Lecture 11

Weighted Graphs: Dijkstra and Bellman-Ford

Announcements

* HW5 will be posted Friday

* We will be doing midterm grading on Sunday.
e Returned Monday (hopefully)

* The midterm was hard.
* That’s okay, that’s what the curve is for.

Last week

* Graphs!

* DFS

* Topological Sorting
e Strongly Connected Components

* BFS
e Shortest Paths in unweighted graphs

Today

 What if the graphs are weighted?
* All nonnegative weights: Dijkstra!
* If there are negative weights: Bellman-Ford!

Downtown
Palo’Alto

H°‘?‘!ﬁ%\

2N

?pamlion / <
A 5

é\la(t”tmef“
3 -Canter
‘shd Comam. Hub
1~

AR,
152
Stprgge%\
&urldbngﬁl\

=

ESFI 1 g Wadswor

= (5 onzenal ioh {
2

ormnofive
llrrevation
5 IFacility

OBonohuie Farnity
& Stanfofd Educational Farm

West Campu:
Tennis Cour tg

rse

sffective 6/1/2016

rersion:
rtation.stanford.edu/maps

rever<cse <ide for buildina and

S,
e,
S
Pa;

Scully
i for
/Ciin

Med School b
ce Bldg..

Lacu
ceideanc

s Under

Figalth, Contor

\h gal enter
v Seover Pavilion [~
i ; “g?(garage e
~ A S Zz
rd

Stanfol ‘,1\/
7 Center

ren’s
Hospital
Under

Constriction
i

A e S
/X C,@nt:?gfﬁr

Raire e

Hall

Plaza

“rothers
Mdrmorial I2¥S
,ﬁ.\muaqa‘
121

Westin
Hotel

Palo

Alto
Medical
Foundation
%

and
Country
Village

b oretum
rove

El Camino
Grove

4 Athletics:
DanElliott
Practice Field
. siebel Field
< N parking &
aga gltanspor tatio
Paasfil i

¢ Maples
“Pavilion

A

Byl
Lo S
y-

ony Cent i

Just the graph

How do | get from Gates to the Union?

back to the union?

That doesn’t make sense if | label
the edges by walking time.

Just the graph

How do | get from Gates to the Union?

weighted
graph

w(u,v) = weight
of edge between
uandv.

If | pay attention to

For now, edge the weights...

weights are non-

negative. | should go to Packard, then

CS161, then the union.

Shortest path problem

* What is the shortest path between uand vin a
weighted graph?
* the cost of a path is the sum of the weights along that path
* The shortest path is the one with the minimum cost.

This path fromstot
has cost 25.

3 20 e

This path is shorter,
it has cost 5.

* The distance d(u,v) between two vertices u and v is the cost of
the the shortest path between u and v.

* For this lecture all graphs are directed, but to save on notation
I’'m just going to draw undirected edges. O

Shortest paths
Chospal 10 2

This is the shortest Gates
path from Gates to

the Union. 1 @
Packard CS161
It has cost 6. 1 ©

4
" G
Q: What’s the shortest

20 path from Packard to

@ the Union?

15

25

Warm-up

* A sub-path of a shortest path is also a shortest path.

* Say this is a shortest path from s to t.

* Claim: this is a shortest path from s to x.
* Suppose not, one is shorter.
e But then that gives an even shorter path from s to t!

é.
N
5
S
£
8

Single-source shortest-path problem

* | want to know the shortest path from one vertex
(Gates) to all other vertices.

Packard 1 Packard

CS161 2 Packard-CS161
Hospital 10 Hospital

Caltrain 17 Caltrain

Union 6 Packard-CS161-Union
Stadium 10 Stadium

Dish 23 Packard-Dish

(Not necessarily stored as a table — how this information
is represented will depend on the application)

Example

* | regularly have to
solve “what is the
shortest path from
Palo Alto to
[anywhere else]”
using BART, Caltrain,
lightrail, MUNI, bus,
Amtrak, bike,
walking, uber/lyft.

* Edge weights have
something to do
with time, money,

hassle. (They also
change depending on my
mood and traffic...).

SF 700

Tioston

- 11
West ,.'.' Forast [
1)
oy Onall DERE Masia
Par

an ' / G
Missioa)
|\ Ralboa Padky

High Speed Rail
e
Metro asm

Light Rail
Streetcar

Bus Rapid Transit
Local Rapid Bus
Reglonal Rail

P EDODT E® P

|

/
[
Kl

Ferry

Narth Cencand

A

Walsot Oresk /
*{

BEL CAHSR

-
%, %
%,

| w— T
Oakisnd

1218 Street
Jatd

6cf Ccsces

8
eceesseos
=]

g33
H

8860688668
1
'

€3 A Traasit
€5 ACTrsasit
Gm Courty Conect
i Woem fock e ik
\ /, Braneit Otr ViNSamtrans

a0 Mo

CUD swer
Capital

@g@ 8f
i

{ —_—
/ 8 - = " " '.l";-'v
ito Pt I
L0 | 6 Carvits Plaza ‘+ Piftstarg 'A e amont
A Wrany Concord /8
D e
) ~ '
- i Pleasast Wl and Extensions
o oo ['e,

Stations and Transfers
Metro/Subway Station
Transfer Station

Transfer Zone
cequres loing stabon 10 & afer

Terminal Station - Meo
AW e o ke bumibar

New Rail, Service

High Speed Rail

San Francisco - S3n Jese - Los Angeles

Metro (BART & Commuter Rail)
BART Richncad - Saa N

Josa Diridon
$39 Jose Diriden - Daly City
Dowstown Borksley - Civic Conter
Bay Fair - Civic Center
PiusbargSay Polat - Hilkresthatioch

San Jose Diridon - American Canycn
Dowstown Livermore - Saa Joze Diridol
Baby Ballet - eatoed 1o Tramsbay Term
Lecal Line - extend 10 Trasbay Term.
and East Boy via 20d Transhay Tsbe

Light Rail
extended to SF State - Enbarcadero
tecosted to Daly City - Embarcaders
Lembard - Bayshore
axtended %o Eastridge - Saata Toresa
extended % Vasosa lunction - Downton
cealigned: Nimadea - Mcuntain View
CapitolGuadalspe - Mosntaia View
Ssa Jose Rirpont Cosnector
Qakéand irport Coanector

Streetcar
Fort Masea - 4th & Kag
Jack London Sqeare 1o Emeryvilis

Bus Rapid Transit (BRT)

Mzuntain View - Eastridge Mall

Da An2a College - Esstridge Mall

£l Camino: Palo Ak - Daly City
Tri-Valloy BRT: Livermere Lab-Stoneric
Ssats Rosa - Transbay Terminal

Bay Fair - Berkelay Mariaa

162k Stroet: 4th & Townsend - Cherch
(Gasey: Pont Lobes - Transbay Tersing
Voa Ness: Fisherman's Whaet - 4tth &)
Von Ness: Fort Mason « City Callege SF

Rapid Bus (Local/Express)

MacActher B4: Coliseum- Transbay Terr
80 Vallejo-Transbay Terminal

Saa Ramon Valley. Pleasant Hill-Hach
Dembarton: Union City-Stasdord Res. P
Saa Jose Dicidon-Militese
OakdalePalos-24th Strest Mission

Regional Rail

Santa Rosa-Lackspar
Mosterey-Sacramento
Stochdca-San Jose Dirdon

W s
B wwevies it Coeges
@ ot et

] ety D Staton
Yt Sy ok < [s

copyright ©2012 Brian Stokle

Almaden

UUNET’s North America Internet network:

o r—— LINIONTOM

Example

* Network routing

e | send information
over the internet,

from my computer - = .
to to a” over the [DN@a22a@e3:~ mary$ traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
\A/()I"(j 1 [ASQ] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
* 2 [AS@] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
3 [AS32] 171.66.2.229 (171.66.2.229) 24.468 ms 20.115 ms 23.223 ms
° 4 [AS32] hpr-svl-rtr-vlan8.sunet (171.64.255.235) 24.644 ms 24.962 ms 1
EaCh path has a COSt 5 [AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.¢
. 6 [AS2152] hpr-lax-hpr3--svl-hpr3-100ge.cenic.net (137.164.25.73) 12.125
which depends on 7 [AS2152] hpr-i2--lax-hpr2-r&e.cenic.net (137.164.26.201) 40.174 ms 38.
. . 8 [ASQ] .4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.57
link |ength, trafflc, 9 [ASe] .4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424
r] 10 [ASQ] .4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454
[ASQ] .4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825
Ot er COStS’ etc" [ASQ] .4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937

[ASQ] .4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.68:
[ASQ] .4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565
[AS21320] internet2-gw.mxl.lon.uk.geant.net (62.40.124.44) 154.926 ms
[AS21320] ae@.mx1l.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 m
[AS21320] ae@.mx1l.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms
[AS21320] ae2.mx1l.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 m:
[AS21320] swicel-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160
[AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.2
[AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) 164.269 ms 164.
[AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.082 ms 1
[AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) 164.773 ms 165.193 ms

Aside: These are difficult problems

* Costs may change
* If it’s raining the cost of biking is higher
 If a link is congested, the cost of routing a packet along it
is higher

* The network might not be known
My computer doesn’t store a map of the internet

* We want to do these tasks really quickly
* | have time to bike to Berkeley, but not to contemplate

biking to Berkeley... '\

e More seriously, the internet. This is a joke.

But let’s ignore them for now.

Downtown
PaloAlto
Palo Alta” =
. Train S((a:t‘ron

< Fay
?«Pwilion

L-1
rages N

Sopas
“ahd Comm. Hub
e

=G

Stanford Athletics
Sand Hill Fields

o

=

enter

CLARK

:
V! /es//
&

iy

Scull
S for

/Cim

= Birch
Cfor st AR, T LG
||Pﬁﬂ€')_wt)a’ti0r| 3 o g\mﬁ%a
& Facti Vet
ot | . g~y |
! v

éé’ OBonohuie Farnity
& Stanfofd Educational Farm

West Camipu
Tennis Cour tg

>
Lthr
Gate House

rse

sffective 6/1/2016

rersion:
rtation.stanford.edu/maps

rever<e <ide for buildina and <

; Y 5
= ////;/ S;ﬁnfgrd 9?;7:

Saver Pavilion
v (Garage

N\aus\oleum

Cactus
Garden

Lasuen
Grove

[THall |

rost
Asnphitheater

I RS amily Practice Field

Palo

Alto
Medical
Foundation
%

an
Courtry
Village

Palo Alto
N High Schoc

o 2%

N

El Camino %3
Grove

‘at Sunker
Diamond

Sl
4 Athletics Hodk
DanElliott

Sportsand X N . _
Recreation 3 Siebel Field
7 e Maples 5

o
!Zkyle?‘é Larkin

.
{North,
&Y
West

iTe
Bl

’st

!

Dijkstra’s algorithm

 What are the shortest paths
from Gates to everywhere
else?

Dijkstra
Intuition

YOINK!

Dijkstra
Intuition

A vertex is done when it’s not
on the ground anymore.

YOINK!

Dijkstra
Intuition

YOINK!

VW =

Dish

CSi161
nion

Dijkstra
Intuition

YOINK!

Packard

1

Dijkstra
Intuition

YOINK!

Gates

1

Packard

. PP
Dijkstra < YOINKI

intuition

)l

Dijkstra YOINK

INtuition

This also creates a
tree structure!

The shortest paths
are the lengths
along this tree.

How do we actually implement this?

* Without string and gravity?

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Initialize d[v] = o0
for all non-starting vertices
v, and d[Gates] =0

* Pick the node u with the
smallest estimate d[u].

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

* Pick the node u with the

smallest estimate d[u].
 Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Dijkstra by example

How far is a node from Gates?

Q I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

* Pick the node u with the

smallest estimate d[u].
 Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

e Mark uasSsure.

1

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

Q Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra by example

How far is a node from Gates?

O I’'m not sure yet

‘ I’'m sure

x = d[v] is my best over-estimate
for dist(Gates,v).

‘ Current node u

Pick the NOT-suUre node u with the

smallest estimate d[u].
Update all u’s neighbors v:
e d[v] =min(d[v], d[u] + edgeWeight(u,v))

Mark u as sure.
Repeat

Dijkstra’s algorithm

Dijkstra(G,s):
e Set all vertices to
dlv]=o forallvinV

e d[s]=0
* While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
* Mark u as sure.
Now d(s, v) = d[v]

Lots of implementation details left un-explained.
We’ll get to that!

See IPython Notebook for code!

As usual

o

e Does it work?
* Yes.

* |s it fast?
* Depends on how you implement it.

Why does this work?

* Run Dijkstra on G =(V,E), starting from s.
* At the end of the algorithm, the estimate d[v] is the actual
distance d(s,v).
Let’s rename “Gates” to

o_ 7

: s”, our starting vertex.
* Proof outline:

* Claim 1: For all v, d[v] = d(s,v).
* Claim 2: When a vertex v is marked sure, d[v] = d(s,v).

* Claims 1 and 2 imply the

By the time we are sure about v, d[v] = d(s,v).

d[v] never increases, so after v is sure, d[v] stops changing.

All vertices are eventually sure. (Stopping condition in algorithm)
So all vertices end up with d[v] = d(s,v).

Next let’s prove the claims!

Claim 1

d[v] = d(s,v) for all v.

Informally:
* Every time we update d[v], we have a path in mind:

d[v] « min(d[v],

Whatever path we /

had in mind before
e d[v] = length of the path we have in mind
> |ength of shortest path
=d(s,v)

Formally:

* We should prove this by induction.
* (See hidden slide or do it yourself)

THIS SLIDE

Claim 1 SKIPPED IN CLASS
d[v] = d(s,v) for all v.

* Inductive hypothesis.
e After t iterations of Dijkstra,
d[v] = d(s,v) for all v.

 Base case:
e Atstep 0, d(s,s) = 0,and d(s,v) < o©

* Inductive step: say hypothesis holds for t.

* At step t+1:
* Pick u; for each neighbor v:

e d[v] « min(d[v],) > d(s,v)

So the inductive

By induction
Y ’ hypothesis holds

d (S, U) <d [U] for t+1, and Claim
1 follows.

Claim 2

When a vertex u is marked sure, d[u] = d(s,u)

* For s (the start vertex):
* The first vertex marked sure has d[s] = d(s,s) = 0.

* For all the other vertices:
* Suppose that we are about to add u to the sure list.
* That is, we picked u in the first line here:

* Pick the node u with the smallest estimate d[u].
* Update all u’s neighbors v:

e d[v] « min(d[v], d[u] + edgeWeight(u,v))
e Mark u as sure.
* Repeat

e Want to show that d[u] = d(s,u).

o YOINK!
Intuition

When a vertex u is marked sure, d[u] = d(s,u) ;‘" \

Gates S

* The first path that lifts u off the

ground is the shortest one. !

Packard

But let’s actually prove it.

Temporary definition:
v is “good” means that d[v] = d(s,V)

Claim 2

* Want to show that u is good.

Consider a true shortest
path from s to u:

The vertices in between

are beige because they True Shortest path,

may or may not be sure.

Temporary definition:
v is “good” means that d[v] = d(s,V)

C | dalm 2 ‘ means good ‘ means not good

“by way of contradiction”

* Want to show that u is good. BWOC, suppose u isn't good.
e Say z is the last good vertex before u.

e 7’ is the vertex after z.

It may be that z = s.
It may be that 2’ = u.

The vertices in between z !=u, since u is not good.

are beige because they True shortest path,

may or may not be sure.

Temporary definition:
v is “good” means that d[v] = d(s,V)

C | dalm 2 ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.

dlz] = d(s,z) < d(s,u) < d[u]

z is good This is the shortest Claim 1
path from s to u.

e Ifd|z]| = d|ul, then uis good.
. We chose u so that d[u] was
* If d[Z] < d[U], then Z s sure. smallest of the unsure vertices.

So therefore
Z IS sure.

It may be that z =s. It may be that z’ = u.

True shortest path.

Temporary definition:
v is “good” means that d[v] = d(s,V)

C | dalm 2 ‘ means good ‘ means not good

* Want to show that u is good. BWOC, suppose u isn’t good.

 If zis sure then we’ve already updated z’:
e d[z'] « min{d[z'],d[z] + w(z,2)}, so

d|z'l <d|z] + w(z, Zz') = d(s,z') < d[z']

‘IO . . I
OF o 'Oaz‘/,s Uh or C/G././77 So everytl}m:g is ’equal.
u, 0 It Sh J d(s,z’) = d[Z’]
Shopy,, 0. ,, tesp And z’ is good.
@Sl.patz /Sa
M,

CONTRADICTION!!

It may be that z =s. It may be that 2’ = u.

True shortest path.

Back to this «J; Temporary definition:
I
S slide v is “good” means that d[v] = d(s,v)

* Want to show that u is good. BWOC, suppose u isn’t good.
dlz] =d(s,z) <d(s,u) < d[u]

Def. of z This is the shortest Claim 1
path from s to x

e Ifd|z]| = d|ul, then uis good. Souls
+ If d[z] < d[u], then zis sure. good!

aka d[u] = d(s,v)

It may be that z =s. It may be that 2’ = u.

True shortest path.

Back to this slide

Claim 2

When a vertex is marked sure, d[u] = d(s,u)

* For s (the starting vertex):
* The first vertex marked sure has d[s] = d(s,s) = 0.

* For all other vertices:
* Suppose that we are about to add u to the sure list.
* That is, we picked u in the first line here:

* Pick the node u with the smallest estimate d[u].
* Update all u’s neighbors v:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
e Mark u as sure.
* Repeat

Then u is good! aka d[u] = d(s,u)

Why does this work?

e Run Dijkstra on G =(V,E) starting from s.

* At the end of the algorithm, the estimate d[v] is the
actual distance d(s,v).

* Proof outline:
e Claim 1: For all v, d[v] = d(s,Vv).
* Claim 2: When a vertex is marked sure, d[v] = d(s,v).

* Claims 1 and 2 imply the

YOINKI =

What did we just learn?

* Dijkstra’s algorithm finds
shortest paths in weighted
graphs with non-negative edge
weights.

* Along the way, it constructs a
nice tree.
* We could post this tree in Gates!

* Then people would know how to
get places quickly.

As usual

e Does it work?
* Yes.

e |s it fast? l

* Depends on how you implement it.

Running time?

Dijkstra(G,s):

* Set all vertices to
dlv]=o forallvinV

e d[s]=0
* While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
* Mark u as sure.
Now dist(s, v) = d[v]

* niterations (one per vertex)
* How long does one iteration take?
Depends on how we implement it...

We need a data structure that:

Just the inner loop:

e Stores unsure vertices v e Pick the node u with the
smallest estimate d[u].

* Keeps track of d[v] L
* Update all u’s neighbors v:
* Can find u with minimum d[u] e d[v] « min(d[v], d[u] +
e findMin() edgeWeight(u,v))

e Mark u as sure.
e Can remove that u

* removeMin(u)

e Can update (decrease) d[v]

* updateKey(v,d)
Total running time is big-oh of:

Z (T(findMin) + (z T (updateKey)) + T(removeMin))
uev

veu.neighbors

=n(T(findMin) + T(removeMin)) + m T(updateKey)

If we use an array

* T(findMin) = O(n)
* T(removeMin) = O(n)
e T(updateKey) = O(1)

* Running time of Dijkstra
=0O(n(T(findMin) + T(removeMin)) + m T(updateKey))
=0(n"2) + O(m)
=0(n"2)

If we use a red-black tree

* T(findMin) = O(log(n))
* T(removeMin) = O(log(n))
e T(updateKey) = O(log(n))

* Running time of Dijkstra
=0O(n(T(findMin) + T(removeMin)) + m T(updateKey))
= 0O(nlog(n)) + O(mlog(n))
=O((n + m)log(n))

Better than an array if the graph is sparse!
aka if m is much smaller than n?

O(n(T(findMin) + T(removeMin)) + m T(updateKey))

s a hash table a good idea here?

* Not really:

* Search(v) is fast (in expectation)

e But £indMin() will still take time O(n) without
more structure.

Slide skipped in class

Heaps support these operations

* T(findMin)
* T(removeMin)
* T(updateKey)

* A heap is a tree-based data structure that has the
property that every node has a smaller key than its

children.
* Not covered in this class — see CS166! (Or CLRS).

e But! We will use them.

Many heap implementations

Nice chart on Wikipedia:

' Operation | Binary”! Leftist

find-min

e(1)

delete-min ©(log n)

insert

Oflog n)

decrease-key | ©(log n)

merge

&(n)

al)

Ollog) |
ellog)
on

©(log n) |

Binomiall”! | Fibonaccil”® | Pairing!® | Brodall'®®! Rank-pairing!'? | Strict Fibonaccil'?!

©(log n) | e(1) | e(1) | e(1) | e(1) | e(1)
G(logn) | Oflog n)l°l Olog n)® | O(log n) Oflog n)'°! Oflog n)
e e e e e e
Glogn) | ©(1)¢ o(log)9l | e(1) e(1)e e(1)

Oflog n)'®! | €(1) () e1) (1) (1)

Say we use a Fibonacci Heap

* T(findMin) = O(1) (amortized time™)
* T(removeMin) = O(log(n)) (amortized time™*)
e T(updateKey) = O(1) (amortized time®)

* See CS166 for more! (or CLRS)

* Running time of Dijkstra
= O(n(T(findMin) + T(removeMin)) + m T(updateKey))
= O(nlog(n) + m) (amortized time)

*This means that any sequence of d removeMin calls takes time at most O(dlog(n)).
But a few of the d may take longer than O(log(n)) and some may take less time..

Time(ms)

See IPython Notebook for Lecture 11
The heap is implemented using heapdict

In practice

Shortest paths on a graph with n vertices and about 5n edges

Dijkstra using a Python

—— BFS p, list to keep track of
140 - , . S tices h drati
120 - Dijkstra with a heap _/',. - runtime.
e
100 - e
A
80 - A
R4 Dijkstra using a heap
60 - -~ ,/ looks a bit more linear
- (actually nlog(n))
40 A ~
e
o
20 - g :
T BFS is really fast by
—_— — . .
0 —— “—__ comparison! But it
0 200 400 600 800 1000 1200 1400 1600 doesn’t work on
n weighted graphs.

Dijkstra is used in practice

e eg, OSPF (Open Shortest Path First), a routing
protocol for IP networks, uses Dijkstra.

But there are
some things it’s
not so good at.

Dijkstra Drawbacks

* Needs non-negative edge weights.

* If the weights change, we need to re-run the
whole thing.
* in OSPF, a vertex broadcasts any changes to the

network, and then every vertex re-runs Dijkstra’s
algorithm from scratch.

Bellman-Ford algorithm

* (-) Slower than Dijkstra’s algorithm

* (+) Can handle negative edge weights.

* (+) Allows for some flexibility if the weights change.
* We’'ll see what this means later

Down;own
PaloAlto

Palo Alta” =
- Train Station
Translt Center

Hoawr St
Hosplt
r Con St

Stanford Athlatics . D Care
tanford etics ar
Sand Hill Fields e Cormm, Hub
Cﬁntfalpreeesfg
Steampﬁmﬂ 5 o ..
i Aé(—}eakfﬁedwqod, Clini ,
esearch-
0 ﬂ Eu.ld.ng F
w ea5<%§5. et T o

. ﬁeﬁggﬁeram

1- Lmd:ni 1LorryL
o

|
ABT g

Sto:k Farm
Garage

Utormnotive
g o Inﬁova tion
i & (Facility

S
Bu‘ﬁé?é’é’ sx

i -l
Enu\lrg(;mn‘enta\‘esﬁ L Watznert
cenafion

Facifity)

arsity
ining
lex

[Ehergly

Facility

uth, Green 5

ford éBonohue Famil D Cornd
ourse Estanro@rl?ducanona! arm. q;em?s ¥ Nllt(hell e20)

‘“~~.\,‘§ N/ﬁiﬂ ke |‘%1(esp
Te 7T an'\ "

| often choose to take these
long paths to the dish and back

for recreation! It “costs” me
negative happiness!

gunita

rse

ffective 6/1/2016
rersion:
rtation.stanford.edu/maps

revercse <ide for buildina and <t

Westin
Hotel

Alto
Medical
\foundation

- o
LR
NN Wilage”
\\ \\
Angel of T
Arboretum st
Grove \' 7

o N
qgﬁ(\\\\\;\Hi;hos<hgc
R
2N
N

5

#ausoleurn

Eucalyptus
Gréve

Lasuen

rous El Camino

Grove

Toyol

o=

- There’s frequently free food
over here, this “costs” me
negative deliciousness to

Kl einField
at Sunkery
Diamond

Z,
wa I k b |t il
Athletics Hode’

" DanElliott NG
o ;:..T. .wd y PracﬂceFreld NG

ports a \ _

_Recreation ; pmples i Sicbel el

gnips Ford Pavlllon \ Parking &
H2ll™ plaza Trarspor tatio
Fe o ASepvices A

2:;

rs
(ente Gar gz
Ga

= \/ll NS Green B
ths‘ir—y East

Croth LS h
alffer £y Hall*crothers
. Mgt Crothers Midmo nalTby

]
cémer
) S

onsto el

3
% =
umbae <
e,

Why negative
edge weights?

/4

* What is the shortest path from
Gates to the Union?

e Should it still be
Gates—Packard—CS161—Union?

e But what about
e G—P—D—G—P—CS161—Union

 That costs
* 1-2-3+1+1+4 =2. \ell-defined if there *

* And why not are negative cycles!

Let’s put that aside for a moment

Onwards!

To the Bellman-Ford
algorithm!

Bellman-Ford algorithm

Bellman-Ford(G,s):

e dlv]=o0 forallvinV

e d[s]=0
Instead of picking u cleverly,

* Fori=0,..,n-1: / just update for all of the u’s.
* ForuinV:

* Forvin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))

Compare to Dijkstra:

 While there are nodes:
* Pick the node u with the smallest estimate d[u].
* For vin u.neighbors:
e d[v] « min(d[v], d[u] + edgeWeight(u,v))
* Mark u as sure.

For pedagogical reasons
which we will see next week

* We are actually going to change this to be dumber.
* Keep n arrays: d©, d0), ..., d(n-1)

Bellman-Ford*(G,s):

e dO[v]=ooforallvinV
« dO9[s]=0
* Fori=0,...,,n-1:
* ForuinV:
* Forvin u.neighbors:
o d#[v] « min(div], d[u] + edgeWeight(u,v))
e Then dist(s,v) = d"1[v]

Start with the same graph, no
negative weights.

Bellman-Fora S

How far is a node from Gates?
Gates Packard CS161 Union Dish

o [o L= [o =[]
0
oo T T T]
o T T T]

* Fori=0,...,n-2:

* ForuinV:

E2 g
(>
* Forvin u.neighbors: @

o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

=1

Start with the same graph, no
negative weights.

Bellman-Fora S

How far is a node from Gates?) C@

Gates Packard CS161 Union Dish

40 [0 [= [o [« [=]
N N EN A
oo T T T T |
oo T T T T 1

o [T

* Fori=0,...,n-2:
* ForuinV:
* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

=1

Start with the same graph, no
negative weights.

Bellman-Fora S

How far is a node from Gates?) C@

Gates Packard CS161 Union Dish

d? [0 Jo [[[]
o [T [= =T =]
d2 | o | 1 | 2 | a5 | 23 |
o T T T T

o [T 1]

* Fori=0,...,n-2:
* ForuinV:

* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

Start with the same graph, no
negative weights.

Bellman-Fora S

How far is a node from Gates?) C@

Gates Packard CS161 Union Dish

40 [0 [[[[=]
a [0 [1 o [=]s]
4 [0 [12w =]
o [0 [1]z e =]

o [T 1]

* Fori=0,...,n-2:
* ForuinV:
* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

Start with the same graph, no
negative weights.

Bellman-Fora S

How far is a node from Gates?) C@

Gates Packard CS161 Union Dish

40 [0 [[[[=]
a [0 [1 o [=]s]
4 [0 [12w =]
o [0 [1]z e =]

w0 o=

* Fori=0,...,n-2:
* ForuinV:
* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

=1

As usual

e Does it work?
* Yes
* |dea to the right.

e (Base case and inductive
step similar to Dijkstra)

* (See hidden slides for
details)

* |s it fast?
* Not really...

Gates Packard CS161 Union Dish

40 [0 oo =]
a0 [0 [1w =]
ao [0 [1]z e [=]
o [0z =]
w0 1] s]n]

Idea: proof by induction.
Inductive Hypothesis:

d[v] is equal to the cost of the
shortest path between s and v
with at most i edges.
Conclusion:

d™1[v] is equal to the cost of the
shortest path between s and v.
(Since all simple paths have at
most n-1 edges).

Proof by induction

* Inductive Hypothesis:

 After iteration i, for each v, d)[v] is equal to the cost of
the shortest path between s and v with at most i edges.

 Base case:
e After iteration O...

* Inductive step:

v

Skipped in class

Skipped in class ‘ Hypothesis: After iteration i, for each v, d [v] is

| n d u Ct|Ve Ste p equal to the cost of the shortest path between s

and v with at most i edges.

e Suppose the inductive hypothesis holds for i.

 We want to establish it for i+1.

o Let u be the vertex right
Say this is the shortest path between before v in this path.

s and v of with at most i+1 edges:

|

at most i edges

« By induction, d[u] is the cost of a shortest path between s and u of i edges.

e By setup, di[u] + w(u,v) is the cost of a shortest path between s and v of i+1 edges.
* Inthe i+1’st iteration, we ensure d™1[v] <= d@[u] + w(u,v).

« So d*Y[v] <= cost of shortest path between s and v with i+1 edges.

e But d™V[v] = cost of a particular path of at most i+1 edges >= cost of shortest path.
* Sod[v] = cost of shortest path with at most i+1 edges.

Skipped in class

Proof by induction

* Inductive Hypothesis:

* After iteration i, for each v, d)[v] is equal to the cost of the
shortest path between s and v of length at most i edges.

* Base case: /
 After iteration O...
* Inductive step:
* Conclusion: /
* After iteration n-1, for each v, d[v] is equal to the cost of the
shortest path between s and v of length at most n-1 edges.

e Aka, d[v] = d(s,v) for all v as long as there are no cycles!/

This seems much slower than Dijkstra

 And it is:
Running time O(mn)

* However, it’s also more flexible in a few ways.
e Can handle negative edges

* If we keep on doing these iterations, then changes in the
network will propagate through.

* Fori=0,...,,n-1:
* ForuinV:
* Forvin u.neighbors:
o di*[v] « min(d@[v], dW[u] + edgeWeight(u,v))

* Fori=0,...,n-2:

Negative edge weights

Gates Packard CS161 Union Dish

0 Lo oo [o]]
o (o3 [= =]
o (e [s]2 7]7]
o a5l e 7]

This is not looking good!

* ForuinV:
* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

Negative edge weights

Gates Packard CS161 Union Dish

00 [o [o[]o]
o [1ale =]
o []2l =]
o [Z]]a]e]=]
N i EN A

But we can tell that it’s not looking good:

o [T a5 [7]

Some stuff changed!

* Fori=0,...,n-1:
* ForuinV:

* Forvin u.neighbors:
o d™[v] « min(dW[v], d[u] + edgeWeight(u,v))

Gates Packard CS161 Union Dish

Back to the 1[0 [o o [[w]
correctness o [T == =]
* Does it work? d?@ | o | 1 | 2 [| 2|

* Yes d(3)2|6|23|

* |dea to the right.

- (Base case and inductive d o] 1f2]6 |2}

step similar to Dijkstra)

Idea: proof by induction.
Inductive Hypothesis:

d®[v] is equal to the cost of the
shortest path between s and v
with at most i edges.
Conclusion:

d™1[v] is equal to the cost of the

If there are negative cycles, | I shortest path between s and v.

then non-simple paths matter! (Since all simple paths have at
most n-1 edges).

How Bellman-Ford deals with
negative cycles

* If there are no negative cycles:
* Everything works as it should.
e The algorithm stabilizes after n-1 rounds.
* Note: Negative edges are okay!!

* If there are negative cycles:

* Not everything works as it should...

* Note: it couldn’t possibly work, since shortest paths aren’t
well-defined if there are negative cycles.

* The d[v] values will keep changing.

* Solution:
* Go one round more and see if things change.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

e« dO[v]=c0 forallvinV
dO)[s] =0
For i=0,...,n-1:

* ForuinV:

* For vin u.neighbors:
o di*[v] « min(dW[v], d@[u] + edgeWeight(u,v))

If d(n-1) 1= d(n);

e Return NEGATIVE CYCLE ®
Otherwise, dist(s,v) = d™1[v]

What have we learned?

* The Bellman-Ford algorithm:

e Finds shortest paths in weighted graphs with negative
edge weights

* runsin time O(nm) on a graph G with n vertices and m
edges.

* If there are no negative cycles in G:
* the BF algorithm terminates with d™1[v] = d(s,v).

* If there are negative cycles in G:
e the BF algorithm returns negative cycle.

Bellman-Ford is also used in practice.

e eg, Routing Information Protocol (RIP) uses something
like Bellman-Ford.

* Older protocol, not used as much anymore.

Destination | Cost to get Send to
there whom?

* Each router keeps a
table of distances to

" 172.16.1.0 34 172.16.1.1
every other router. 10.2040.1 10 192.168.1.2
* Periodically we do a 10.155.120.1 9 10.13.50.0

Bellman-Ford update.

* This means that if there
are changes in the
network, this will
propagate. (maybe slowly...

Recap: shortest paths

* BFS:

* (+) O(n+m)
* (-) only unweighted graphs

* Dijkstra’s algorithm:
e (+) weighted graphs
* (+) O(nlog(n) + m) if you implement it right.
* (-) no negative edge weights

* (-) very “centralized” (need to keep track of all the vertices to know
which to update).

* The Bellman-Ford algorithm:
* (+) weighted graphs, even with negative weights

* (+) can be done in a distributed fashion, every vertex using only
information from its neighbors.

* (-) O(nhm)

Andrés found a Dijkstra joke on
the internets — thanks Andrés!

|

Bae: Come over

Dijkstra: But there are so many routes to take and
I don't know which one's the fastest

Bae: My parents aren't home

Dijkstra:

Dijkstra's algorithm w2
Graph search algorithm
Not to be confused with Dykstra's projection algorithm.

Dijkstra's algorithm is an algorithm for finding the shortest paths between Dijkstra's algorithm
nodes in a graph, which may represent, for example, road networks. It was
conceived by computer scientist Edsger W. Dijkstra in 1956 and published
three years later.['¥]

Perhaps this is why
Dijkstra invented the
algorithm?

The algorithm exists in many variants; Dijkstra's original variant found the
shortest path between two nodes,?! but a more common variant fixes a
single node as the "source” node and finds shortest paths from the source
to all other nodes in the graph, producing a shortest-path tree.

Next Time

* More Bellman-Ford, plus Floyd-Warshall and
dynamic programming!

Before next time

* Pre-lecture exercise:
 How NOT to compute Fibonacci numbers.

Mini-topic (bonus slides; not on exam)
Amortized analysis!

* We mentioned this when we talked about
implementing Dijkstra.

*Any sequence of d deleteMin calls takes
time at most O(d log(n)). But some of the d
may take longer and some may take less time.

* What’s the difference between this notion and
expected runtime?

Example

* Incrementing a binary counter n times.

O 1 O 41 O 1 O 1 O 1 O «+1 O «1 O
1 O O 1 O O v vd O O «

1 1 1 O O O O «+ v+ «

1 1 v v v v v

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

 Say that flipping a bit is costly.

* Above, we’'ve noted the cost in terms of bit-flips.

Example

* Incrementing a binary counter n times.

) o) o -)) o
— @) i o i) i

— —i o) i —

i i i i

1 2 1 3 1 2 1 4 1 2 1 3 1 2

e Say that flipping a bit is costly.
* Some steps are very expensive.
* Many are

* Amortized over all the inputs, it turns out to be
pretty cheap.
* O(n) for all n increments.

This is different from expected runtime.

* The statement is deterministic, no randomness here.

e But it is still weaker than worst-case runtime.
* We may need to wait for a while to start making it worth it.

