
Lecture	10
Finding	strongly	connected	components

Animations have been removed to make the pdf more printer-friendly. See .pptx for multi-slide animations.

Announcements
• HW4 due	Friday
• Nothing	assigned	Friday	because…
• MIDTERM in	class,	Monday	10/30.
• Please	show	up.
• During	class,	1:30-2:50

• If	your	last	name	is	A-M:	370-370	(here)
• If	your	last	name	is	N-V:	160-124
• If	your	last	name	is	W-Z:	160-323

• You	may	bring	one	double-sided	letter-size	page	of	
notes,	that	you	have	prepared	yourself.		

• Any	material	through	Hashing	(Lecture	8)	is	fair	game.
• Practice	exams	on	the	website

More	midterm	info
• There	will	be	four	sections:
• 1.	Multiple	choice

• Tests	basic	knowledge
• 2.	Short	answer

• Tests	your	ability	to	apply	basic	knowledge
• 3.	Algorithm	Design

• Similar	to	a	alg.	design	HW	problem	(a	bit	easier)
• 4.	Proving	Stuff

• Similar	to	a	proving-stuff	HW	problem	(a	bit	easier)

• This	may	be	a	hard	exam
• If	it	is,	that	means	it’s	okay	if	you	don’t	get	all	the	
questions.

• (Please	don’t	freak	out).

Last	time

• Breadth-first	and	depth-first	search
• Plus,	applications!

• Topological	sorting
• In-order	traversal	of	BSTs
• Shortest	path	in	unweighted	graphs
• Testing	bipartite-ness

• The	key	was	paying	attention	to	the	structure	of	the	
tree	that	these	search	algorithms	implicitly	build.

Today

• One	more	application:
• Finding	

strongly	connected	components

• But	first!		Let’s	briefly	recap	DFS…

Recall:	DFS
It’s	how	you’d	explore	a	labyrinth	with	chalk	and	a	piece	of	string.

1

2

3

4

5

8

6
7

Today,	all	graphs	are	directed!		
Check	that	the	things	we	did	
on	Monday	still	all	work!

Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	
explored	all	the	
paths	out.

Been	there,	have	
explored	all	the	
paths	out.

start=0
leave=15

start=1
leave=11

start=2
leave=10

start=3
leave=9

start=4
leave=5

start=13
leave=14

start=7
leave=8

Depth	first	search		
implicitly	creates	a	tree	on	everything	you	can	reach

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call	this	the	
“DFS	tree”

When	you	can’t	reach	everything

• Run	DFS	repeatedly	to	get	a	depth-first	forest

A

D

B

C

E

G

F

H

I J

When	you	can’t	reach	everything

• Run	DFS	repeatedly	to	get	a	depth-first	forest

A

D

B

C

E

G

F

H

I J

When	you	can’t	reach	everything

• Run	DFS	repeatedly	to	get	a	depth-first	forest

A

D

B

C

E

G

F

H

I J

YOINK!

YOINK!

When	you	can’t	reach	everything

• Run	DFS	repeatedly	to	get	a	depth-first	forest

H

I

J

A

B

C

G

F D

E

The	DFS	forest	is	
made	up	of	DFS	trees

Recall:	the	parentheses	theorem

• If	v	is	a	descendent	of	w	in	this	tree:

• If	w	is	a	descendent	of	v	in	this	tree:

• If	neither	are	descendents of	each	other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or	the	other	way	around)

timeline

DFS	tree

If	v	and	w	are	in	
different	trees,	it’s	
always	this	last	one.

(Works	the	same	with	DFS	forests)

A	great	question	from	Monday

• Why	don’t	start	times	work	for	Topological	Sorting?

• I	mean,	demonstrably	they	don’t	(we	saw	some	
examples)	but	what	goes	wrong	in	the	proof?

So	to	prove	this	->
If

Then	B.finishTime <	A.finishTime

A B

Suppose	the	underlying	
graph	has	no	cycles

• Since	the	graph	has	no	cycles,	B	must	
be	a	descendant	of	A	in	that	tree.
• All	edges	go	down	the	tree.

• Then

• aka,	B.finishTime <	A.finishTime.

A.startTime
A.finishTimeB.startTime

B.finishTime

SLIDE	FROM	LAST	TIME

I	MESSED	UP!	This	is	false.This	is	true.

So	to	prove	this	->
If

Then	B.finishTime <	A.finishTime

A B

Suppose	the	underlying	
graph	has	no	cycles• If	we	got	to	B,	then	either:

• B	is	a	descendant	of	A	in	the	DFS	tree
• (Same	argument	as	before)

• Or!
• B	is	not a	descendant	of	A	in	the	DFS	tree
• Then	we	must	have	gotten	to	B	before	we	got	to	A.	

Otherwise	we	would	have	explored	B	from	A,	and	B	
would have	been	a	descendant	of	A	in	the	DFS	tree.	

• either	way,	B.finishTime <	A.finishTime. B

A

A.startTime
A.finishTimeB.startTime

B.finishTime

What	it	should	have	been

A.startTime
A.finishTime

B.startTime
B.finishTime

So	to	prove	this	->
If

Then	B.finishTime <	A.finishTime

A B

Suppose	the	underlying	
graph	has	no	cycles• If	we	got	to	B,	then	either:

• B	is	a	descendant	of	A	in	the	DFS	tree
• (Same	argument	as	before)

• Or!
• B	is	not a	descendant	of	A	in	the	DFS	tree
• Then	we	must	have	gotten	to	B	before	we	got	to	A.	

Otherwise	we	would	have	explored	B	from	A,	and	B	
would have	been	a	descendant	of	A	in	the	DFS	tree.	

• either	way,	B.finishTime <	A.finishTime. B

A

A.startTime
A.finishTimeB.startTime

B.finishTime

What	it	should	have	been

A.startTime
A.finishTime

B.startTime
B.finishTime

Enough	of	review
(and	enough	of	my	shortcomings)

Strongly	connected	components

Strongly	connected	components

• A	directed	graph	G	=	(V,E)	is	strongly	connected if:	
• for	all	v,w in	V:
• there	is	a	path	from	v	to	w	and	
• there	is	a	path	from	w	to	v.

strongly	connected not	strongly	connected

We	can	decompose	a	graph	into	
strongly	connected	components	(SCCs)
At	least,	we	can	in	theory.
How	do	we	do	this	
algorithmically?

Note:	it’s	not	immediately	obvious	that	we	can	even	do	this	in	theory!		
The	reason	why	is	because	“two	vertices	are	reachable	from	each	other”	
is	an	equivalence	relation,	and	the	SCCs	are	equivalence	classes.

Why	do	we	care	
about	SCCs? stanford.edu

berkeley.edu

wikipedia.org

google	image			
search	for	

“puppies”

Google	terms	
and	conditions

4chan.org

reddit.com

Consider the internet:

nytimes.com

Let’s	ignore	this	corner	of	the	internet	
for	now…but	everything	today	works	
fine	if	the	graph	is	disconnected.

Why	do	we	care	
about	SCCs? stanford.edu

berkeley.edu

wikipedia.org

google	image			
search	for	

“puppies”

Google	terms	
and	conditions

Consider the internet:

nytimes.com

What	are	the	SCCs	of	the	internet?

• In	real	life,	turns	out	there’s	one	“giant”	one.
• and	then	a	bunch	of	tendrils.

• More	generally:
• Strongly	connected	components	tell	you	about	
communities.

• Lots	of	graph	algorithms	only	make	sense	on	SCCs.
• (So	some	times	we	want	to	find	the	SCCs	as	a	first	step)
• Eg:	I	was	talking	to	an	economist	the	other	day	who	has	to	
first	break	up	his	labor	market	data	into	SCCs	in	order	to	
make	sense	of	it.

How	to	find	SCCs?

• Consider	all	possible	decompositions	and	check.

• For	each	pair	(u,v),	
• use	DFS	to	find	if	there	are	paths	u	to	v	and	v	to	u.

• Aggregate	accordingly.
• Running	time:	[on	board]

Try	1:

Try	2:

(Definitely	not any	better	than	O(n2))

Pre-Lecture	exercise

• Run	DFS	starting	at	D:

• That	will	identify	SCCs…
• Issues:
• How	do	we	know	where	to	start	DFS?
• It	wouldn’t	have	found	the	SCCs	if	we	started	from	A.

Algorithm

• Do	DFS	to	create	a	DFS	forest.
• Choose	starting	vertices	in	any	order.
• Keep	track	of	finishing	times.

• Reverse	all	the	edges	in	the	graph.
• Do	DFS	again	to	create	another	DFS	forest.
• This	time,	order	the	nodes	in	the	reverse	order	of	the	
finishing	times	that	they	had	from	the	first	DFS	run.

• The	SCCs	are	the	different	trees	in	the	second	DFS	
forest.

Running	time:	O(n	+	m)

But	let’s	break	that	down	a	bit…

• (See	IPython notebook)
Look,	it	works!

Example

3. Do	DFS	again,	but	this	time,	
start	with	the	vertices	with	
the	largest	finish	time.

Start:0
Finish:10

Start:1
Finish:9

Start:2
Finish:5

Start:3
Finish:4

Start:7
Finish:8

Start:11
Finish:12

This	is	one	DFS	tree	
in	the	DFS	forest!

Here’s	another	DFS	
tree	in	the	DFS	
forest!

One	question

The	SCC	graph

• Pretend	that	each	SCC	is	a	
vertex	in	a	new	graph.

The	SCC	graph
Lemma	1:	The	SCC	graph	is	a	
Directed	Acyclic	Graph	(DAG).

Proof	idea:	if	not,	then	two	
SCCs	would	collapse	into	one.

Starting	and	finishing	times	in	a	SCC
• The	finishing	time	of	a	SCC	is	the	largest	finishing	
time of	any	element	of	that	SCC.

Start:0
Finish:10

Start:1
Finish:9

Start:7
Finish:8

Start:	0
Finish:	10

• The	starting	time	of	a	SCC	is	
the	smallest	starting	time of	
any	element	of	that	SCC.

all	times	are	with	respect	
to	the	first DFS	run

Our	SCC	DAG
with	start	and	finish	times

Start:	0
Finish:	10

Start:	11
Finish:	12

Start:	2
Finish:	5

• Last	time	we	saw	that:
• Finishing	times	allowed	us	to	

topologically	sort	of	the	
vertices.

• Notice	that	works	in	this	
example	too…

This	is	the	main	idea.

Start:	0
Finish:	10

Start:	11
Finish:	12

Start:	2
Finish:	5

• Let’s	reverse	the	edges.

This	is	the	main	idea.

Start:	0
Finish:	10

Start:	11
Finish:	12

Start:	2
Finish:	5

• Let’s	reverse	the	edges.

• Now,	the	SCC	with	the	largest	
finish	time	has	no	edges	going	out.

• So	if	I	run	DFS	there,	I’ll	find	
exactly	that	component.

• Remove	and	repeat.	

Let’s	make	this	idea	formal.

Back	the	the	parentheses	theorem

• If	v	is	a	descendent	of	w	in	this	tree:

• If	w	is	a	descendent	of	v	in	this	tree:

• If	neither	are	descendents of	each	other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or	the	other	way	around)

w

v

timeline

As	we	saw	(correctly	this	time…)

A B

Claim: In	a	DAG,	we’ll	always	have:

finish:	[smaller]finish:	[larger]

Same	thing,	in	the	SCC	DAG.

•Claim:	we’ll	always	have	

finish:	[smaller]finish:	[larger]

Proof	idea

• Two	cases:	
• We	reached	A before	B in	our	first	DFS.	
• We	reached	B before	A in	our	first	DFS.	

A B
Want	to	show	A.finish >	B.finish.

• Case	1:	We	reached	A before	B in	our	first	DFS.

• Say	that:
• x has	the	largest	finish	time	in	A;
• y has	the	largest	finish	in	B;
• z was	discovered	first	in	A;

• Then:
• Reach	A before B	
• =>	we	will	discover	y via	z
• =>	y is	a	descendant	of	z in	the	DFS	forest.

• Then

Proof	idea A B

z.start
z.finishy.start

y.finish x.finish

Want	to	show	A.finish >	B.finish.

So	A.finish =	x.finish
B.finish =	y.finish
x.finish >=	z.finish

• Case	2:	We	reached	B	 before	A in	our	first	DFS.

• There	are	no	paths	from	B	to	A	
• because	the	SCC	graph	has	no	cycles

• So	we	completely	finish	exploring	B	and	never	reach	A.
• A	is	explored	later	after	we	restart	DFS.

Proof	idea A B
Want	to	show	A.finish >	B.finish.

Proof	idea

• Two	cases:	
• We	reached	A before	B in	our	first	DFS.	
• We	reached	B before	A in	our	first	DFS.	

• In	either	case:

A B

which	is	what	we	wanted	to	show.

Want	to	show	A.finish >	B.finish.

Notice:	this	is	exactly	the	same	two-case	argument	
that	we	did	earlier,	just	with	the	SCC	DAG!

This	establishes:	

Lemma	2		

• If	there	is	an	edge	like	this:

• Then	A.finish >	B.finish.

finish:	[smaller]finish:	[larger]
A B

This	establishes:	

Corollary	1
• If	there	is	an	edge	like	this	in	the	reversed	graph:

• Then	A.finish >	B.finish.
finish:	[smaller]finish:	[larger]

A B

Start:	0
Finish:	10

Start:	11
Finish:12

Now	we	see	why	
this	works.
• The	Corollary says	that	all	blue	arrows	
point	towards	larger	finish	times.

• So	if	we	start	with	the	largest	finish	
time,	all	blue	arrows	lead	in.

• Thus,	that	connected	component,	and	
only	that	connected	component,	are	
reachable	by	the	second	round	of	DFS

Remember	that	after	the	first	round	of	DFS,	and	
after	we	reversed	all	the	edges,	we	ended	up	
with	this	SCC	DAG:

• Now,	we’ve	deleted	that	
first	component.

• The	next	one	has	the	next	
biggest	finishing	time.

• So	all	remaining	blue	
arrows	lead	in.

• Repeat. Start:	2
Finish:	5

Formally,	we	prove	it	by	induction

• Theorem:		The	algorithm	we	saw	before	will	
correctly	identify	strongly	connected	components.	

• Inductive	hypothesis:		
• The	first	t	trees	found	in	the	second	(reversed)	DFS	
forest	are	the	t	SCCs	with	the	largest	finish	times.

• Moreover,	what’s	left	unvisited	after	these	t	trees	have	
been	explored	is	a	DAG	on	the	un-found	SCCs.

• Base	case:	(t=0)	
• The	first	0	trees	found	in	the	reversed	DFS	forest	are	the	
0	SCCs	with	the	largest	finish	times.		(TRUE)

• Moreover,	what’s	left	unvisited	after	0	trees	have	been	
explored	is	a	DAG	on	all	the	SCCs.	(TRUE	by	Lemma	1.)

Inductive	step	[drawing	on	board	to	supplement]

• Assume	by	induction	that	the	first	t	trees	are	the	last-finishing	
SCCs,	and	the	remaining	SCCs	form	a	DAG.
• Consider	the	(t+1)st tree	produced,	suppose	the	root	is	x.
• Suppose	that x lives	in	the	SCC	A.
• Then	A.finish >	B.finish for	all	remaining	SCCs	B.

• This	is	because	we	chose	x	to	have	the	largest	finish	time.

• Then	there	are	no	edges	leaving	A in	the	remaining	SCC	DAG.
• This	follows	from	the	Corollary.

• Then	DFS	started	at	x recovers	exactly	A.
• It	doesn’t	recover	any	more	since	nothing	else	is	reachable.
• It	doesn’t	recover	any	less	since	A	is	strongly	connected.	
• (Notice	that	we	are	using	that	A	is	still	strongly	connected	when	we	
reverse	all	the	edges).

• So	the	(t+1)st tree	is	the	SCC	with	the	(t+1)st biggest	finish	time.

Formally,	we	prove	it	by	induction
• Theorem:		The	algorithm	we	saw	before	will	correctly	
identify	strongly	connected	components.	

• Inductive	hypothesis:		
• The	first	t	trees	found	in	the	second	(reversed)	DFS	forest	are	
the	t	SCCs	with	the	largest	finish	times.

• Moreover,	what’s	left	unvisited	after	these	t	trees	have	been	
explored	is	a	DAG	on	the	un-found	SCCs.

• Base	case:	[done]
• Inductive	step:	[done]
• Conclusion:	The	second	(reversed)	DFS	forest	contains	
all	the	SCCs	as	its	trees!		
• (This	is	the	first	bullet	of	IH when	t	=	#SCCs)

Punchline:	
we	can	find	SCCs	in	time	O(n	+	m)

• Do	DFS	to	create	a	DFS	forest.
• Choose	starting	vertices	in	any	order.
• Keep	track	of	finishing	times.

• Reverse	all	the	edges	in	the	graph.
• Do	DFS	again	to	create	another	DFS	forest.
• This	time,	order	the	nodes	in	the	reverse	order	of	the	
finishing	times	that	they	had	from	the	first	DFS	run.

• The	SCCs	are	the	different	trees	in	the	second	DFS	
forest.

Algorithm:

(Clearly	it	wasn’t	obvious	
since	it	took	all	class	to	do!		

But	hopefully	it	is	less	
mysterious	now.)

Recap

• Depth	First	Search	reveals	a	very	useful	structure!
• We	saw	Monday	that	this	structure	can	be	used	to	do	
Topological	Sorting	in	time	O(n+m)

• Today	we	saw	that	it	can	also	find	Strongly	Connected	
Components in	time	O(n	+	m)

• This	was	pretty	non-trivial.

Next	time

•MIDTERM

• Study	for	the	midterm!

BEFORE Next	time

