
Lecture	11
Weighted	Graphs:	Dijkstra	and	Bellman-Ford



Announcements

• HW5	will	be	posted	Friday

• We	will	be	doing	midterm	grading	on	Sunday.

• Returned	Monday	(hopefully)

• The	midterm	was	hard.

• That’s	okay,	that’s	what	the	curve	is	for.



Last	week

• Graphs!

• DFS

• Topological	Sorting

• Strongly	Connected	Components

• BFS

• Shortest	Paths	in	unweighted	graphs



Today

• What	if	the	graphs	are weighted?

• All	nonnegative	weights:	Dijkstra!

• If	there	are	negative	weights:	Bellman-Ford!
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How	do	I	get	from	Gates	to	the	Union?

That	doesn’t	make	sense	if	I	label	

the	edges	by	walking	time.



Just	the	graph
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I	should	go	to	Packard,	then	

CS161,	then	the	union.

How	do	I	get	from	Gates	to	the	Union?

w(u,v)	=	weight	

of	edge	between	

u	and	v.

For	now,	edge	

weights	are	non-

negative.



Shortest	path	problem

• What	is	the	shortest	path	between	u	and	v	in	a	
weighted	graph?
• the	cost of	a	path	is	the	sum	of	the	weights	along	that	path

• The	shortest	path	is	the	one	with	the	minimum	cost.

• The	distance d(u,v)	between	two	vertices	u	and	v	is	the	cost	of	
the	the	shortest	path	between	u	and	v.

• For	this	lecture	all	graphs	are	directed,	but	to	save	on	notation	
I’m	just	going	to	draw	undirected	edges.
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This	path	is	shorter,	

it	has	cost	5.
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Shortest	paths
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Q:	What’s	the	shortest	

path	from	Packard to	

the	Union?

This	is	the	shortest	

path	from	Gates	to	

the	Union.

It	has	cost	6.



Warm-up

• A	sub-path	of	a	shortest	path	is	also	a	shortest	path.

• Say	this is	a	shortest	path	from	s	to	t.

• Claim:	this is	a	shortest	path	from	s	to	x.

• Suppose	not,	this one	is	shorter.

• But	then	that	gives	an	even	shorter	path	from	s	to	t!

s
x t



Single-source shortest-path	problem

• I	want	to	know	the	shortest	path	from	one	vertex	
(Gates)	to	all	other	vertices.

Destination Cost To	get there

Packard 1 Packard

CS161 2 Packard-CS161

Hospital 10 Hospital

Caltrain 17 Caltrain

Union 6 Packard-CS161-Union

Stadium 10 Stadium

Dish 23 Packard-Dish

(Not	necessarily	stored	as	a	table	– how	this	information	

is	represented	will	depend	on	the	application)



Example

• I	regularly	have	to	
solve	“what	is	the	
shortest	path	from	
Palo	Alto	to	
[anywhere	else]”
using	BART,	Caltrain,	
lightrail,	MUNI,	bus,	
Amtrak,	bike,	
walking,	uber/lyft.

• Edge	weights	have	
something	to	do	
with	time,	money,	
hassle.	 (They	also	
change	depending	on	my	
mood	and	traffic…).



Example

• Network	routing

• I	send	information	
over	the	internet,	
from	my	computer	
to	to	all	over	the	
world.

• Each	path	has	a	cost	
which	depends	on	
link	length,	traffic,	
other	costs,	etc..	

• How	should	we	
send	packets?



Aside:	These	are	difficult	problems

• Costs	may	change

• If	it’s	raining	the	cost	of	biking	is	higher

• If	a	link	is	congested,	the	cost	of	routing	a	packet	along	it	
is	higher

• The	network	might	not	be	known

• My	computer	doesn’t	store	a	map	of	the	internet

• We	want	to	do	these	tasks	really	quickly

• I	have	time	to	bike	to	Berkeley,	but	not	to	contemplate

biking	to	Berkeley…

• More	seriously,	the	internet. This	is	a	joke.

But	let’s	ignore	them	for	now.
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Dijkstra’s	algorithm

• What	are	the	shortest	paths	
from	Gates	to	everywhere	
else?
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intuition
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YOINK!

A	vertex	is	done	when	it’s	not	

on	the	ground	anymore.

Dijkstra	
intuition
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This	also	creates	a	

tree	structure!

The	shortest	paths	

are	the	lengths	

along	this	tree.



How	do	we	actually	implement	this?

•Without string	and	gravity?
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I’m	sure

How	far	is	a	node	from	Gates?

x x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).

∞

∞

∞

∞Initialize	d[v]	=	∞
for	all	non-starting	vertices	

v,	and	d[Gates]	=	0	

0

• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v]	=	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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Current	node	u

• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).



Dijkstra	by	example Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161
I’m	not	sure	yet

I’m	sure

x

0

2

6

23

1

• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

How	far	is	a	node	from	Gates?

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).
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• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v] =	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.
• Repeat

Current	node	u

How	far	is	a	node	from	Gates?

x	=	d[v] is	my	best	over-estimate

for	dist(Gates,v).



Dijkstra’s	algorithm

• Set	all	vertices	to	not-sure

• d[v]	=	∞ for	all	v	in	V
• d[s]	=	0

• While	there	are	not-sure nodes:

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• For v	in	u.neighbors:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.

• Now	d(s,	v)	=	d[v]

See	IPython Notebook	for	code!

Lots	of	implementation	details	left	un-explained.		

We’ll	get	to	that!

Dijkstra(G,s):



As	usual

• Does	it	work?

• Yes.

• Is	it	fast?

• Depends	on	how	you	implement	it.



Why	does	this	work?

• Theorem:		
• Run	Dijkstra	on	G	=(V,E),	starting	from	s.	

• At	the	end	of	the	algorithm,	the	estimate	d[v]	is	the	actual	
distance	d(s,v).

• Proof	outline:
• Claim	1:	For	all	v,	d[v]≥	d(s,v).
• Claim	2:	When	a	vertex	v	is	marked	sure,	d[v]	=	d(s,v).

• Claims	1	and	2 imply	the	theorem.
• By	the	time	we	are	sure about	v,	d[v]	=	d(s,v).	

• d[v]	never	increases,	so	after	v	is	sure,	d[v]	stops	changing.

• All	vertices	are	eventually	sure.		(Stopping	condition	in	algorithm)

• So	all	vertices	end	up	with	d[v]	=	d(s,v).

Let’s	rename	“Gates”	to	

“s”,	our	starting	vertex.

Next	let’s	prove	the	claims!



Claim	1
d[v]	≥ d(s,v)	for	all	v.

• Every	time	we	update	d[v],	we	have	a	path	in	mind:

• d[v]	=	length	of	the	path	we	have	in	mind		

≥ length	of	shortest	path	

=	d(s,v)
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Informally:

Formally:

• We	should	prove	this	by	induction.

• (See	hidden	slide	or	do	it	yourself)

Intuition!

d[v]	←	min(	d[v] ,	d[u]	+	edgeWeight(u,v)	)

Whatever	path	we	

had	in	mind	before
The	shortest	path	to	u,	and	

then	the	edge	from	u	to	v.



Claim	1
d[v]	≥ d(s,v)	for	all	v.

• Inductive	hypothesis.

• After	t	iterations	of	Dijkstra,	

d[v]	≥ d(s,v)	for	all	v.

• Base	case:

• At	step	0,	d s, s = 0, and	𝑑 𝑠, 𝑣 ≤ ∞
• Inductive	step:		say	hypothesis	holds	for	t.

• At	step	t+1:

• Pick	u;	for	each	neighbor	v:

• d[v]	←min(	d[v]	,	d[u]	+	w(u,v)	)
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By	induction,

𝑑 𝑠, 𝑣 ≤ 𝑑[𝑣]
d 𝑠, 𝑣 ≤ 𝑑 𝑠, 𝑢 + 𝑑 𝑢, 𝑣

≤ 𝑑[𝑢] + 𝑤 𝑢, 𝑣
using	induction	again	for	d[u]

≥ 𝑑(𝑠, 𝑣)

So	the	inductive	

hypothesis	holds	

for	t+1,	and	Claim	

1	follows.

THIS	SLIDE	

SKIPPED	IN	CLASS



Claim	2
When	a	vertex	u	is	marked	sure,	d[u]	=	d(s,u)

• For	s	(the	start	vertex):

• The	first	vertex	marked	sure has	d[s]	=	d(s,s)	=	0.

• For	all	the	other	vertices:

• Suppose	that	we	are	about	to	add	u	to	the	sure list.

• That	is,	we	picked	u	in	the	first	line	here:		

• Want	to	show	that	d[u]	=	d(s,u).

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.

• Repeat



Intuition
When	a	vertex	u	is	marked	sure,	d[u]	=	d(s,u)

• The	first	path	that	lifts	u off	the	
ground	is	the	shortest	one.
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But	let’s	actually	prove	it.



Claim	2

• Want	to	show	that	u	is	good.

u

s

True	shortest	path.

Temporary	definition:

v	is	“good”	means	that	d[v]	=	d(s,v)

The	vertices	in	between	

are	beige	because	they	

may	or	may	not	be	sure.

Consider	a	true shortest	

path	from	s	to	u:



Claim	2

• Want	to	show	that	u	is	good.

• Say	z	is	the	last	good	vertex	before	u.

• z’	is	the	vertex	after	z.

u

s

True	shortest	path.

Temporary	definition:

v	is	“good”	means	that	d[v]	=	d(s,v)

means	good means	not	good

The	vertices	in	between	

are	beige	because	they	

may	or	may	not	be	sure.

z	!=	u,	since	u	is	not	good.

It	may	be	that	z’	=	u.
It	may	be	that	z	=	s. z

z’

“by	way	of	contradiction”

u

BWOC,	suppose	u	isn’t	good.



Claim	2

• Want	to	show	that	u	is	good.

u

z’

z
s

True	shortest	path.

r

Temporary	definition:

v	is	“good”	means	that	d[v]	=	d(s,v)

means	good means	not	good

It	may	be	that	z’	=	u.

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
z	is	good This	is	the	shortest	

path	from	s	to	u.
Claim	1

• If	𝑑 𝑧 = 𝑑 𝑢 ,	then	u	is	good.

• If	𝑑 𝑧 < 𝑑 𝑢 ,	then	z	is	sure.

It	may	be	that	z	=	s.

We	chose	u	so	that	d[u]	was	

smallest	of	the	unsure	vertices.

So	therefore	

z	is	sure.

BWOC,	suppose	u	isn’t	good.



It	may	be	that	z’	=	u.

Claim	2

• Want	to	show	that	u	is	good.

• If	z	is	sure then	we’ve	already	updated	z’:

• 𝑑 𝑧′ ← min{	𝑑 𝑧@ , 𝑑 𝑧 + 𝑤 𝑧, 𝑧@ },	so

𝒅 𝒛′ ≤ 𝒅 𝒛 + 𝒘 𝒛, 𝒛@ = 𝒅 𝒔, 𝒛@ ≤ 𝒅[𝒛@]

Temporary	definition:

v	is	“good”	means	that	d[v]	=	d(s,v)

means	good means	not	good

u

z’

z
s

True	shortest	path.

r

So	everything	is	equal!

d(s,z’)	=	d[z’]		

And	z’	is	good.

CONTRADICTION!!

It	may	be	that	z	=	s. z

BWOC,	suppose	u	isn’t	good.



It	may	be	that	z’	=	u.

Claim	2

• Want	to	show	that	u	is	good.

u

z’

z
s

True	shortest	path.

r

Temporary	definition:

v	is	“good”	means	that	d[v]	=	d(s,v)

means	good means	not	good

𝑑 𝑧 = 𝑑 𝑠, 𝑧 ≤ 𝑑 𝑠, 𝑢 ≤ 𝑑[𝑢]
Def.	of	z This	is	the	shortest	

path	from	s	to	x
Claim	1

• If	𝑑 𝑧 = 𝑑 𝑢 ,	then	u	is	good.

• If	𝑑 𝑧 < 𝑑 𝑢 ,	then	z	is	sure.

It	may	be	that	z	=	s.

So	u	is	

good!

aka	d[u]	=	d(s,v)

BWOC,	suppose	u	isn’t	good.



Claim	2
When	a	vertex	is	marked	sure,	d[u]	=	d(s,u)

• For	s	(the	starting	vertex):

• The	first	vertex	marked	sure has	d[s]	=	d(s,s)	=	0.

• For	all	other	vertices:

• Suppose	that	we	are	about	to	add	u	to	the	sure list.

• That	is,	we	picked	u	in	the	first	line	here:		

Then	u	is	good! aka	d[u]	=	d(s,u)

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.

• Repeat



Why	does	this	work?

• Theorem:		

• Run	Dijkstra	on	G	=(V,E)	starting	from	s.

• At	the	end	of	the	algorithm,	the	estimate	d[v]	is	the	
actual	distance	d(s,v).

• Proof	outline:

• Claim	1:	For	all	v,	d[v]≥	d(s,v).
• Claim	2:	When	a	vertex	is	marked	sure,	d[v]	=	d(s,v).

• Claims	1	and	2 imply	the	theorem.



What	did	we	just	learn?

• Dijkstra’s	algorithm	finds	
shortest	paths	in	weighted	
graphs	with	non-negative	edge	
weights.

• Along	the	way,	it	constructs	a	
nice	tree.

• We	could	post	this	tree	in	Gates!

• Then	people	would	know	how	to	
get	places	quickly.

Gates

Union

Packard

CS161

1

1

Dish

4
22

YOINK!



As	usual

• Does	it	work?

• Yes.

• Is	it	fast?

• Depends	on	how	you	implement	it.



Running	time?

• n	iterations	(one	per	vertex)

• How	long	does	one	iteration	take?

Depends	on	how	we	implement	it…

• Set	all	vertices	to	not-sure

• d[v]	=	∞ for	all	v	in	V
• d[s]	=	0

• While	there	are	not-sure nodes:

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• For v	in	u.neighbors:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v)	)

• Mark	u	as sure.

• Now	dist(s,	v)	=	d[v]

Dijkstra(G,s):



We	need	a	data	structure	that:

• Stores	unsure	vertices	v

• Keeps	track	of	d[v]

• Can	find	u	with	minimum	d[u]		

• findMin()

• Can	remove	that	u	

• removeMin(u)

• Can	update	(decrease)	d[v]	

• updateKey(v,d)

• Pick	the not-sure node	u	with	the	

smallest	estimate	d[u].

• Update	all	u’s	neighbors	v:

• d[v]←min(	d[v]	,	d[u]	+	

edgeWeight(u,v))

• Mark	u	as sure.

F 𝑇 findMin + F 𝑇 updateKey 	
�

Q∈S.UVWXYZ[\]
+ 𝑇(removeMin)

�

S∈a

= n( T(findMin)	+ T(removeMin)	) +	m T(updateKey)

Total	running	time	is	big-oh	of:

Just	the	inner	loop:



If	we	use	an	array

• T(findMin)	=	O(n)

• T(removeMin)	=	O(n)

• T(updateKey)	=	O(1)

• Running	time	of	Dijkstra		

=O(n(	T(findMin)	+	T(removeMin)	)	+	m	T(updateKey))

=O(n^2)	+	O(m)

=O(n^2)



If	we	use	a	red-black	tree

• T(findMin)	=	O(log(n))

• T(removeMin)	=	O(log(n))

• T(updateKey)	=	O(log(n))

• Running	time	of	Dijkstra		

=O(n(	T(findMin)	+	T(removeMin)	)	+	m	T(updateKey))

=O(nlog(n))	+	O(mlog(n))

=O((n	+	m)log(n))

Better	than	an	array	if	the	graph	is	sparse!
aka	if	m	is	much	smaller	than	n2



Is	a	hash	table	a	good	idea	here?

• Not	really:

• Search(v)	is	fast	(in	expectation)

• But	findMin()	will	still	take	time	O(n)	without	
more	structure.

O(n(	T(findMin)	+	T(removeMin)	)	+ m	T(updateKey))

Slide	skipped	in	class



Heaps support	these	operations

• T(findMin)	

• T(removeMin)

• T(updateKey)

• A	heap	is	a	tree-based	data	structure	that	has	the	
property	that	every	node	has	a	smaller	key	than	its	
children.

• Not	covered	in	this	class	– see	CS166!		(Or	CLRS).

• But!	We	will	use	them.

104

3

0

2

56



Many	heap	implementations

Nice	chart	on	Wikipedia:



Say	we	use	a	Fibonacci	Heap

• T(findMin)	=	O(1)																																								(amortized	time*)

• T(removeMin)	=	O(log(n))																									(amortized	time*)

• T(updateKey)	=	O(1)																																			(amortized	time*)

• See	CS166	for	more!		(or	CLRS)

• Running	time	of	Dijkstra		

= O(n(	T(findMin)	+	T(removeMin)	)	+	m	T(updateKey))

= O(nlog(n)	+	m)		(amortized	time)

*This	means	that	any	sequence	of	d	removeMin calls	takes	time	at	most	O(dlog(n)).		

But	a	few	of	the	d	may	take	longer	than	O(log(n))	and	some	may	take	less	time..



In	practice

See	IPython Notebook	for	Lecture	11

The	heap	is	implemented	using		heapdict

Dijkstra	using	a	Python	

list	to	keep	track	of	

vertices	has	quadratic	

runtime.

Dijkstra	using	a	heap	

looks	a	bit	more	linear	

(actually	nlog(n))

BFS	is	really	fast	by	

comparison!		But	it	

doesn’t	work	on	

weighted	graphs.



Dijkstra	is	used	in	practice

• eg,	OSPF	(Open	Shortest	Path	First),	a	routing	
protocol	for	IP	networks,	uses	Dijkstra.

But	there	are	
some	things	it’s	
not	so	good	at.



Dijkstra	Drawbacks

• Needs	non-negative	edge	weights.

• If	the	weights	change,	we	need	to	re-run	the	
whole	thing.

• in	OSPF,	a	vertex	broadcasts	any	changes	to	the	
network,	and	then	every	vertex	re-runs	Dijkstra’s	
algorithm	from	scratch.



Bellman-Ford	algorithm

• (-)	Slower	than	Dijkstra’s	algorithm

• (+)	Can	handle	negative	edge	weights.

• (+)	Allows	for	some flexibility if	the	weights	change.

• We’ll	see	what	this	means	later



Drawbacks	of	Dijkstra

• Can’t	handle	negative	edge	weights

• Need	to	know	the	network	topology	and	weights	in	
advance.

• eg,	in	OSPF	on	the	previous	slide,	if	there	are	any	
changes	to	the	network,	a	node	broadcasts	that	change	
to	everybody	and	everybody	re-runs	Dijkstra	from	
scratch.

CS161

Gates

Union

Dish

Stadium

Hospital

Caltrain

Packard

Why	negative	

edge	weights?

I	often	choose	to	take	these	

long	paths	to	the	dish	and	back	

for	recreation!		It	“costs”	me	

negative	happiness!

There’s	frequently	free	food	

over	here,	this	“costs”	me	

negative	deliciousness	to	

walk	by	it.



One	problem	
with	negative	edge	weights

• What	is	the	shortest	path	from	
Gates	to	the	Union?

• Should	it	still	be

Gates—Packard—CS161—Union?

• But	what	about

• G—P—D—G—P—CS161—Union

• That	costs

• 1-2-3+1+1+4	=	2.

• And	why	not

Gates

Union

Dish

Packard

1

1

4

-3

10

-2

CS161

G—P—D—G—P—D—G—P—D—G—P—D—G—P—D—G—

P—D—G—P—D—G—P—D—G—P—D—G—P—D—G—P—

D—G—P—D—G—P—D—G—P—D—G—P—D—etc….

Shortest	Paths	aren’t	

well-defined	if	there	

are	negative	cycles!



Let’s	put	that	aside	for	a	moment

Onwards!

To	the	Bellman-Ford	

algorithm!



Bellman-Ford	algorithm

• d[v]	=	∞ for	all	v	in	V

• d[s]	=	0

• For i=0,…,n-1:

• For u	in	V:

• For v	in	u.neighbors:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• While	there	are	not-sure nodes:

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• For v	in	u.neighbors:

• d[v]←	min(	d[v]	,	d[u]	+	edgeWeight(u,v))

• Mark	u	as sure.

Compare	to	Dijkstra:

Bellman-Ford(G,s):

Instead	of	picking	u	cleverly,	

just	update	for	all	of	the	u’s.



For	pedagogical	reasons
which	we	will	see	next	week

• We	are	actually	going	to	change	this	to	be	dumber.

• Keep	n	arrays:	d(0),	d(1),	…,	d(n-1)

• d(0)[v]	=	∞ for	all	v	in	V

• d(0)[s]	=	0

• For i=0,…,n-1:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

• Then	dist(s,v)	=	d(n-1)[v]

Bellman-Ford*(G,s):
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How	far	is	a	node	from	Gates?

0

∞

∞

∞

∞

Start	with	the	same	graph,	no	

negative	weights.

i=1

=

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

d(1)

d(2)

d(3)

d(4)
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How	far	is	a	node	from	Gates?

0

∞

∞

25

1

Start	with	the	same	graph,	no	

negative	weights.

i=1

=

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)
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How	far	is	a	node	from	Gates?

0

2

45

23

1

Start	with	the	same	graph,	no	

negative	weights.

i=1

=

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)
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How	far	is	a	node	from	Gates?

0

2

6

23

1

Start	with	the	same	graph,	no	

negative	weights.

i=1

=

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

d(4)
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How	far	is	a	node	from	Gates?

0

2

6

23

1

Start	with	the	same	graph,	no	

negative	weights.

i=1

=

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23



As	usual

• Does	it	work?
• Yes

• Idea	to	the	right.

• (Base	case	and	inductive	
step	similar	to	Dijkstra)

• (See	hidden	slides	for	
details)

• Is	it	fast?
• Not	really…

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

Idea:	proof	by	induction.

Inductive	Hypothesis:

d(i)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v	

with	at	most	i edges.

Conclusion:

d(n-1)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v.		

(Since	all	simple	paths	have	at	

most	n-1	edges).

0 1 2 6 23d(4)



Proof	by	induction

• Inductive	Hypothesis:

• After	iteration	i,	for	each	v,	d(i)[v]	is	equal	to	the	cost	of	
the	shortest	path	between	s	and	v	with	at	most	i edges.

• Base	case:

• After	iteration	0…

• Inductive	step:

Skipped	in	class



Inductive	step

• Suppose	the	inductive	hypothesis	holds	for	i.

• We	want	to	establish	it	for	i+1.

v

u

s

Let	u	be	the	vertex	right	

before	v	in	this	path.Say	this	is	the	shortest	path	between	

s	and	v	of	with	at	most	i+1	edges:

at	most	i edges

• By	induction,	d(i)[u]	is	the	cost	of	a	shortest	path	between	s	and	u	of	i edges.

• By	setup,	d(i)[u]	+	w(u,v)	is	the	cost	of	a	shortest	path	between	s	and	v	of	i+1	edges.	

• In	the	i+1’st	iteration,	we	ensure	d(i+1)[v]	<=	d(i)[u]	+	w(u,v).

• So	d(i+1)[v]	<=	cost	of	shortest	path	between	s	and	v	with	i+1	edges.

• But	d(i+1)[v]	=	cost	of	a	particular	path	of	at	most	i+1	edges	>=	cost	of	shortest	path.

• So	d[v]	=	cost	of	shortest	path	with	at	most	i+1	edges.

Hypothesis: After	iteration	i,	for	each	v,	d(i)	[v]	is	

equal	to	the	cost	of	the	shortest	path	between	s	

and	v	with	at	most	i edges.

Skipped	in	class



Proof	by	induction

• Inductive	Hypothesis:

• After	iteration	i,	for	each	v,	d(i)[v]	is	equal	to	the	cost	of	the	
shortest	path	between	s	and	v	of	length	at	most	i edges.

• Base	case:

• After	iteration	0…

• Inductive	step:

• Conclusion:

• After	iteration	n-1,	for	each	v,	d[v]	is	equal	to	the	cost	of	the	
shortest	path	between	s	and	v	of	length	at	most	n-1	edges.

• Aka,	d[v]	=	d(s,v)	for	all	v as	long	as	there	are	no	cycles!

Skipped	in	class



This	seems	much	slower	than	Dijkstra

• And	it	is:

Running	time	O(mn)

• However,	it’s	also	more	flexible	in	a	few	ways.

• Can	handle	negative	edges

• If	we	keep	on	doing	these	iterations,	then	changes	in	the	
network	will	propagate	through.		

• For i=0,…,n-1:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))



Negative	edge	weights Gates
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• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

-3

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3
4

This	is	not	looking	good!
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• For i=0,…,n-1:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]	←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

∞

-3

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3

-4 -5 -4 6d(4) -7

4

But	we	can	tell	that	it’s	not	looking	good:

Some	stuff	changed!

-4 -9 -4 3d(5) -7



Back	to	the	
correctness

• Does	it	work?

• Yes

• Idea	to	the	right.

• (Base	case	and	inductive	
step	similar	to	Dijkstra)

∞

25

0 ∞ ∞ ∞
Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

Idea:	proof	by	induction.

Inductive	Hypothesis:

d(i)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v	

with	at	most	i edges.

Conclusion:

d(n-1)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v.		

(Since	all	simple	paths	have	at	

most	n-1	edges).

If	there	are	negative	cycles,	

then	non-simple	paths	matter!



How	Bellman-Ford	deals	with	
negative	cycles

• If	there	are	no	negative	cycles:	
• Everything	works	as	it	should.

• The	algorithm	stabilizes	after	n-1	rounds.

• Note:	Negative	edges are	okay!!

• If	there	are	negative	cycles:	
• Not	everything	works	as	it	should…

• Note:	it	couldn’t	possibly	work,	since	shortest	paths	aren’t	
well-defined	if	there	are	negative	cycles.

• The	d[v]	values	will	keep	changing.

• Solution:
• Go	one	round	more	and	see	if	things	change.



Bellman-Ford	algorithm

• d(0)[v]	=	∞ for	all	v	in	V

• d(0)[s]	=	0

• For i=0,…,n-1:

• For u	in	V:

• For v	in	u.neighbors:

• d(i+1)[v]←	min(	d(i)[v]	,	d(i)[u]	+	edgeWeight(u,v))

• If	d(n-1) !=	d(n) :

• Return NEGATIVE	CYCLE	L

• Otherwise,	dist(s,v)	=	d(n-1)[v]

Bellman-Ford*(G,s):



• The	Bellman-Ford	algorithm:	

• Finds	shortest	paths	in	weighted	graphs	with	negative	
edge	weights

• runs	in	time	O(nm)	on	a	graph	G	with	n	vertices	and	m	
edges.	

• If	there	are	no	negative	cycles	in	G:

• the	BF	algorithm	terminates	with	d(n-1)[v]	=	d(s,v).

• If	there	are	negative	cycles	in	G:	

• the	BF	algorithm	returns negative cycle.

What	have	we	learned?



Bellman-Ford	is	also	used	in	practice.

• eg,	Routing	Information	Protocol	(RIP)	uses	something	
like	Bellman-Ford.

• Older	protocol,	not	used	as	much	anymore.

• Each	router	keeps	a	
table of	distances	to	
every	other	router.

• Periodically	we	do	a	
Bellman-Ford	update.

• This	means	that	if	there	
are	changes	in	the	
network,	this	will	
propagate.	(maybe	slowly…)

Destination Cost	to	get	

there

Send	to	

whom?

172.16.1.0 34 172.16.1.1

10.20.40.1 10 192.168.1.2

10.155.120.1 9 10.13.50.0



Recap:	shortest	paths

• BFS:

• (+)	O(n+m)

• (-)	only	unweighted	graphs

• Dijkstra’s	algorithm:
• (+)	weighted	graphs

• (+)	O(nlog(n)	+	m)	if	you	implement	it	right.

• (-)	no	negative	edge	weights

• (-)	very	“centralized”	(need	to	keep	track	of	all	the	vertices	to	know	
which	to	update).

• The	Bellman-Ford	algorithm:
• (+)	weighted	graphs,	even	with	negative	weights

• (+)	can	be	done	in	a	distributed	fashion,	every	vertex	using	only	
information	from	its	neighbors.

• (-)	O(nm)



Andrés	found	a	Dijkstra	joke	on	

the	internets	– thanks	Andrés!

Perhaps	this	is	why	

Dijkstra	invented	the	

algorithm?



Next	Time

• More	Bellman-Ford,	plus	Floyd-Warshall and	
dynamic	programming!

• Pre-lecture	exercise:

• How	NOT to	compute	Fibonacci	numbers.

Before next	time



Mini-topic	(bonus	slides;	not	on	exam)
Amortized	analysis!

• We	mentioned	this	when	we	talked	about	
implementing	Dijkstra.

• What’s	the	difference	between	this	notion	and	
expected	runtime?

*Any	sequence	of	d	deleteMin calls	takes	

time	at	most	O(d	log(n)).		But	some	of	the	d	

may	take	longer	and	some	may	take	less	time.



Example

• Incrementing	a	binary	counter	n	times.

• Say	that	flipping	a	bit	is	costly.

• Above,	we’ve	noted	the	cost	in	terms	of	bit-flips.
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Example

• Incrementing	a	binary	counter	n	times.

• Say	that	flipping	a	bit	is	costly.

• Some	steps	are	very	expensive.

• Many	are	very	cheap.

• Amortized over	all	the	inputs,	it	turns	out	to	be	
pretty	cheap.		

• O(n)	for	all	n	increments.
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This	is	different	from	expected	runtime.

• The	statement	is	deterministic,	no	randomness	here.

• But	it	is	still	weaker	than	worst-case runtime.

• We	may	need	to	wait	for	a	while	to	start	making	it	worth	it.


