Lecture 11 Dijkstra’s Algorithm
Scribes: Himanshu Bhandoh (2015), Virginia Williams, and Date: November 1, 2017
Anthony Kim (2016), G. Valiant (2017), M. Wootters (2017)

(Adapted from Virginia Williams’ lecture notes)

1 Dijkstra’s Algorithm

Now we will solve the single source shortest paths problem in graphs with nonnengative weights using
Dijkstra’s algorithm. The key idea, that Dijkstra will maintain as an invariant, is that V¢ € V| the algorithm
computes an estimate d[t] of the distance of ¢ from the source such that:

1. At any point in time, d[t] > d(s,t), and

2. when ¢ is finished, d[t] = d(s, t).

Algorithm 1: Dijkstra(G = (V, E), s)

Yt € V,d[t] < oo // set initial distance estimates
d[s] «+ 0
F + {v]|VYveV} // Fis set of nodes that are yet to achieve final distance estimates
D <+ 0 // D will be set of nodes that have achieved final distance estimates
while F # () do

2 < element in F with minimum distance estimate

for (z,y) € E do

dly] < min{d[y], d[z] + w(z,y)} // “relax” the estimate of y
L // to maintain paths: if d[y] changes, then 7(y) + «
F «+ F\{z}
D <+ Du{z}

We will prove that Dijkstra correctly computes the distances from s to all ¢t € V.
Claim 1. For every u, at any point of time d[u] > d(s,u).

A formal proof of this claim proceeds by induction. In particular, one shows that at any point in time,
if d[u] < oo, then d[u] is the weight of some path from s to ¢. Thus at any point d[u] is at least the weight
of the shortest path, and hence d[u] > d(s, u).

As a base case, we know that d[s] = 0 = d(s,s) and all other distance estimates are +o00, so we know
that the claim holds initially. Now, when d[u] is changed to d[z]+w(x, u) then (by the induction hypothesis)
there is a path from s to x of weight d[z] and an edge (z,u) of weight w(z, ). This means there is a path
from s to u of weight d[u] = d[x] + w(x,w). This implies that d[u] is at least the weight of the shortest path
= d(s,u), and the induction argument is complete.

Claim 2. When node x is placed in D, d[x] = d(s, ).

Notice that proving the above claim is sufficient to prove the correctness of the algorithm since d[z] is
never changed again after = is added to D: the only way it could be changed is if for some node y € F,
d[y]+w(y, z) < d[z] but this can’t happen since d[z] < d[y] and w(y, z) > 0 (all edge weights are nonnegative).
The assertion dz] < d[y] for all y € F stays true at all points after x is inserted into D: assume for
contradiction that at some point for some y € F we get d[y] < d[z] and let y be the first such y. Before d[y]
was updated d[y'] > d[z] for all ¢y € F. But then when d[y] was changed, it was due to some neighbor y’ of
y in F, but d[y’] > d[z] and all weights are nonnegative, so we get a contradiction



We prove this claim by induction on the order of placement of nodes into D. For the base case, s is
placed into D where d[s] = d(s, s) = 0, so initially, the claim holds.

For the inductive step, we assume that for all nodes y currently in D, d[y] = d(s,y). Let x be the node
that currently has the minimum distance estimate in F' (this is the node about to be moved from F to D).
We will show that d[z] = d(s,z) and this will complete the induction.

Let p be a shortest path from s to x. Suppose z is the node on p closest to x for which d[z] = d(s, z). We
know z exists since there is at least one such node, namely s, where d[s] = d(s, s). By the choice of z, for
every node y on p between z (not inclusive) to z (inclusive), dy] > d(s,y). Consider the following options
for z.

1. If z = z, then d[z] = d(s,z) and we are done.

2. Suppose z # x. Then there is a node 2" after z on p. (Here it is possible that 2z’ = z.) We know that
d[z] = d(s,z) < d(s,x) < d[z]. The first < inequality holds because subpaths of shortest paths are
shortest paths as well, so that the prefix of p from s to z has weight d(s, z). In addition, the weights
on edges are non-negative, so that the portion of p from 2z to x has a nonnegative weight, and so
d(s,z) < d(s,z). The subsequent < holds by Claim 1. We know that if d[z] = d[z] all of the previous
inequalities are equalities and d[z] = d(s,«) and the claim holds.

Finally, towards a contradiction, suppose d[z] < d[z]. By the choice of z € F we know d[z] is the
minimum distance estimate that was in F. Thus, since d[z] < d[x], we know z ¢ F' and must be in D,
the finished set. This means the edges out of z, and in particular (z, z’), were already relaxed by our
algorithm. But this means that d[z'] < d(s,z) + w(z, 2’) = d(s, z’), because z is on the shortest path
from s to 2/, and the distance estimate of z’ must be correct. However, this contradicts z being the
closest node on p to x meeting the criteria d[z] = d(s, z). Thus, our initial assumption that d[z] < d[z]
must be false and d[x] must equal d(s, ).

1.1 Implementation of Dijkstra’s Algorithm

Consider implementing Dijkstra’s algorithm with a priority queue to store the set F', where the distance
estimates are the keys. The initialization step takes O(n) operations to set n distance estimate values to
infinity and 0. In each iteration of the while loop, we make a call to find the node x in F’ with the minimum
distance estimate (via, say, FindMin operation). Then, we relax each edge leaving = (via DecreaseKey).
We remove node z (via DeleteMin) and add it to D. In total, there are n calls to FindMin and n calls to
DeleteMin since nodes are never re-inserted into F'. Similarly, there will be m calls to DecreaseKey to relax
the edges since each edge will be relaxed at most once.

Depending on how quickly our priority queue can support FindMin, DeleteMin, and DecreaseKey oper-
ations, the total runtime of Dijkstra’s algorithm is on the order of

n- (TFindMin(n) + TDeleteMin(”)) +m- TDecreaseKey(n)-
We consider the following implementations of the priority queue for storing F:

e Store F' as an array:
Each slot corresponds to a node and stores the distance d[j] if j € F, or NIL otherwise. DecreaseKey
runs in O(1) as nodes are indexed. FindMin and DeleteMin run in O(n) as the array is not sorted and
we have to go through the whole array. The total runtime is O(m + n?) = O(n?).

e Store F' as a red-black tree:
All operations run in O(logn) time. We implement DecreaseKey by deleting and re-inserting with the
new key. The total runtime is O((m+n)logn). If graph G is sparse with few edges, then the red-black
tree implementation is faster than the array implementation. However, it can be slower when G is
dense with m = O(n?).



e Store F' as a Fibonacci heap:
Fibonacci heaps are a complex data structure which is able to support the operations Insert in
O(1), FindMin in O(1), DecreaseKey in O(1) and DeleteMin in O(logn) “amortized” time, over a
sequence of calls to these operations. The meaning of amortized time in this case is as follows: starting
from an empty Fibonacci heap, any sequence of operations that includes a Insert’s, b FindMin’s, ¢
DecreaseKey’s and d DeleteMin’s take O(a+b+c+dlogn) time. The total runtime is O(m+nlogn).

To conclude, Dijkstra’s algorithm can be very fast when implemented the right way! However, it has a
few drawbacks:

e It doesn’t work with negative edge weights: we used the fact that the weights were non-negative a few
times in the correctness proof above.

e It’s not very amenable to frequent updates. Suppose that you had already run Dijkstra’s algorithm
from a particular point, but one weight in the graph changed. How would you recover from this? Next
time, we’ll see the Bellman-Ford algorithm, which can be better on both of these fronts.

2 Negative Edge Weights

Note that Dijkstra’s algorithm solves the single source shortest paths problem when there are no edges with
negative weights. While Dijkstra’s algorithm may fail on certain graphs with negative edge weights, having
a negative cycle (i.e., a cycle in the graph for which the sum of edge weights is negative) is a bigger problem
for any shortest path algorithm. When computing a shortest path between two vertices, each additional
traversal along the cycle lowers the overall cost incurred and an arbitrarily small distance can be reached
after looping around the cycle multiple times. In this case, the shortest path to a node on the cycle is not
well defined since it is (negatively) infinite.

Figure 1: Assume there is a negative cycle along the s — ¢ path. The distance between s and ¢ is not
well-defined.

For example, consider the graph in Figure 1. The shortest path from s to ¢ would start from the node s,
loop around the negative cycle an infinite number of times and eventually reach destination ¢. The shortest
path would, hence, be of infinite length and is not well-defined.

Besides the negative cycles, there are no problems in computing the shortest paths in a graph with
negative edge weights. In fact, there are many applications where allowing negative edge weights is important.

3 Bellman-Ford Algorithm

In this section, we study the Bellman-Ford algorithm that solves the single source shortest paths problem on
graphs with edges with potentially negative weights. Given a directed graph G = (V, FE) with edge weights
given by c(z,y) for (z,y) € E, we want to compute the shortest path distances d(s,v) from source s for all
v € V. More specifically, the Bellman-Ford algorithm:

e Detects a negative cycle if it exists and is reachable from s, or



e Computes the shortest path distances d(s,v) for all v € V.

Algorithm 2: Bellman-Ford Algorithm

d[v] ¢+ 00,Yv € V' // set initial distance estimates
// to maintain paths: set 7(v) <—nil for all v, m(v) represents the predecessor of v
d[s] < 0 // set distance to start node trivially as 0
for i from1 —-n—1do
for (u,v) € E do
d[v] + min{d[v],d[u] + w(u,v)} // update the distance estimate for v
L // to maintain paths - if d[v] changes, then 7(v) < u

/ Negative Cycle Step
for (u,v) € E do
if d[v] > d[u] + w(u, v) then
| return “Negative Cycle”; // negative cycle detected

~

return dv) Vv e V

Note 7(+) is used to store the shortest paths found and 7 (v) represents the predecessor of v on the shortest
path from s to v.

NOTE: This version of Bellman-Ford is a bit different than the one we presented in class! As mentioned
in class, we changed it up slightly to be more in line with the next lecture on Dynamic Programming.
However, the analysis is basically the same. We’ll analyze the above version here.

For an example run of the Bellman-Ford algorithm, please refer to the lecture slides or CLRS.

The total runtime of the Bellman-Ford algorithm is O(mn). In the first for loop, we repeatedly update
the distance estimates n — 1 times on all m edges in time O(mn). In the second for loop, we go through all
m edges to check for negative cycles in time of O(m).

We prove the correctness of the Bellman-Ford algorithm in two steps:

Claim 3. If there is a negative cycle reachable from s, then the Bellman-Ford algorithm detects and reports
“Negative Cycles”.

Proof. For the sake of contradiction, suppose there exists a negative cycle C reachable from the source s
and the Bellman-Ford algorithm does not report “Negative Cycles”. Assume C contains nodes vy, va, ..., Vg
with edges (v;, viy1) for i = 1,..., k such that Zle c(vi, viy1) < 0, where vgy1 = v1. See Figure 2. Let d[]
be the distance estimates determined in the first for loop of the algorithm.

Since C' is reachable from s, there is a path from s to v; and to all nodes on C. In particular, there exist
simple paths, i.e., paths without cycles, of at most n — 1 edges to the nodes of C'. In the first for loop, the
edges on each such simply path get relaxed in order and consequently, d[v;] will be some finite number less

than oo for ¢ = 1,..., k. Since the Bellman-Ford algorithm does not report “Negative Cycles” in the second
for loop, it must be that d[v;1+1] < d[v;] + ¢(vs, vi41) for i = 1,..., k. Adding the inequalities, we obtain
k k k
Z d[vi1] < Z dlv;] + Z c(vi,vig1) -
i=1 i=1 i=1

As we are summing over the cycle C, the terms Zle d[v;41] and Zle d[v;] are equal and can be cancelled.

It follows that 0 < Zle ¢(v;,vi+1). This contradicts that C' is a negative cycle.
O

In the next claim, we show that if the graph has no negative cycles reachable from the source, then the
Bellman-Ford algorithm returns the correct shortest path distances.

Claim 4. If G has no negative cycles reachable from s, then d[v] = d(s,v),Vv € V.



Z(J(Ui,l)i+1) <0

Figure 2: A negative cycle reachable from source s

Proof. Let di(v) be the value of d[v] after k iterations of the first for loop. We prove by induction the
statement that dg(v) is at most the minimum distance of a path from s to v with at most k edges. Then,
we will have d,,_1(v) = d[v] for all node v at termination. We’ll argue below that if there is any path from
s to v, then there is some shortest path with at most n — 1 edges, so this means

dist(s,v) < d[v] = d,,—1(v) < minimum cost of a path with at most n — 1 edges = dist(s, v).

Thus, everything in the above inequality chain is equal, and in particular d[v] is equal to the distance from
s to v. Above, we used the fact that d[v] is an over-estimate on dist(s, v), which follows from our analysis of
Dijkstra’s algorithm.

We now argue that if there is a path from s to v, then there exists a shortest path from s to v has at
most n — 1 edges. If a shortest path has a cycle, the cycle cannot be negative and we can remove it and
improve its total distance. If the cycle has a positive weight, removing the cycle will strictly improve the
shortest path’s distance. If the cycle has zero weight, we can ignore the cycle. Hence, we can assume that
shortest paths are simple, that is, do not have cycles.

Base Case: When k = 0, the distance estimates have been just initialized. So, dp(v) = oo if v # s.
Furthermore, do(s) = 0 = d(s, s), which is the minimum distance of length-0 paths from s to s. The
statement is satisfied for the base case.

Inductive Step: Assume that di_q(v) is at most the minimum distance of a s — v path on at most k — 1
edges for all v.

Consider v # s. Let P be a shortest simple s — v path on at most k edges. Let u be the node just before
v on P, and let @ be the sub-path of P from s to w. The path @ would have at most k£ — 1 edges and is a
shortest path from s to u with at most k — 1 edges, since sub-paths of shortest paths are also shortest paths.
By the inductive hypothesis, Q) has cost at most dy_1(u).

In the k-th iteration, we update di(v) such that di(v) < dp—1(u) + w(u, v) = wW(Q) + wu,v) = w(P).

The induction is complete, and the claim is proved. O



