
Lecture	12
More	Bellman-Ford,	Floyd-Warshall,	

and	Dynamic	Programming!

Announcements

• HW5	due	Friday

• Midterms	have	been	graded!

• Available	on	Gradescope.

• Mean/Median:	66	 (it	was	a	hard	test!)

• Max:	97

• Std.	Dev:	14

• Please	look	at	the	solutions	and	come	to	office	
hours	if	you	have	questions	about	your	midterm!

Recall

• A	weighted	directed	graph:

u

v

a

b

t

3 32

5

2

13

16

1

• Weights on	edges	

represent	costs.

• The	cost	of	a	path	is	the	

sum	of	the	weights

along	that	path.

• A	shortest	path	from	s	

to	t	is	a	directed	path	

from	s	to	t	with	the	

smallest	cost.

• The	single-source	

shortest	path problem	is	

to	find	the	shortest	path	

from	s	to	v	for	all	v	in	

the	graph.

1

21

This	is	a	

path	from	

s	to	t	of	

cost	22.

s

This	is	a	path	from	s	to	t	of	

cost	10.		It	is	the	shortest	

path	from	s	to	t.

Last	time

• Dijkstra’s	algorithm!

• Bellman-Ford	algorithm!

• Both	solve	single-source	shortest	path	in	weighted	graphs.

u

v

a

b

t

3 32

5

2

13

16

1

1

2

1

s

We	didn’t	quite	finish	with	

the	Bellman-Ford	algorithm	

so	let’s	do	that	now.

Bellman-Ford	vs.	Dijkstra

• d[v]	=	∞ for	all	v	in	V

• d[s]	=	0

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.outNeighbors:

• d[v]←	min(d[v]	,	d[u]	+	w(u,v))

• While	there	are	not-sure nodes:

• Pick	the not-sure node	u	with	the	smallest	estimate	d[u].

• For v	in	u.outNeighbors:

• d[v]←	min(d[v]	,	d[u]	+	w(u,v))

• Mark	u	as sure.

Dijkstra(G,s):

Bellman-Ford(G,s):

Instead	of	picking	u	cleverly,	

just	update	for	all	of	the	u’s.

For	pedagogical	reasons
which	we	will	see	later	today…

• We	are	actually	going	to	change	this	to	be	dumber.

• Keep	n	arrays:	d(0),	d(1),	…,	d(n-1)

• d(0)[v]	=	∞ for	all	v	in	V

• d(0)[s]	=	0

• For i=0,…,n-2:

• For u	in	V:

• For v	in	u.outNeighbors:

• d(i+1)[v]←	min(d(i)[v]	,	d(i)[u]	+	w(u,v))

• Then	dist(s,v)	=	d(n-1)[v]

Bellman-Ford*(G,s):

Another	way	of	writing	this

• We	are	actually	going	to	change	this	to	be	dumber.

• Keep	n	arrays:	d(0),	d(1),	…,	d(n-1)

• d(0)[v]	=	∞ for	all	v	in	V

• d(0)[s]	=	0

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]←	min(d(i)[v]	,	minu in	v.inNbrs{d
(i)[u]	+	w(u,v)})

• Then	dist(s,v)	=	d(n-1)[v]

Bellman-Ford*(G,s):

The	for	loop	over	u	gets	

picked	up	in	this	min.

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How	far	is	a	node	from	Gates?

0

∞

∞

∞

∞

=

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu {d
(i)[u]	+	w(u,v)})

∞0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

d(1)

d(2)

d(3)

d(4)

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How	far	is	a	node	from	Gates?

0

∞

∞

25

1

i=0

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

d(2)

d(3)

d(4)

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu {d
(i)[u]	+	w(u,v)})

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How	far	is	a	node	from	Gates?

0

2

45

23

1

i=1

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

d(3)

d(4)

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu {d
(i)[u]	+	w(u,v)})

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How	far	is	a	node	from	Gates?

0

2

6

23

1

i=2

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

d(4)

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu {d
(i)[u]	+	w(u,v)})

Bellman-Ford Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

How	far	is	a	node	from	Gates?

0

2

6

23

1

i=3

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu {d
(i)[u]	+	w(u,v)})

Interpretation	of	d(i)

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

d(i)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v	

with	at	most	i edges.

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

0

2

6

23

1

Why	does	Bellman-Ford	work?

• Inductive	hypothesis:	

• d(i)[v]	is	equal	to	the	cost	of	the	shortest	path	between	s	
and	v	with	at	most	i edges.

• Conclusion:

Aside:	simple	paths
Assume	there	is	no	negative	cycle.

• Then	not	only	are	there	shortest	paths,	but	actually	
there’s	always	a	simple shortest	path.

• A	simple	path	in	a	graph	with	n	vertices	has	at	most	
n-1	edges	in	it.

“Simple”	means	

that	the	path	has	

no	cycles	in	it.

v

s
u

x

t
s v

y

-2

2

3

-5

10

t

Can’t	add	another	edge	

without	making	a	cycle!

This	cycle	isn’t	helping.		

Just	get	rid	of	it.

Why	does	it	work?

• Inductive	hypothesis:	

• d(i)[v]	is	equal	to	the	cost	of	the	shortest	path	between	s	
and	v	with	at	most	i edges.

• Conclusion(s):

• d(n-1)[v]	is	equal	to	the	cost	of	the	shortest	path	between	
s	and	v	with	at	most	n-1	edges.

• If	there	are	no	negative	cycles,	d(n-1)[v]	is	equal	to	the	
cost	of	the	shortest	path.

Notice	that	negative	edge	weights are	fine.		

Just	not	negative	cycles.

Note	on	implementation

• Don’t	actually	keep	all	n	arrays	around.

• Just	keep	two	at	a	time:	“last	round”	and	“this	round”

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6 23d(4)

Only	need	these	

two	in	order	to	

compute	d(4)

This	seems	much	slower	than	Dijkstra

• And	it	is:

Running	time	O(mn)

• However,	it’s	also	more	flexible	in	a	few	ways.

• Can	handle	negative	edges

• If	we	keep	on	doing	these	iterations,	then	changes	in	the	
network	will	propagate	through.		

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]←	min(d(i)[v]	,	minu in	v.nbrs{d
(i)[u]	+	w(u,v)})

• Then	dist(s,v)	=	d(n-1)[v]

Negative	cycles Gates

Union

Dish

Packard

1

1

-3

10

-2

CS161

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu in	v.nbrs{d
(i)[u]	+	w(u,v)})

∞

-3

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3
4

This	is	not	looking	good!

-4 -5 -4 6d(4) -7

Negative	edge	weights Gates

Union

Dish

Packard

1

1

-3

10

-2

CS161

• For i=0,…,n-2:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu in	v.nbrs{d
(i)[u]	+	w(u,v)})

∞

-3

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 -5 2 7d(2) -3

-4 -5 -4 6d(3) -3

-4 -5 -4 6d(4) -7

4

But	we	can	tell	that	it’s	not	looking	good:

Some	stuff	changed!

-4 -9 -4 3d(5) -7

Negative	cycles	in	Bellman-Ford

• If	there	are	no	negative	cycles:	

• Everything	works	as	it	should,	and	stabilizes.

• If	there	are	negative	cycles:	

• Not	everything	works	as	it	should…

• Note:	it	couldn’t	possibly	work,	since	shortest	paths	aren’t	
well-defined	if	there	are	negative	cycles.

• The	d[v]	values	will	keep	changing.

• Solution:

• Go	one	round	more	and	see	if	things	change.

Bellman-Ford	algorithm

• d(0)[v]	=	∞ for	all	v	in	V

• d(0)[s]	=	0

• For i=0,…,n-1:

• For v	in	V:

• d(i+1)[v]	←	min(d(i)[v]	,	minu in	v.inNeighbors {d
(i)[u]	+	w(u,v)})

• If	d(n-1) !=	d(n) :

• Return NEGATIVE	CYCLE	L

• Otherwise,	dist(s,v)	=	d(n-1)[v]

Bellman-Ford*(G,s):

Running	time:	O(mn)

Bellman-Ford	is	also	used	in	practice.

• eg,	Routing	Information	Protocol	(RIP)	uses	something	
like	Bellman-Ford.

• Older	protocol,	not	used	as	much	anymore.

• Each	router	keeps	a	table of	
distances	to	every	other	
router.

• Periodically	we	do	a	
Bellman-Ford	update.
• Aka,	for	an	edge	(u,v):

• d(i+1)[v]	←	min(d(i)[v]	,	d(i)[u]	+	w(u,v))

• This	means	that	if	there	are	
changes	in	the	network,	this	
will	propagate.	(maybe	slowly…)

Destination Cost	to	get	

there

Send	to	

whom?

172.16.1.0 34 172.16.1.1

10.20.40.1 10 192.168.1.2

10.155.120.1 9 10.13.50.0

Recap:	shortest	paths

• BFS:

• (+)	O(n+m)

• (-)	only	unweighted	graphs

• Dijkstra’s	algorithm:
• (+)	weighted	graphs

• (+)	O(nlog(n)	+	m)	if	you	implement	it	right.

• (-)	no	negative	edge	weights

• (-)	very	“centralized”	(need	to	keep	track	of	all	the	vertices	to	know	
which	to	update).

• The	Bellman-Ford	algorithm:
• (+)	weighted	graphs,	even	with	negative	weights

• (+)	can	be	done	in	a	distributed	fashion,	every	vertex	using	only	
information	from	its	neighbors.

• (-)	O(nm)

Important	thing	about	B-F
for	the	rest	of	this	lecture

∞

25

0 ∞ ∞ ∞

Gates		Packard	CS161	Union		Dish						

d(0)

0 1 ∞ ∞d(1)

0 1 2 45d(2) 23

0 1 2 6d(3) 23

0 1 2 6d(4) 23

d(i)[v]	is	equal	to	the	cost	of	the	

shortest	path	between	s	and	v	

with	at	most	i edges.

Gates

Union

Dish

Packard

1

1

4

25

20

22

CS161

0

2

6

23

1

Bellman-Ford	is	an	example	of…

Dynamic	Programming!

• Example	of	Dynamic	programming:	

• Fibonacci	numbers.

• (And	Bellman-Ford)

• What	is	dynamic	programming,	exactly?

• And	why	is	it	called	“dynamic	programming”?

• Another	example:	Floyd-Warshall algorithm

• An	“all-pairs”	shortest	path	algorithm

Today:

Pre-Lecture	exercise:
How	not	to	compute	Fibonacci	Numbers

• Definition:

• F(n)	=	F(n-1)	+	F(n-2),	with	F(0)	=	F(1)	=	1.

• The	first	several	are:

1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	144,…

• Question:

• Given	n,	what	is	F(n)?

Candidate	algorithm

• def Fibonacci(n):

• if n == 0 or n == 1:

• return 1

• return Fibonacci(n-1) + Fibonacci(n-2)

(Seems	to	work,	according	to	the	IPython notebook…)

Running	time?		
• T(n)	=	T(n-1)	+	T(n-2)	+	O(1)

• T(n) ≥	T(n-1)	+	T(n-2)	for	n	≥ 2
• So	T(n) grows	at	least	as	fast	as	

the	Fibonacci	numbers	

themselves…

• Fun	fact,	that’s	like	𝜙, where	

𝜙 =
./√1

2
is	the	golden	ratio.

• aka,	EXPONENTIALLY	QUICKLY	L

See	CLRS	Problem	4-4	for	a	

walkthrough	of	how	fast	the	

Fibonacci	numbers	grow!

What’s	going	on?

Consider	Fib(8)

8

76

6554

44 543332

2 2 2 2 3 3 42 32 31 1 110

10 10 10 10 10 1021
21 21

21

10 10 10 10

etc

That’s	a	lot	of	

repeated	

computation!

Maybe	this	would	be	better:

8

7

6

5

4

3

2

1

0

def fasterFibonacci(n):

• F = [1, 1, None, None, …, None]
• \\ F has length n

• for i = 2, …, n:

• F[i] = F[i-1] + F[i-2]

• return F[n]

Much	better	running	time!

This	was	an	example	of…

What	is	dynamic	programming?

• It	is	an	algorithm	design	paradigm

• like	divide-and-conquer	is	an	algorithm	design	paradigm.

• Usually	it	is	for	solving	optimization	problems

• eg,	shortest	path

• (Fibonacci	numbers	aren’t	an	optimization	problem,	but	
they	are	a	good	example…)

Elements	of	dynamic	programming

• Big	problems	break	up	into	sub-problems.
• Fibonacci:	F(i)	for	i ≤ n
• Bellman-Ford:	Shortest	paths	with	at	most	i edges	for	i	≤ n		

• The	solution	to	a	problem	can	be	expressed	in	terms	of	
solutions	to	smaller	sub-problems.

• Fibonacci:	

F(i+1)	=	F(i) +	F(i-1)

• Bellman-Ford:

d(i+1)[v]	←min{	d(i)[v],		minu {d
(i)[u]		+	weight(u,v)}	}		

1.	Optimal	sub-structure:

Shortest	path	with	at	

most	i edges	from	s	to	v	
Shortest	path	with	at	most	

i edges	from	s	to	u.

Elements	of	dynamic	programming

• The	sub-problems	overlap	a	lot.

• Fibonacci:

• Lots	of	different	F[j]	will	use	F[i].

• Bellman-Ford:

• Lots	of	different	entries	of	d(i+1) will	use	d(i)[v].

• This	means	that	we	can	save	time	by	solving	a	sub-problem	
just	once	and	storing	the	answer.

2.	Overlapping	sub-problems:

Elements	of	dynamic	programming

• Optimal	substructure.

• Optimal	solutions	to	sub-problems	are	sub-solutions	to	the	
optimal	solution	of	the	original	problem.

• Overlapping	subproblems.

• The	subproblems show	up	again	and	again

• Using	these	properties,	we	can	design	a	dynamic	

programming	algorithm:

• Keep	a	table	of	solutions	to	the	smaller	problems.

• Use	the	solutions	in	the	table	to	solve	bigger	problems.

• At	the	end	we	can	use	information	we	collected	along	the	
way	to	find	the	solution	to	the	whole	thing.

Two	ways	to	think	about	and/or	
implement	DP	algorithms

• Top	down

•Bottom	up

This picture isn’t hugely relevant but I like it.

Bottom	up	approach
what	we	just	saw.

• For	Fibonacci:

• Solve	the	small	problems	first

• fill	in	F[0],F[1]

• Then	bigger	problems

• fill	in	F[2]

• …

• Then	bigger	problems

• fill	in	F[n-1]

• Then	finally	solve	the	real	problem.

• fill	in	F[n]

Bottom	up	approach
what	we	just	saw.

• For	Bellman-Ford:

• Solve	the	small	problems	first

• fill	in	d(0)

• Then	bigger	problems

• fill	in	d(1)

• …

• Then	bigger	problems

• fill	in	d(n-2)

• Then	finally	solve	the	real	problem.

• fill	in	d(n-1)

Top	down	approach

• Think	of	it	like	a	recursive	algorithm.

• To	solve	the	big	problem:
• Recurse to	solve	smaller	problems

• Those	recurse to	solve	smaller	problems

• etc..

• The	difference	from	divide	and	
conquer:
• Memo-ization

• Keep	track	of	what	small	problems	you’ve	
already	solved	to	prevent	re-solving	the	
same	problem	twice.

Example	of	top-down	Fibonacci

• define a global list F = [1,1,None, None, …, None]

• def Fibonacci(n):

• if F[n] != None:

• return F[n]

• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)

• return F[n]

Memo-ization visualization

8

76

6554

44 543332

2 2 2 2 3 3 42 32 31 1 110

10 10 10 10 10 1021
21 21

21

10 10 10 10

etc

Memo-ization Visualization
ctd

8

7

6

5

4

3

2

1

0

• define a global list F = [1,1,None, None, …, None]

• def Fibonacci(n):

• if F[n] != None:

• return F[n]

• else:

• F[n] = Fibonacci(n-1) + Fibonacci(n-2)

• return F[n]

What	have	we	learned?

• Paradigm	in	algorithm	design.

• Uses	optimal	substructure

• Uses	overlapping	subproblems

• Can	be	implemented	bottom-up or	top-down.

• It’s	a	fancy	name	for	a	pretty	common-sense	idea:

Why	“dynamic	programming”	?

• Programming refers	to	finding	the	optimal	“program.”	

• as	in,	a	shortest	route	is	a	plan aka	a	program.

• Dynamic refers	to	the	fact	that	it’s	multi-stage.

• But	also	it’s	just	a	fancy-sounding	name.

Manipulating	computer	code	in	an	action	movie?

Why	“dynamic	programming”	?

• Richard	Bellman	invented	the	name	in	the	1950’s.

• At	the	time,	he	was	working	for	the	RAND	
Corporation,	which	was	basically	working	for	the	
Air	Force,	and	government	projects	needed	flashy	
names	to	get	funded.

• From	Bellman’s	autobiography:

• “It’s impossible to use the word, dynamic, in the
pejorative sense…I thought dynamic programming was
a good name. It was something not even a
Congressman could object to.”

Floyd-Warshall Algorithm
Another	example	of	DP

• This	is	an	algorithm	for	All-Pairs	Shortest	Paths	(APSP)

• That	is,	I	want	to	know	the	shortest	path	from	u	to	v	for	ALL	
pairs	u,v of	vertices	in	the	graph.

• Not	just	from	a	special	single	source	s.

t
-2

s

u

v

5

2

2

1

s u v t

s 0 2 4 2

u 1 0 2 0

v ∞ ∞ 0 -2

t ∞ ∞ ∞ 0

S
o
u
rc
e

Destination

• This	is	an	algorithm	for	All-Pairs	Shortest	Paths	(APSP)

• That	is,	I	want	to	know	the	shortest	path	from	u	to	v	for	ALL	
pairs	u,v of	vertices	in	the	graph.

• Not	just	from	a	special	single	source	s.

• Naïve	solution	(if	we	want	to	handle	negative	edge	weights):

• For	all	s	in	G:

• Run	Bellman-Ford	on	G	starting	at	s.

• Time	O(n⋅nm)	=	O(n2m),	

• may	be	as	bad	as	n4 if	m=n2

Floyd-Warshall Algorithm
Another	example	of	DP

Optimal	substructure

k-1

2

…

1

3

k

k+1

u

v

n

Label	the	vertices	1,2,…,n

(We	omit	some	edges	in	the	

picture	below).

Let	D(k-1)[u,v]	be	the	solution	

to	Sub-problem(k-1).	

This	is	the	shortest	

path	from	u	to	v	

through	the	blue	set.		

It	has	length	D(k-1)[u,v]

Sub-problem(k-1):	

For	all	pairs,	u,v,	find	the	cost	of	the		shortest	

path	from	u	to	v,	so	that	all	the	internal	

vertices	on	that	path	are	in	{1,…,k-1}.	

Optimal	substructure

k-1

2

…

1

3

k

k+1

u

v

n

Label	the	vertices	1,2,…,n

(We	omit	some	edges	in	the	

picture	below).

Let	D(k-1)[u,v]	be	the	solution	

to	Sub-problem(k-1).	

This	is	the	shortest	

path	from	u	to	v	

through	the	blue	set.		

It	has	length	D(k-1)[u,v]

Sub-problem(k-1):	

For	all	pairs,	u,v,	find	the	cost	of	the		shortest	

path	from	u	to	v,	so	that	all	the	internal	

vertices	on	that	path	are	in	{1,…,k-1}.	

Question:	How	can	we	find	D(k)[u,v]	using	D(k-1)?

How	can	we	find	D(k)[u,v]	using	D(k-1)?

k-1

2

…

1

3

k

k+1

u

v

n

D(k)[u,v]	is	the	cost	of	the	shortest	path	from	u	to	v	so	

that	all	internal	vertices	on	that	path	are	in	{1,	…,	k}.

How	can	we	find	D(k)[u,v]	using	D(k-1)?

k-1

2

…

1

3

k

k+1

u

v

n

D(k)[u,v]	is	the	cost	of	the	shortest	path	from	u	to	v	so	

that	all	internal	vertices	on	that	path	are	in	{1,	…,	k}.

Case	1:	we	don’t	

need	vertex	k.

D(k)[u,v]	=	D(k-1)[u,v]	

How	can	we	find	D(k)[u,v]	using	D(k-1)?

k-1

2

…

1

3

k

k+1

u

v

n

D(k)[u,v]	is	the	cost	of	the	shortest	path	from	u	to	v	so	

that	all	internal	vertices	on	that	path	are	in	{1,	…,	k}.

Case	2:	we	need	

vertex	k.

Case	2	continued

k-1

2

…

1

3

k

u
v

n

• Suppose	there	are	no	negative	

cycles.
• Then	WLOG	the	shortest	path	from	

u	to	v	through	{1,…,k}	is	simple.

• If	that	path passes	through	k,	it	

must	look	like	this:

• This	path	is	the	shortest	path	

from	u	to	k	through	{1,…,k-1}.
• sub-paths	of	shortest	paths	are	

shortest	paths

• Same	for	this	path.

Case	2:	we	need	

vertex	k.

D(k)[u,v]	=	D(k-1)[u,k]	+ D(k-1)[k,v]	

How	can	we	find	D(k)[u,v]	using	D(k-1)?

• D(k)[u,v]	=	min{	D(k-1)[u,v], D(k-1)[u,k] +	D(k-1)[k,v]	}

• Optimal	substructure:

• We	can	solve	the	big	problem	using	smaller	problems.

• Overlapping	sub-problems:

• D(k-1)[k,v]	can	be	used	to	help	compute	D(k)[u,v]	for	lots	
of	different	u’s.

Case	1:	Cost	of	

shortest	path	

through	{1,…,k-1}

Case	2:	Cost	of	shortest	path	

from	u	to	k	and	then	from	k	to	v

through	{1,…,k-1}

How	can	we	find	D(k)[u,v]	using	D(k-1)?

• D(k)[u,v]	=	min{	D(k-1)[u,v], D(k-1)[u,k] +	D(k-1)[k,v]	}

• Using	our	 paradigm,	this	
immediately	gives	us	an	algorithm!

Case	1:	Cost	of	

shortest	path	

through	{1,…,k-1}

Case	2:	Cost	of	shortest	path	

from	u	to	k	and	then	from	k	to	v

through	{1,…,k-1}

Floyd-Warshall algorithm

• Initialize	n-by-n	arrays	D(k)	for	k	=	0,…,n

• D(k)[u,u]	=	0	for	all	u,	for	all	k

• D(k)[u,v]	=	∞ for	all	u	≠ v,	for	all	k	

• D(0)[u,v]	=	weight(u,v)	for	all	(u,v)	in	E.

• For k	=	1,	…,	n:

• For pairs	u,v in	V2:

• D(k)[u,v]	=	min{	D(k-1)[u,v], D(k-1)[u,k] +	D(k-1)[k,v]	}

• Return D(n)

The	base	case	

checks	out:	the	

only	path	through	

zero	other	vertices	

are	edges	directly	

from	u	to	v.

This	is	a	bottom-up	 algorithm.	

We’ve	basically	just	shown

• Theorem:

If	there	are	no	negative	cycles	in	a	weighted	directed	graph	G,	
then	the	Floyd-Warshall algorithm,	running	on	G,	returns	a	
matrix	D(n) so	that:	

D(n)[u,v]	=	distance	between	u	and	v	in	G.

• Running	time:	O(n3)

• Better	than	running	BF	n	times!

• Not	really	better	than	running	Dijkstra	n	times.

• But	it’s	simpler	to	implement	and	handles	negative	weights.

• Storage:	

• Need	to	store	two n-by-n	arrays,	and	the	original	graph.

Work	out	the	details	of	the	

proof!		(Or	see	Lecture	

Notes	for	a	few	more	

details).

As	with	Bellman-Ford,	we	don’t	really	need	to	store	all	n	of	the	D(k).

What	if	there	are negative	cycles?

• Just	like	Bellman-Ford,	Floyd-Warshall can	detect	
negative	cycles:

• Negative	cycle⇔ ∃ v	s.t. there	is	a	path	from	v	to	v	that	
goes	through	all	n	vertices	that	has	cost	<	0.

• Negative	cycle	⇔ ∃ v	s.t. D(n)[v,v]	<	0.

• Algorithm:

• Run	Floyd-Warshall as	before.

• If	there	is	some	v	so	that	D(n)[v,v]	<	0:

• return negative cycle.

What	have	we	learned?

• The	Floyd-Warshall algorithm	is	another	example	of	
dynamic	programming.

• It	computes	All	Pairs	Shortest	Paths	in	a	directed	
weighted	graph	in	time	O(n3).

Another	Example	of	DP?

• Longest	simple	path	(say	all	edge	weights	are	1):

b

a

What	is	the	longest	simple	path	from	s	to	t?

s

t

This	is	an	optimization	problem…

• Can	we	use	Dynamic	Programming?

• Optimal	Substructure?

• Longest	path	from	s	to	t	=	longest	path	from	s	to	a		

+	longest	path	from	a	to	t?

b

as

t

NOPE!

This	doesn’t	give	optimal	sub-structure
Optimal	solutions	to	subproblems don’t	give	us	an	optimal	
solution	to	the	big	problem.		(At	least	if	we	try	to	do	it	this	way).

• The	subproblems we	came	up	with	aren’t	independent:

• Once	we’ve	chosen	the	longest	path	from	a	to	t	

• which	uses	b,	

• our	longest	path	from	s	to	a	shouldn’t	be	allowed	to	use	b

• since	b was	already	used.

b

as

t

• Actually,	the	longest	simple	path	

problem	is	NP-complete.
• We	don’t	know	of	any	polynomial-

time	algorithms	for	it,	DP	or	

otherwise!

Recap

• Two	more	shortest-path	algorithms:

• Bellman-Ford	for	single-source	shortest	path

• Floyd-Warshall for	all-pairs	shortest	path

• Dynamic	programming!

• This	is	a	fancy	name	for:

• Break	up	an	optimization	problem	into	smaller	problems

• The	optimal	solutions	to	the	sub-problems	should	be	sub-
solutions	to	the	original	problem.

• Build	the	optimal	solution	iteratively	by	filling	in	a	table	of	
sub-solutions.

• Take	advantage	of	overlapping	sub-problems!

Next	time

• More	examples	of	dynamic	programming!

• Pre-lecture	exercise:	finding	optimal	substructure

We	will	stop	bullets	with	our	

action-packed	coding	skills,	

and	also	maybe	find	longest	

common	subsequences.

Before next	time

