• Recursively compute these THREE things:

• ac 

• bd

• (a+b)(c+d)
(a+b)(c+d) = ac + bd + bc + ad

Subtract these off

get this

� � �

• Assemble the product:



What’s the running time?

1 problem 

of size n

3 problems 

of size n/2

3t problems 

of size n/2t

____ problems 

of size 1

…

• If you cut n in half 

log2(n) times,         you 

get down to 1.

• So we do this log2(n)

times and get…

3log_2(n) = nlog_2(3) ≈ n1.6

problems of size 1.

"
#.%

We still aren’t 

accounting for the 

work at the higher 

levels!  But we’ll see 

later that this turns 

out to be okay.



This is much better!

!
"

!
#.%

!



We can even see it in real life!



Can we do better?

• Toom-Cook (1963): instead of breaking into three n/2-
sized problems, break into five n/3-sized problems. 

• This scales like n1.465

• Schönhage–Strassen (1971):

• Scales like n log(n) loglog(n)

• Furer (2007)

• Scales like n log(n) 2log*(n)

Ollie the Over-achieving Ostrich

Try to figure out how to break 

up an n-sized problem into five 

n/3-sized problems!  (Hint: start 

with nine n/3-sized problems).

Siggi the Studious Stork

Given that you can break an 

n-sized problem into five 

n/3-sized problems, where 

does the 1.465 come from?

[This is just for fun, you don’t need 

to know these algorithms!]



Today’s goals

• Think analytically about algorithms

• Flesh out an “algorithmic toolkit”

• Learn to communicate clearly about algorithms

Course goals

• Karatsuba Integer Multiplication

• Technique: Divide and conquer

• Meta points: 

• How do we measure the speed of an algorithm?

Wrap up



Wrap up

• cs161.stanford.edu

• Algorithms are:

• Fundamental, useful, and fun!

• In this course, we will develop both algorithmic 

intuition and algorithmic technical chops

• It might not be easy but it will be worth it!

• Karatsuba Integer Multiplication:

• You can do better than grade school multiplication!

• Example of divide-and-conquer in action

• Informal demonstration of asymptotic analysis



Next time

• Sorting!

• Divide and Conquer some more

• Begin Asymptotics and Big-Oh notation

BEFORE Next time

• Pre-lecture exercise! On the course website!

• Join Piazza!


