Lecture 12

More Bellman-Ford, Floyd-Warshall, and Dynamic Programming!

Announcements

- HW5 due Friday
- Midterms have been graded!
- Available on Gradescope.
- Mean/Median: 66 (it was a hard test!)
- Max: 97
- Std. Dev: 14
- Please look at the solutions and come to office hours if you have questions about your midterm!

Recall

- Weights on edges
- A weighted directed graph:

- The cost of a path is the sum of the weights along that path.
- A shortest path from s to t is a directed path from s to t with the smallest cost.
- The single-source shortest path problem is to find the shortest path from s to v for all v in the graph.

Last time

- Dijkstra's algorithm!
- Bellman-Ford algorithm!
- Both solve single-source shortest path in weighted graphs.

We didn't quite finish with the Bellman-Ford algorithm so let's do that now.

Bellman-Ford vs. Dijkstra

Bellman-Ford(G,s):

- $d[v]=\infty$ for all v in V
- $\mathrm{d}[\mathrm{s}]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:

Instead of picking u cleverly, just update for all of the u's.

- For u in V:
- For vin u.outNeighbors:

$$
\text { - } \mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}))
$$

Dijkstra(G,s):

- While there are not-sure nodes:
- Pick the not-sure node u with the smallest estimate $d[u]$.
- For v in u.outNeighbors:
- $\mathrm{d}[\mathrm{v}] \leftarrow \min (\mathrm{d}[\mathrm{v}], \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}))$
- Mark u as sure.

For pedagogical reasons which we will see later today...

- We are actually going to change this to be dumber.
- Keep n arrays: $\mathrm{d}^{(0)}, \mathrm{d}^{(1)}, \ldots, \mathrm{d}^{(\mathrm{n}-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, . . ., \mathrm{n}-2$:
- For u in V:
- For v in u.outNeighbors:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(i)}[\mathrm{v}], \mathrm{d}^{(i)}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right)$
- Then $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Another way of writing this

- We are actually going to change this to be dumber.
- Keep n arrays: $\mathrm{d}^{(0)}, \mathrm{d}^{(1)}, \ldots, \mathrm{d}^{(\mathrm{n}-1)}$

Bellman-Ford*(G,s):

- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :
- $\mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in } \mathrm{v} . \mathrm{inNbrs}}\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$
- Then $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], \min _{u}\left\{d^{(i)}[u]+w(u, v)\right\}\right)$

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], \min _{u}\left\{d^{(i)}[u]+w(u, v)\right\}\right)$

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], \min _{u}\left\{d^{(i)}[u]+w(u, v)\right\}\right)$

Bellman-Ford

How far is a node from Gates?

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V :
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], \min _{u}\left\{d^{(i)}[u]+w(u, v)\right\}\right)$

Bellman-Ford

How far is a node from Gates?

$d^{(0)}$	Gates Packard CS161 Union Dish				
	0	∞	∞	∞	∞
$\mathrm{d}^{(1)}$	0	1	∞	∞	25
$\mathrm{d}^{(2)}$	0	1	2	45	23
$\mathrm{d}^{(3)}$	0	1	2	6	23
$d^{(4)}$	0	1	2	6	23

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For vin V:
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], \min _{u}\left\{d^{(i)}[u]+w(u, v)\right\}\right)$

Interpretation of $d^{(i)}$

$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.

Why does Bellman-Ford work?

- Inductive hypothesis:
- $d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion:

Aside: simple paths
Assume there is no negative cycle.

- Then not only are there shortest paths, but actually there's always a simple shortest path.

This cycle isn't helping. Just get rid of it.

- A simple path in a graph with n vertices has at most n -1 edges in it.

Can't add another edge without making a cycle!

"Simple" means that the path has no cycles in it.

Why does it work?

- Inductive hypothesis:
- $\mathrm{d}^{(\mathrm{i})}[\mathrm{v}]$ is equal to the cost of the shortest path between s and v with at most i edges.
- Conclusion(s):
- $\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$ is equal to the cost of the shortest path between s and v with at most $n-1$ edges.
- If there are no negative cycles, $\mathrm{d}^{(n-1)}[\mathrm{v}]$ is equal to the cost of the shortest path.

Note on implementation

- Don't actually keep all n arrays around.
- Just keep two at a time: "last round" and "this round"

Only need these two in order to compute $\mathrm{d}^{(4)}$

This seems much slower than Dijkstra

- And it is:

Running time $\mathrm{O}(\mathrm{mn})$

- However, it's also more flexible in a few ways.
- Can handle negative edges
- If we keep on doing these iterations, then changes in the network will propagate through.
- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in } \mathrm{v} . \mathrm{nbrs}}\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$
- Then $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Negative cycles

Gates Packard CS161 Union Dish

$d^{(0)}$| 0 | ∞ | ∞ | ∞ | ∞ |
| :--- | :--- | :--- | :--- | :--- |

$d^{(1)}$

$d^{(2)}$

0	-5

2
7 -3
$d^{(3)}$

-4	-5	-4	6	-3

$d^{(4)}$

-4	-5	-4	6	-7

This is not looking good!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :

- $\mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in v.nbrs }}\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$

Negative edge weights

Gates Packard CS161 Union Dish

$d^{(3)}$

-4	-5	-4	6	-3

$d^{(4)}$

-4	-5	-4	6	-7

But we can tell that it's not looking good:

	$d^{(5)}$	-4	-9	-4	3
	-7				

Some stuff changed!

- For $\mathrm{i}=0, \ldots, \mathrm{n}-2$:
- For v in V :
- $\mathrm{d}^{(\mathrm{i}+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u} \text { in } \mathrm{v} . \mathrm{nbrs}}\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$

Negative cycles in Bellman-Ford

- If there are no negative cycles:
- Everything works as it should, and stabilizes.
- If there are negative cycles:
- Not everything works as it should...
- Note: it couldn’t possibly work, since shortest paths aren't well-defined if there are negative cycles.
- The $\mathrm{d}[\mathrm{v}]$ values will keep changing.
- Solution:
- Go one round more and see if things change.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

- $d^{(0)}[v]=\infty$ for all v in V
- $d^{(0)}[s]=0$
- For $\mathrm{i}=0, \ldots, \mathrm{n}-1$:
- For vin V:
- $\mathrm{d}^{(i+1)}[\mathrm{v}] \leftarrow \min \left(\mathrm{d}^{(\mathrm{i})}[\mathrm{v}], \min _{\mathrm{u}}\right.$ in v.inNeighbors $\left.\left\{\mathrm{d}^{(\mathrm{i})}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})\right\}\right)$
- If $d^{(n-1)}$! $=d^{(n)}$:
- Return NEGATIVE CYCLE :
- Otherwise, $\operatorname{dist}(\mathrm{s}, \mathrm{v})=\mathrm{d}^{(\mathrm{n}-1)}[\mathrm{v}]$

Bellman-Ford is also used in practice.

- eg, Routing Information Protocol (RIP) uses something like Bellman-Ford.
- Older protocol, not used as much anymore.
- Each router keeps a table of distances to every other router.
- Periodically we do a Bellman-Ford update.
- Aka, for an edge (u,v):
- $d^{(i+1)}[v] \leftarrow \min \left(d^{(i)}[v], d^{(i)}[u]+w(u, v)\right)$
- This means that if there are changes in the network, this will propagate. (maybe slowly...)

Recap: shortest paths

- BFS:
- (+) O(n+m)
- (-) only unweighted graphs
- Dijkstra's algorithm:
- (+) weighted graphs
- (+) O(nlog(n) + m) if you implement it right.
- (-) no negative edge weights
- (-) very "centralized" (need to keep track of all the vertices to know which to update).
- The Bellman-Ford algorithm:
- (+) weighted graphs, even with negative weights
- (+) can be done in a distributed fashion, every vertex using only information from its neighbors.
- (-) O(nm)
Important thing about B-F for the rest of this lecture
$d^{(i)}[v]$ is equal to the cost of the shortest path between s and v with at most i edges.
Gates Packard CS161 Union Dish
$d^{(0)}$

| 0 | ∞ | ∞ | ∞ | ∞ |
| :--- | :--- | :--- | :--- | :--- | $d^{(1)}$

0	1	∞	∞	25

$d^{(2)}$	0	1	2	45
	23			

$d^{(3)}$

0	1	2	6	23

$d^{(4)}$

0	1	2	6	23

Bellman-Ford is an example of... Dynamic Programming!

Today:

- Example of Dynamic programming:
- Fibonacci numbers.
- (And Bellman-Ford)
-What is dynamic programming, exactly?
- And why is it called "dynamic programming"?
- Another example: Floyd-Warshall algorithm
- An "all-pairs" shortest path algorithm

Pre-Lecture exercise:

How not to compute Fibonacci Numbers

- Definition:
- $F(n)=F(n-1)+F(n-2)$, with $F(0)=F(1)=1$.
- The first several are:

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

- Question:
- Given n , what is $\mathrm{F}(\mathrm{n})$?

- def Fibonacci(n):
- if $\mathrm{n}=0$ or $\mathrm{n}=1$:
- return 1
- return Fibonacci(n-1) + Fibonacci(n-2)
(Seems to work, according to the IPython notebook...)

Running time?

- $T(n)=T(n-1)+T(n-2)+O(1)$
- $T(n) \geq T(n-1)+T(n-2)$ for $n \geq 2$
- So $T(n)$ grows at least as fast as the Fibonacci numbers themselves...
- Fun fact, that's like ϕ^{n} where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
- aka, EXPONENTIALLY QUICKLY ©

Computing Fibonacci Numbers

What's going on?
Consider Fib(8)

That's a lot of repeated computation!

Maybe this would be better:


```
def fasterFibonacci(n):
    - F = [1, 1, None, None, ..., None ]
    - \\ F has length n
    - for i = 2, ..., n:
    - F[i] = F[i-1] + F[i-2]
- return F[n]
```

Much better running time!

This was an example of...

What is dynamic programming?

- It is an algorithm design paradigm
- like divide-and-conquer is an algorithm design paradigm.
- Usually it is for solving optimization problems
- eg, shortest path
- (Fibonacci numbers aren't an optimization problem, but they are a good example...)

Elements of dynamic programming

1. Optimal sub-structure:

- Big problems break up into sub-problems.
- Fibonacci: F(i) for $\mathrm{i} \leq \mathrm{n}$
- Bellman-Ford: Shortest paths with at most i edges for $\mathrm{i} \leq \mathrm{n}$
- The solution to a problem can be expressed in terms of solutions to smaller sub-problems.
- Fibonacci:

$$
F(i+1)=F(i)+F(i-1)
$$

- Bellman-Ford:

Elements of dynamic programming

2. Overlapping sub-problems:

- The sub-problems overlap a lot.
- Fibonacci:
- Lots of different $\mathrm{F}[\mathrm{j}]$ will use $\mathrm{F}[\mathrm{i}]$.
- Bellman-Ford:
- Lots of different entries of $\mathrm{d}^{(\mathrm{i}+1)}$ will use $\mathrm{d}^{(\mathrm{i})}[\mathrm{v}]$.
- This means that we can save time by solving a sub-problem just once and storing the answer.

Elements of dynamic programming

- Optimal substructure.
- Optimal solutions to sub-problems are sub-solutions to the optimal solution of the original problem.
- Overlapping subproblems.
- The subproblems show up again and again
- Using these properties, we can design a dynamic programming algorithm:
- Keep a table of solutions to the smaller problems.
- Use the solutions in the table to solve bigger problems.
- At the end we can use information we collected along the way to find the solution to the whole thing.

Two ways to think about and/or implement DP algorithms

- Top down
- Bottom up

This picture isn't hugely relevant but I like it. Lasson

Bottom up approach

 what we just saw.- For Fibonacci:
- Solve the small problems first - fill in F[0],F[1]

- Then bigger problems
- fill in F[2]
- ...
- Then bigger problems
- fill in $\mathrm{F}[\mathrm{n}-1]$
- Then finally solve the real problem.
- fill in F[n]

Bottom up approach

 what we just saw.- For Bellman-Ford:
- Solve the small problems first - fill in d ${ }^{(0)}$

- Then bigger problems
- fill in $\mathrm{d}^{(1)}$
- ...
- Then bigger problems
- fill in $\mathrm{d}^{(n-2)}$
- Then finally solve the real problem.
- fill in $\mathrm{d}^{(n-1)}$

Top down approach

- Think of it like a recursive algorithm.
- To solve the big problem:
- Recurse to solve smaller problems

- Those recurse to solve smaller problems
- etc..
- The difference from divide and conquer:
- Memo-ization
- Keep track of what small problems you've already solved to prevent re-solving the same problem twice.

Example of top-down Fibonacci

- define a global list $F=[1,1$, None, None, ..., None]
- def Fibonacci(n):
- if $F[n]$! $=$ None:
- return $F[n]$
- else:
- $F[n]=$ Fibonacci($n-1)+$ Fibonacci($n-2)$
- return $F[n]$

Memo-ization: Keeps track (in F) of the stuff you've already done.

Memo-ization visualization

Memo-ization Visualization

 ctd
Collapse

 repeated nodes and don't do the same work twice!But otherwise treat it like the same old recursive algorithm.

- define a global list $F=[1,1$, None, None, ..., None]
- def Fibonacci(n):
- if $F[n]$! $=$ None:
- return $F[n]$
- else:
- $F[n]=$ Fibonacci(n-1) + Fibonacci(n-2)
- return $F[n]$

What have we learned?

- Dynamic programming:
- Paradigm in algorithm design.
- Uses optimal substructure
- Uses overlapping subproblems
- Can be implemented bottom-up or top-down.
- It's a fancy name for a pretty common-sense idea:

> Don't duplicate work if you don't have to!

Why "dynamic programming" ?

- Programming refers to finding the optimal "program."
- as in, a shortest route is a plan aka a program.
- Dynamic refers to the fact that it's multi-stage.
- But also it's just a fancy-sounding name.

Manipulating computer code in an action movie?

Why "dynamic programming" ?

- Richard Bellman invented the name in the 1950's.
- At the time, he was working for the RAND Corporation, which was basically working for the Air Force, and government projects needed flashy names to get funded.
- From Bellman's autobiography:
- "It's impossible to use the word, dynamic, in the pejorative sense...I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Floyd-Warshall Algorithm Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
- That is, I want to know the shortest path from u to v for ALL pairs u, v of vertices in the graph.
- Not just from a special single source s.

Floyd-Warshall Algorithm Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
- That is, I want to know the shortest path from u to v for ALL pairs u, v of vertices in the graph.
- Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
- For all s in G:
- Run Bellman-Ford on G starting at s.
- Time $O(n \cdot n m)=O\left(n^{2} m\right)$,
- may be as bad as n^{4} if $m=n^{2}$

Optimal substructure

Label the vertices $1,2, \ldots, n$
(We omit some edges in the picture below).

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in $\{1, \ldots, k-1\}$.

Let $D^{(k-1)}[u, v]$ be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays $D^{(0)}, D^{(1)}, \ldots, D^{(n)}$ iteratively and then we'll be done.

(
This is the shortest path from u to v through the blue set. It has length $D^{(k-1)}[u, v]$

Optimal substructure

Sub-problem(k-1):
For all pairs, u, v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in $\{1, \ldots, k-1\}$.

Let $D^{(k-1)}[u, v]$ be the solution to Sub-problem(k-1).

Label the vertices 1,2,...,n
(We omit some edges in the picture below).

Question: How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

$D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.

Case 1: we don't need vertex k.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

 $D^{(k)}[u, v]$ is the cost of the shortest path from u to v so that all internal vertices on that path are in $\{1, \ldots, k\}$.Case 2: we need vertex k .

Case 2 continued

- Suppose there are no negative cycles.

Case 2: we need

 vertex k.- Then WLOG the shortest path from u to v through $\{1, \ldots, k\}$ is simple.
- If that path passes through k , it must look like this:
- This path is the shortest path from u to k through $\{1, \ldots, k-1\}$.
- sub-paths of shortest paths are shortest paths
- Same for this path.

$$
D^{(k)}[u, v]=D^{(k-1)}[u, k]+D^{(k-1)}[k, v]
$$

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$

Case 1: Cost of
shortest path
through $\{1, \ldots, k-1\}$

Case 2: Cost of shortest path from u to k and then from k to v through $\{1, \ldots, \mathrm{k}-1\}$

- Optimal substructure:
- We can solve the big problem using smaller problems.
- Overlapping sub-problems:
- $D^{(k-1)}[k, v]$ can be used to help compute $D^{(k)}[u, v]$ for lots of different u's.

How can we find $D^{(k)}[u, v]$ using $D^{(k-1)}$?

- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$

Case 1: Cost of
shortest path
through $\{1, \ldots, \mathrm{k}-1\}$

Case 2: Cost of shortest path from u to k and then from k to v through $\{1, \ldots, \mathrm{k}-1\}$

- Using our Dynamic programming paradigm, this immediately gives us an algorithm!

Floyd-Warshall algorithm

- Initialize n-by-n arrays $D^{(k)}$ for $k=0, \ldots, n$
- $D^{(k)}[u, u]=0$ for all u, for all k
- $D^{(k)}[u, v]=\infty$ for all $u \neq v$, for all k
- $D^{(0)}[u, v]=$ weight (u, v) for all ($\left.u, v\right)$ in E.
- For $k=1, \ldots, n$:

The base case
checks out: the only path through zero other vertices are edges directly
from u to v.

- For pairs u, v in V^{2} :
- $D^{(k)}[u, v]=\min \left\{D^{(k-1)}[u, v], D^{(k-1)}[u, k]+D^{(k-1)}[k, v]\right\}$
- Return $D^{(n)}$

This is a bottom-up Dynamic programming algorithm.

We've basically just shown

- Theorem:

If there are no negative cycles in a weighted directed graph G , then the Floyd-Warshall algorithm, running on G , returns a matrix $D^{(n)}$ so that:

$$
D^{(n)}[u, v]=\text { distance between } u \text { and } v \text { in } G \text {. }
$$

- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Better than running BF n times!

> Work out the details of the

- Not really better than running Dijkstra n times.
- But it's simpler to implement and handles negative weights.
- Storage:
- Need to store two n-by-n arrays, and the original graph. As with Bellman-Ford, we don't really need to store all n of the $D^{(k)}$.

What if there are negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
- Negative cycle $\Leftrightarrow \exists \mathrm{v}$ s.t. there is a path from v to v that goes through all n vertices that has cost < 0 .
- Negative cycle $\Leftrightarrow \exists$ v s.t. $D^{(n)}[v, v]<0$.
- Algorithm:
- Run Floyd-Warshall as before.
- If there is some v so that $D^{(n)}[v, v]<0$:
- return negative cycle.

What have we learned?

- The Floyd-Warshall algorithm is another example of dynamic programming.
- It computes All Pairs Shortest Paths in a directed weighted graph in time $O\left(\mathrm{n}^{3}\right)$.

Another Example of DP?

- Longest simple path (say all edge weights are 1):

What is the longest simple path from s to t ?

This is an optimization problem...

- Can we use Dynamic Programming?
- Optimal Substructure?
- Longest path from s to $t=$ longest path from s to a + longest path from a to t?

This doesn't give optimal sub-structure Optimal solutions to subproblems don't give us an optimal solution to the big problem. (At least if we try to do it this way).

- The subproblems we came up with aren't independent:
- Once we've chosen the longest path from a to t
- which uses b,
- our longest path from s to a shouldn't be allowed to use b
- since b was already used.
- Actually, the longest simple path problem is NP-complete.
- We don't know of any polynomialtime algorithms for it, DP or otherwise!

Recap

- Two more shortest-path algorithms:
- Bellman-Ford for single-source shortest path
- Floyd-Warshall for all-pairs shortest path
- Dynamic programming!
- This is a fancy name for:
- Break up an optimization problem into smaller problems
- The optimal solutions to the sub-problems should be subsolutions to the original problem.
- Build the optimal solution iteratively by filling in a table of sub-solutions.
- Take advantage of overlapping sub-problems!

Next time

- More examples of dynamic programming!

We will stop bullets with our action-packed coding skills, and also maybe find longest common subsequences.

Before next time

- Pre-lecture exercise: finding optimal substructure

