Lecture 11

Weighted Graphs: Dijkstra and Bellman-Ford

Announcements

- HW5 will be posted Friday
- We will be doing midterm grading on Sunday.
- Returned Monday (hopefully)
- The midterm was hard.
- That's okay, that's what the curve is for.

Last week

- Graphs!
- DFS
- Topological Sorting
- Strongly Connected Components
- BFS
- Shortest Paths in unweighted graphs

Today

- What if the graphs are weighted?
- All nonnegative weights: Dijkstra!
- If there are negative weights: Bellman-Ford!

Just the graph

How do I get from Gates to the Union?n?

Just the graph

How do I get from Gates to the Union?

Shortest path problem

- What is the shortest path between u and v in a weighted graph?
- the cost of a path is the sum of the weights along that path
- The shortest path is the one with the minimum cost.

- The distance $d(u, v)$ between two vertices u and v is the cost of the the shortest path between u and v.
- For this lecture all graphs are directed, but to save on notation I'm just going to draw undirected edges.

Shortest paths

This is the shortest path from Gates to the Union.

It has cost 6.

20

Q: What's the shortest path from Packard to the Union?

Warm-up

- A sub-path of a shortest path is also a shortest path.
- Say this is a shortest path from s to t.
- Claim: this is a shortest path from s to x.
- Suppose not, this one is shorter.
- But then that gives an even shorter path from s to t!

Single-source shortest-path problem

- I want to know the shortest path from one vertex (Gates) to all other vertices.

Destination	Cost	To get there
Packard	1	Packard
CS161	2	Packard-CS161
Hospital	10	Hospital
Caltrain	17	Caltrain
Union	6	Packard-CS161-Union
Stadium	10	Stadium
Dish	23	Packard-Dish

(Not necessarily stored as a table - how this information is represented will depend on the application)

Example

- I regularly have to solve "what is the shortest path from Palo Alto to [anywhere else]" using BART, Caltrain, lightrail, MUNI, bus, Amtrak, bike, walking, uber/lyft.
- Edge weights have something to do with time, money, hassle. (They also change depending on my mood and traffic...).

Example

- Network routing

- I send information over the internet, from my computer to to all over the world.
- Each path has a cost which depends on link length, traffic, other costs, etc..
- How should we send packets?

[DN0a22a0e3:~ mary\$ traceroute -a www.ethz.ch
traceroute to www.ethz.ch (129.132.19.216), 64 hops max, 52 byte packets
1 [AS0] 10.34.160.2 (10.34.160.2) 38.168 ms 31.272 ms 28.841 ms
2 [AS0] cwa-vrtr.sunet (10.21.196.28) 33.769 ms 28.245 ms 24.373 ms
3 [AS32] 171.66.2.229 (171.66.2.229) $24.468 \mathrm{~ms} \quad 20.115 \mathrm{~ms} \quad 23.223 \mathrm{~ms}$
4 [AS32] hpr-svl-rtr-vlan8.sunet (171.64.255.235) 24.644 ms 24.962 ms
5 [AS2152] hpr-svl-hpr2--stan-ge.cenic.net (137.164.27.161) 22.129 ms 4.
6 [AS2152] hpr-lax-hpr3--svl-hpr3-100ge.cenic.net (137.164.25.73) 12.125
7 [AS2152] hpr-i2--lax-hpr2-r\&e.cenic.net (137.164.26.201) 40.174 ms 38.
8 [AS0] et-4-0-0.4079.sdn-sw.lasv.net.internet2.edu (162.252.70.28) 46.57
9 [AS0] et-5-1-0.4079.rtsw.salt.net.internet2.edu (162.252.70.31) 30.424
10 [AS0] et-4-0-0.4079.sdn-sw.denv.net.internet2.edu (162.252.70.8) 47.454
11 [AS0] et-4-1-0.4079.rtsw.kans.net.internet2.edu (162.252.70.11) 70.825
12 [AS0] et-4-1-0.4070.rtsw.chic.net.internet2.edu (198.71.47.206) 77.937
13 [AS0] et-0-1-0.4079.sdn-sw.ashb.net.internet2.edu (162.252.70.60) 77.68
14 [AS0] et-4-1-0.4079.rtsw.wash.net.internet2.edu (162.252.70.65) 71.565
15 [AS21320] internet2-gw.mx1.lon.uk.geant.net (62.40.124.44) 154.926 ms
16 [AS21320] ae0.mx1.lon2.uk.geant.net (62.40.98.79) 146.565 ms 146.604 m
17 [AS21320] ae0.mx1.par.fr.geant.net (62.40.98.77) 153.289 ms 184.995 ms
18 [AS21320] ae2.mx1.gen.ch.geant.net (62.40.98.153) 160.283 ms 160.104 m
19 [AS21320] swice1-100ge-0-3-0-1.switch.ch (62.40.124.22) 162.068 ms 160
20 [AS559] swizh1-100ge-0-1-0-1.switch.ch (130.59.36.94) 165.824 ms 164.2
21 [AS559] swiez3-100ge-0-1-0-4.switch.ch (130.59.38.109) 164.269 ms 164.
22 [AS559] rou-gw-lee-tengig-to-switch.ethz.ch (192.33.92.1) 164.082 ms 1
23 [AS559] rou-fw-rz-rz-gw.ethz.ch (192.33.92.169) $164.773 \mathrm{~ms} \quad 165.193 \mathrm{~ms}$

Aside: These are difficult problems

- Costs may change
- If it's raining the cost of biking is higher
- If a link is congested, the cost of routing a packet along it is higher
- The network might not be known
- My computer doesn't store a map of the internet
- We want to do these tasks really quickly
- I have time to bike to Berkeley, but not to contemplate biking to Berkeley...
- More seriously, the internet.

Dijkstra's algorithm

- What are the shortest paths from Gates to everywhere else?

Dijkstra
 intuition

YOINK!

Dijkstra intuition

A vertex is done when it's not on the ground anymore.

YOINK!

Dijkstra
 intuition

YOINK!

Dijkstra
 intuition

YOINK!

Dijkstra

YOINK!

intuition

Dijkstra
intuition

Dijkstra intuition

This also creates a tree structure!

The shortest paths are the lengths along this tree.

How do we actually implement this?

- Without string and gravity?

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Initialize $\mathrm{d}[\mathrm{v}]=\infty$ for all non-starting vertices
v , and $\mathrm{d}[$ Gates $]=0$

- Pick the not-sure node u with the smallest estimate d[u].

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for $\operatorname{dist}($ Gates, v$)$.

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra by example

How far is a node from Gates?

I'm not sure yet
I'm sure
$\mathrm{x}=\mathrm{d}[\mathrm{v}]$ is my best over-estimate for dist(Gates,v).

Current node u

- Pick the not-Sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $d[v]=\min (d[v], d[u]+e d g e W e i g h t(u, v))$
- Mark u as Sure.
- Repeat

Dijkstra's algorithm

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For vin u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($\mathrm{u}, \mathrm{v})$)
- Mark u as sure.
- Now d(s, v) $=d[v]$ We'll get to that!

See IPython Notebook for code!

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Why does this work?

- Theorem:
- Run Dijkstra on $G=(V, E)$, starting from .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $d(s, v)$.
- Proof outline:

Let's rename "Gates" to
" s ", our starting vertex.

- Claim 1: For all $\mathrm{v}, \mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Claim 2: When a vertex v is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.
- By the time we are sure about $\mathrm{v}, \mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- d[v] never increases, so after v is sure, d[v] stops changing.
- All vertices are eventually sure. (Stopping condition in algorithm)
- So all vertices end up with $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.

Claim 1

$\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

Informally:

- Every time we update d[v], we have a path in mind:

$$
\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v}))
$$

Whatever path we had in mind before

The shortest path to u, and then the edge from u to v.

- $\mathrm{d}[\mathrm{v}]=$ length of the path we have in mind
\geq length of shortest path
$=\mathrm{d}(\mathrm{s}, \mathrm{v})$
Formally:
- We should prove this by induction.
- (See hidden slide or do it yourself)

Claim 1 $\mathrm{d}[\mathrm{v}] \geq \mathrm{d}(\mathrm{s}, \mathrm{v})$ for all v .

- Inductive hypothesis.
- After titerations of Dijkstra, $d[v] \geq d(s, v)$ for all v.
- Base case:
- At step $0, \mathrm{~d}(\mathrm{~s}, \mathrm{~s})=0$, and $d(s, v) \leq \infty$
- Inductive step: say hypothesis holds for t .
- At step t+1:
- Pick u; for each neighbor v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})) \geq d(s, v)$

Claim 2

When a vertex u is marked sure, $d[u]=d(s, u)$

- For s (the start vertex):
- The first vertex marked sure has $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- For all the other vertices:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($\mathrm{u}, \mathrm{v})$)
- Mark u as sure.
- Repeat
- Want to show that $d[u]=d(s, u)$.

Intuition

When a vertex u is marked sure, $d[u]=d(s, u)$

- The first path that lifts u off the ground is the shortest one.

But let's actually prove it.

Temporary definition:

Claim 2

- Want to show that u is good.

Consider a true shortest path from s to u:

The vertices in between are beige because they may or may not be sure.

Temporary definition:
Claim 2
v is "good" means that $d[v]=d(s, v)$
means good
means not good
"by way of contradiction"

- Want to show that u is good. BWOC, suppose u isn't good.
- Say z is the last good vertex before u.
- z^{\prime} is the vertex after z.
 are beige because they may or may not be sure.

True shortest path.

Temporary definition:

Claim 2

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$
means good
means not good

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[z]=d(s, z) \leq d(s, u) \leq d[u]
$$

z is good This is the shortest Claim 1 path from s to u.

- If $d[z]=d[u]$, then \mathbf{u} is good.
- If $d[z]<d[u]$, then z is sure.

We chose u so that d[u] was smallest of the unsure vertices.

So therefore z is sure.

Temporary definition:

Claim 2

v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$
means good
means not good

- Want to show that u is good. BWOC, suppose u isn't good.
- If z is sure then we've already updated z^{\prime} :
- $d\left[z^{\prime}\right] \leftarrow \min \left\{d\left[z^{\prime}\right], d[z]+w\left(z, z^{\prime}\right)\right\}$, so

So everything is equal!

$$
\begin{gathered}
d\left(s, z^{\prime}\right)=d\left[z^{\prime}\right] \\
\text { And } z^{\prime} \text { is good. }
\end{gathered}
$$

It may be that $\mathrm{z}=\mathrm{s}$.
True shortest path.

Back to this slide
Claim 2

Temporary definition:
v is "good" means that $\mathrm{d}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$
means good

means not good

- Want to show that u is good. BWOC, suppose u isn't good.

$$
d[z]=d(s, z) \leq d(s, u) \leq d[u]
$$

Def. of $z \quad$ This is the shortest Claim 1 path from s to x

- If $d[z]=d[u]$, then \mathbf{u} is good.
- If $d[z]<d[u]$, then z is sure.

Back to this slide

Claim 2
When a vertex is marked sure, $d[u]=d(s, u)$

- For s (the starting vertex):
- The first vertex marked sure has $\mathrm{d}[\mathrm{s}]=\mathrm{d}(\mathrm{s}, \mathrm{s})=0$.
- For all other vertices:
- Suppose that we are about to add u to the sure list.
- That is, we picked u in the first line here:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($u, v)$)
- Mark u as sure.
- Repeat

Then u is good! aka $d[u]=d(s, u)$

Why does this work?

Now back to this slide

- Theorem:
- Run Dijkstra on $G=(\mathrm{V}, \mathrm{E})$ starting from s .
- At the end of the algorithm, the estimate $d[v]$ is the actual distance $\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Proof outline:
- Claim 1: For all v, div] $\geq \mathrm{d}(\mathrm{s}, \mathrm{v})$.
- Claim 2: When a vertex is marked sure, $d[v]=d(s, v)$.
- Claims 1 and 2 imply the theorem.

What did we just learn?

- Dijkstra's algorithm finds shortest paths in weighted graphs with non-negative edge weights.
- Along the way, it constructs a nice tree.
- We could post this tree in Gates!
- Then people would know how to get places quickly.

1

As usual

- Does it work?
- Yes.
- Is it fast?
- Depends on how you implement it.

Running time?

Dijkstra(G,s):

- Set all vertices to not-sure
- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight($\mathrm{u}, \mathrm{v})$)
- Mark u as sure.
- Now dist(s, v) $=d[v]$
- n iterations (one per vertex)
- How long does one iteration take?

Depends on how we implement it...

We need a data structure that:

Just the inner loop:

- Pick the not-sure node u with the smallest estimate d[u].
- Update all u's neighbors v:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight(u,v))
- Mark u as sure.
- Can remove that u
- removeMin(u)
- Can update (decrease) d[v]
- updateKey(v,d)

Total running time is big-oh of:
$\sum_{u \in V}\left(T(\right.$ findMin $)+\left(\sum_{v \in u . n e i g h b o r s} T(\right.$ updateKey $\left.)\right)+T($ removeMin $\left.)\right)$
$=n(T(f i n d M i n)+T(r e m o v e M i n))+m T(u p d a t e K e y)$

If we use an array

- $\mathrm{T}($ findMin) $=\mathrm{O}(\mathrm{n})$
- T (removeMin) $=O(n)$
- T (updateKey) $=\mathbf{O}(1)$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m \text { T(updateKey })) \\
& =O\left(n^{\wedge} 2\right)+O(m) \\
& =O\left(n^{\wedge} 2\right)
\end{aligned}
$$

If we use a red-black tree

- $\mathrm{T}($ findMin) $=\mathrm{O}(\log (\mathrm{n}))$
- $T($ removeMin $)=O(\log (n))$
- $\mathrm{T}($ updateKey $)=\mathrm{O}(\log (\mathrm{n}))$
- Running time of Dijkstra

$$
\begin{aligned}
& =O(n(T(\text { findMin })+T(\text { removeMin }))+m T(\text { updateKey })) \\
& =O(n \log (n))+O(m \log (n)) \\
& =O((n+m) \log (n))
\end{aligned}
$$

Better than an array if the graph is sparse! aka if m is much smaller than n^{2}

Is a hash table a good idea here?

- Not really:
- Search(v) is fast (in expectation)
- But findMin() will still take time O(n) without more structure.

Heaps support these operations

- T (findMin)
- T(removeMin)
- T(updateKey)

- A heap is a tree-based data structure that has the property that every node has a smaller key than its children.
- Not covered in this class - see CS166! (Or CLRS).
- But! We will use them.

Many heap implementations

Nice chart on Wikipedia:

Operation	B^{2} inary $^{[7]}$	Leftist	Binomial $^{[7]}$	Fibonacci $^{[7][8]}$	Pairing $^{[9]}$	Brodal $^{[10][b]}$	Rank-pairing ${ }^{[12]}$	Strict Fibonacci ${ }^{[13]}$
find-min	$\Theta(1)$	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
delete-min	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$	$O(\log n)^{[c]}$	$O(\log n)^{[c]}$	$O(\log n)$	$O(\log n)^{[c]}$	$O(\log n)$
insert	$O(\log n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$
decrease-key	$\Theta(\log n)$	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)^{[c]}$	$O(\log n)^{[c][d]}$	$\Theta(1)$	$\Theta(1)^{[c]}$	$\Theta(1)$
merge	$\Theta(n)$	$\Theta(\log n)$	$O(\log n)^{[e]}$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

Say we use a Fibonacci Heap

- $\mathrm{T}($ findMin) $=0(1)$
- $\mathrm{T}($ removeMin $)=\mathrm{O}(\log (\mathrm{n}))$
- T (updateKey) $=0(1)$
- See CS166 for more! (or CLRS)
- Running time of Dijkstra
$=O(n(T($ findMin $)+T($ removeMin $))+m T(u p d a t e K e y))$
$=O(n \log (n)+m)($ amortized time)
*This means that any sequence of d removeMin calls takes time at most $O(d \log (n))$. But a few of the d may take longer than $O(\log (n))$ and some may take less time.

In practice

Shortest paths on a graph with n vertices and about 5 n edges

Dijkstra using a Python list to keep track of vertices has quadratic runtime.

Dijkstra using a heap looks a bit more linear (actually nlog(n))

BFS is really fast by comparison! But it doesn't work on weighted graphs.

Dijkstra is used in practice

- eg, OSPF (Open Shortest Path First), a routing protocol for IP networks, uses Dijkstra.

But there are some things it's not so good at.

Dijkstra Drawbacks

- Needs non-negative edge weights.
- If the weights change, we need to re-run the whole thing.
- in OSPF, a vertex broadcasts any changes to the network, and then every vertex re-runs Dijkstra's algorithm from scratch.

Bellman-Ford algorithm

- (-) Slower than Dijkstra's algorithm
- (+) Can handle negative edge weights.
- (+) Allows for some flexibility if the weights change.
- We'll see what this means later

One problem

 with negative edge weights.- What is the shortest path from Gates to the Union?
- Should it still be

Gates-Packard-CS161-Union?

- But what about
- G-P-D-G-P-CS161—Union
- That costs
- 1-2-3+1+1+4 = 2 .
- And why not

Shortest Paths aren't well-defined if there

 are negative cycles!$$
\begin{aligned}
& \mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}- \\
& \mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}- \\
& \mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{G}-\mathrm{P}-\mathrm{D}-\mathrm{etc} . . .
\end{aligned}
$$

Let's put that aside for a moment

Onwards!

To the Bellman-Ford algorithm!

Bellman-Ford algorithm

Bellman-Ford(G,s):

- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:

Instead of picking u cleverly, just update for all of the u's.

- For u in V:
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$

Compare to Dijkstra:

- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For v in u.neighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+$ edgeWeight $(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.

For pedagogical reasons which we will see next week

- We are actually going to change this to be dumber.
- Keep n arrays: $d^{(0)}, d^{(1)}, \ldots, d^{(n-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For u in V :
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$
- Then $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V :
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V :
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V :
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$

Start with the same graph, no

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

	Gates Packard CS161 Union Dish				
$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$d^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$d^{(4)}$					

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V :
- For v in u.neighbors:

$$
\text { - } d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\text { edgeWeight }(u, v)\right)
$$

Start with the same graph, no

Bellman-Ford

 negative weights.How far is a node from Gates?
Gates Packard CS161 Union Dish

	Gates Packard CS161 Union Dish				
$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$d^{(4)}$	0	1	2	6	23

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V :
- For v in u.neighbors:

$$
\text { - } \mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\text { edgeWeight }(\mathrm{u}, \mathrm{v})\right)
$$

As usual

- Does it work?
- Yes
- Idea to the right.
- (Base case and inductive step similar to Dijkstra)
- (See hidden slides for details)

Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$d^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$d^{(4)}$	0	1	2	6	23

Idea: proof by induction. Inductive Hypothesis:
$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

Conclusion:

$d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v. (Since all simple paths have at most n-1 edges).

Skipped in class

Proof by induction

- Inductive Hypothesis:
- After iteration i, for each $v, d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
- Base case:
- After iteration 0...
- Inductive step:

Skipped in class
Inductive step

Hypothesis: After iteration i , for each $\mathrm{v}, \mathrm{d}^{(\mathrm{i})}[\mathrm{v}]$ is equal to the cost of the shortest path between s and v with at most i edges.

- Suppose the inductive hypothesis holds for i.
- We want to establish it for $\mathrm{i}+1$.

Say this is the shortest path between Let u be the vertex right before v in this path.

- By induction, $\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]$ is the cost of a shortest path between s and u of i edges.
- By setup, $d^{(i)}[u]+w(u, v)$ is the cost of a shortest path between s and v of $i+1$ edges.
- In the $i+1$ 'st iteration, we ensure $\mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}]$ <= $\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})$.
- So $\mathrm{d}^{(i+1)}[\mathrm{v}]<=$ cost of shortest path between s and v with $\mathrm{i}+1$ edges.
- But $\mathrm{d}^{(i+1)}[\mathrm{v}]=$ cost of a particular path of at most $\mathrm{i}+1$ edges $>=$ cost of shortest path.
- So $\mathrm{d}[\mathrm{v}]=$ cost of shortest path with at most i+1 edges.

Skipped in class

Proof by induction

- Inductive Hypothesis:
- After iteration i, for each $v, d^{(i)}[v]$ is equal to the cost of the shortest path between s and v of length at most i edges.
- Base case:
- After iteration 0...
- Inductive step:
- Conclusion:
- After iteration $n-1$, for each $\mathrm{v}, \mathrm{d}[\mathrm{v}]$ is equal to the cost of the shortest path between s and vof length at most n-1 edges.
- Aka, $\mathbf{d}[\mathbf{v}]=\mathbf{d}(\mathbf{s}, \mathbf{v})$ for all \mathbf{v} as long as there are no cycles!

This seems much slower than Dijkstra

- And it is:

Running time $\mathrm{O}(\mathrm{mn})$

- However, it's also more flexible in a few ways.
- Can handle negative edges
- If we keep on doing these iterations, then changes in the network will propagate through.
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For u in V :
- For v in u.neighbors:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$

Negative edge weights

This is not looking good!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For u in V:
- For vin u.neighbors:

- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+\right.$ edgeWeight $\left.(u, v)\right)$

Negative edge weights

Gates Packard CS161 Union Dish

$d^{(0)}$| 0 | ∞ | ∞ | ∞ | ∞ |
| :--- | :--- | :--- | :--- | :--- |

$d^{(1)}$	0	1	∞	∞
	-3			

$d^{(2)}$	0	-5	2	7
		-3		

	$d^{(3)}$	-4	-5	-4

	$d^{(4)}$	-4	-5	-4	6

But we can tell that it's not looking good:

	$d^{(5)}$	-4	-9	-4	3
	-7				

- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:

Some stuff changed!

- For u in V:
- For v in u.neighbors:

Back to the correctness

- Does it work?
- Yes
- Idea to the right.
- (Base case and inductive step similar to Dijkstra)

If there are negative cycles, then non-simple paths matter!

Gates Packard CS161 Union Dish

$d^{(0)}$	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$d^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$\mathrm{d}^{(4)}$	0	1	2	6	23

Idea: proof by induction. Inductive Hypothesis:
$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
Conclusion:
$d^{(n-1)}[v]$ is equal to the cost of the shortest path between s and v. (Since all simple paths have at most n-1 edges).

How Bellman-Ford deals with negative cycles

- If there are no negative cycles:
- Everything works as it should.
- The algorithm stabilizes after n-1 rounds.
- Note: Negative edges are okay!!
- If there are negative cycles:
- Not everything works as it should...
- Note: it couldn't possibly work, since shortest paths aren't well-defined if there are negative cycles.
- The d[v] values will keep changing.
- Solution:
- Go one round more and see if things change.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, . . ., \mathrm{n}-1$:
- For u in V:
- For v in u.neighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\right.$ edgeWeight $\left.(\mathrm{u}, \mathrm{v})\right)$
- If $d^{(n-1)}$! $=d^{(n)}$:
- Return NEGATIVE CYCLE :
- Otherwise, $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

What have we learned?

- The Bellman-Ford algorithm:
- Finds shortest paths in weighted graphs with negative edge weights
- runs in time $O(n m)$ on a graph G with n vertices and m edges.
- If there are no negative cycles in G :
- the BF algorithm terminates with $\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]=\mathrm{d}(\mathrm{s}, \mathrm{v})$.
- If there are negative cycles in G :
- the BF algorithm returns negative cycle.

Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
- Older protocol, not used as much anymore.
- Each router keeps a table of distances to every other router.
- Periodically we do a Bellman-Ford update.
- This means that if there are changes in the network, this will propagate. (maybe slowly...)

Destination	Cost to get there	Send to whom?
172.16 .1 .0	34	172.16 .1 .1
10.20 .40 .1	10	192.168 .1 .2
10.155 .120 .1	9	10.13 .50 .0

Recap: shortest paths

- BFS:
- (+) O(n+m)
- (-) only unweighted graphs
- Dijkstra's algorithm:
- (+) weighted graphs
- (+) $O(n \log (n)+m)$ if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).
- The Bellman-Ford algorithm:
- (+) weighted graphs, even with negative weights
- (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
- (-) O(nm)

Andrés found a Dijkstra joke on

 the internets - thanks Andrés!
Bae: Come over

Dijkstra: But there are so many routes to take and I don't know which one's the fastest

Bae: My parents aren't home Dijkstra:

Dijkstra's algorithm

Graph search algorithm

Not to be confused with Dykstra's projection algorithm.
Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later ${ }^{[1][2]}$

The algorithm exists in many variants; Dijkstra's original variant found the shortest path between two nodes, ${ }^{[2]}$ but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.

Dijkstra's algorithm

Perhaps this is why Dijkstra invented the algorithm?

Next Time

- More Bellman-Ford, plus Floyd-Warshall and dynamic programming!

Before next time

- Pre-lecture exercise:
- How NOT to compute Fibonacci numbers.

Mini-topic (bonus slides; not on exam) Amortized analysis!

- We mentioned this when we talked about implementing Dijkstra.
${ }^{*}$ Any sequence of d deleteMin calls takes
time at most $O(d \log (n))$. But some of the d
may take longer and some may take less time.
- What's the difference between this notion and expected runtime?

Example

- Incrementing a binary counter n times.

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
1 & 2 & 1 & 3 & 1 & 2 & 1 & 4 & 1 & 2 & 1 & 3 & 1 & 2 & 1
\end{array}
\end{aligned}
$$

- Say that flipping a bit is costly.
- Above, we've noted the cost in terms of bit-flips.

Example

- Incrementing a binary counter n times.

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
1 & 2 & 1 & 3 & 1 & 2 & 1 & 4 & 1 & 2 & 1 & 3 & 1 & 2 & 1
\end{array}
\end{aligned}
$$

- Say that flipping a bit is costly.
- Some steps are very expensive.
- Many are very cheap.
- Amortized over all the inputs, it turns out to be pretty cheap.
- $\mathrm{O}(\mathrm{n})$ for all n increments.

This is different from expected runtime.

- The statement is deterministic, no randomness here.

- But it is still weaker than worst-case runtime.
- We may need to wait for a while to start making it worth it.

