Lecture 12

More Bellman-Ford, Floyd-Warshall,

and Dynamic Programming!

Announcements

* HWS5 due Friday

 Midterms have been graded!
* Available on Gradescope.
 Mean/Median: 66 (it was a hard test!)
* Max: 97
e Std. Dev: 14

* Please look at the solutions and come to office
hours if you have questions about your midterm!

* Weights on edges

Re Ca | | represent costs.

)] * The cost of a path is the
* A weighted directed graph: sum of the weights
along that path.

e A shortest path from s
to tis a directed path
from s to t with the
smallest cost.

* The single-source
shortest path problem is
to find the shortest path
fromstovforallvin
the graph.

\
This is a
path from
stot of
cost 22.

This is a path from s to t of
cost 10. It is the shortest
path from s to t.

Last time

* Dijkstra’s algorithm!

* Bellman-Ford algorithm!
* Both solve single-source shortest path in weighted graphs.

We didn’t quite finish with
the Bellman-Ford algorithm
so let’s do that now.

Bellman-Ford vs. Dijkstra

Bellman-Ford(G,s):

e dlv]=o0 forallvinV

e d[s]=0
Instead of picking u cleverly,

* Fori=0,..,n-2: / just update for all of the u’s.
* ForuinV:

* Forvin u.outNeighbors:
e d[v] < min(d[v], d[u] + w(u,v))

Dijkstra(G,s):
 While there are nodes:
* Pick the node u with the smallest estimate d[u].

* Forvin u.outNeighbors:
e d[v] < min(d[v], d[u] + w(u,v))
e Mark u as sure.

For pedagogical reasons
which we will see later today...

* We are actually going to change this to be dumber.
* Keep n arrays: d©, d0), ..., d(n-1)

Bellman-Ford*(G,s):

e dO[v]=ooforallvinV
« dO9[s]=0
* Fori=0,...,n-2:

* ForuinV:

* Forvin u.outNeighbors:
o d*[v] « min(div], du] + w(u,v))
e Then dist(s,v) = d"1)[v]

Another way of writing this

* We are actually going to change this to be dumber.
* Keep n arrays: d©, dt), ..., d(n-1)

Bellman-Ford*(G,s):

« dOv]=oo forallvinV
o d(O)[S] =0
* Fori=0,...,n-2:
* ForvinV:
. d(i+1)[v] « min(d(i)[v] min
 Then dist(s,v) = d"[v]

{dO[u] + w(u,v)})

uin v.inNbrs

i

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

o0 [o Lo le]o]

o T T T]

oo T T T]

o T T T]
* Fori=0,...,,n-2:

* ForvinV;

« d*[v] & min(dOv], min,{d®[u] + w(u,v)})

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

40 [0 [= [o [« [=]
N N EN A
oo T T T T |
oo T T T T 1

o [T

* Fori=0,...,n-2:
* ForvinV:
o d[v] « min(d®[v], min,{dV[u] + w(u,v)})

1=0

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

d? [0 Jo [[[]
o [T [= =T =]
d2 | o | 1 | 2 | a5 | 23 |
o T T T T

o [T 1]

* Fori=0,...,n-2:
* ForvinV:
o d[v] « min(d®[v], min,{dV[u] + w(u,v)})

Bellman-Ford

How far is a node from Gates?
Gates Packard CS161 Union Dish

0 Co Lo v []
a [0 [1 o [=]s]
4 [0 [12w =]
o [0 [1]z e =]

o [T 1]

* Fori=0,...,n-2:
* ForvinV:
o d[v] « min(d®[v], min,{dV[u] + w(u,v)})

1=2

Bellman-Ford

How far is a node from Gates?

Gates Packard CS161 Union Dish

d © [@ []

o [ie =]

d2 [o | 2| 2 |a | 23| 4
o T2 [el=] -

Y|
w12]s]=] (orier
=3
* Fori=0,...,n-2:

e ForvinV: @

« d*[v] & min(dOv], min,{d®[u] + w(u,v)})

Interpretation of d{

d®[v] is equal to the cost of the
shortest path betweensand v
with at most i edges.

Gates Packard CS161 Union Dish

40 [0 [[[[=]
a [0 [1 o[]s]
an [0 [12w]=]
o [0 [1]2 e =]
g [0 [126 =]

Why does Bellman-Ford work?

* Inductive hypothesis:

 dli)[v] is equal to the cost of the shortest path between s
and v with at most i edges.

* Conclusion:

Aside: simple paths

Assume there is no negative cycle.

* Then not only are there shortest paths, but actually
there’s always a simple shortest path.

Re \\ This cycle isn’t helping.
p \ Just get rid of it.

* Asimple path in a graph with n vertices has at most
n-1 edges in it.

“Simple” means
that the path has
no cycles in it.

Can’t add another edge
without making a cycle!

Why does it work?

* Inductive hypothesis:

 dli)[v] is equal to the cost of the shortest path between s
and v with at most i edges.

e Conclusion(s):

« d™1[v] is equal to the cost of the shortest path between
s and v with at most n-1 edges.

* If there are no negative cycles, d™1)[v] is equal to the
cost of the shortest path.

Notice that negative edge weights are fine.
Just not negative cycles.

Note on implementation

* Don’t actually keep all n arrays around.
* Just keep two at a time: “last round” and “this round”

Gates Packard CS161 Union Dish

Only need these
two in order to
compute d@

This seems much slower than Dijkstra

 And it is:
Running time O(mn)

* However, it’s also more flexible in a few ways.
e Can handle negative edges

* If we keep on doing these iterations, then changes in the
network will propagate through.

* Fori=0,...,n-2:
* ForvinV:
o di*[y] « min(dW[v], min
e Then dist(s,v) = d™1[v]

{dOu] + w(u,v)})

uin v.nbrs

* Fori=0,...,n-2:

Negative cycles

Gates Packard CS161 Union Dish

oo]w]=]
o [1ale =]
do[o[s2]7]5]
w[=]s]=]s]]
w[Z]s]=]]7]

This is not looking good!

* ForvinV:
o d#[v] « min(dO[v], min, . o ddP[u] + w(u,v)})

Negative edge weights

Gates Packard CS161 Union Dish

d? [0 [o [[[«]
o TaT= =]
o CIETE =]
d® | 4 | s | 4| 6 | 3]
o TS Ta e 7]

But we can tell that it’s not looking good:

o [T+ s [7]

Some stuff changed!

* Fori=0,...,n-2:
* ForvinV:
o di*[v] &« min(dPv], ming.,pfdP[ul + w(u,v)})

Negative cycles in Bellman-Ford

* If there are no negative cycles:
* Everything works as it should, and stabilizes.

* If there are negative cycles:

* Not everything works as it should...

* Note: it couldn’t possibly work, since shortest paths aren’t
well-defined if there are negative cycles.

* The d[v] values will keep changing.

 Solution:
* Go one round more and see if things change.

Bellman-Ford algorithm

Bellman-Ford*(G,s):

e« dO[v]=c0 forallvinV
dO)[s] =0
For i=0,...,n-1:

* ForvinV:

o d*l[v] « min(d[v], min

If dD) 1= g0

e Return NEGATIVE CYCLE ®
Otherwise, dist(s,v) = d"1[v]

{d0[u] + w(u,v)})

uin v.inNeighbors

Running time: O(mn)

Bellman-Ford is also used in practice.

e eg, Routing Information Protocol (RIP) uses something
like Bellman-Ford.

* Older protocol, not used as much anymore.

Destination | Cost to get Send to
e Each router keeps a table of there whom?
distances to every other

172.16.1.0 34 172.16.1.1
router.
o 10.20.40.1 10 192.168.1.2
* Periodically we do a
10.155.120.1 9 10.13.50.0
Bellman-Ford update.
* Aka, for an edge (u,v): .

* d®[v] < min(dV[v], dO[u] + w(u,v)) O

* This means that if there are
changes in the network, this
will propagate. (maybe slowly...)

Recap: shortest paths

* BFS:

* (+) O(n+m)
* (-) only unweighted graphs

* Dijkstra’s algorithm:
* (+) weighted graphs
* (+) O(nlog(n) + m) if you implement it right.
* (-) no negative edge weights

* (-) very “centralized” (need to keep track of all the vertices to know
which to update).

* The Bellman-Ford algorithm:
* (+) weighted graphs, even with negative weights

* (+) can be done in a distributed fashion, every vertex using only
information from its neighbors.

* () O(hm)

Important thing about B-F
for the rest of this lecture

d®[v] is equal to the cost of the
shortest path betweensand v
with at most i edges.

Gates Packard CS161 Union Dish

40 [0 [w [[[=]
o [Tz T= =]
an [0 [12w]=]
o [0 [1]2 e =]

Bellman-Ford is an example of...
Dynamic Programming!

Today:
* Example of Dynamic programming: '

e Fibonacci numbers.
* (And Bellman-Ford)

* What is dynamic programming, exactly?
 And why is it called “dynamic programming”?

* Another example: Floyd-Warshall algorithm
* An “all-pairs” shortest path algorithm

Pre-Lecture exercise:
How not to compute Fibonacci Numbers

* Definition:
* F(n) = F(n-1) + F(n-2), with F(0) = F(1) = 1.
e The first several are:
1,1, 2,3,5, 8,13, 21, 34, 55, 89, 144,...

* Question:
* Given n, what is F(n)?

See CLRS Problem 4-4 for a

Candidate a‘gorithm walkthrough of how fast the

Fibonacci numbers grow!

* def Fibonacci(n):
e if n == 0 or n ==
* return 1
e return Fibonacci(n-1) + Fibonacci(n-2)

(Seems to work, according to the IPython notebook...)

Running time?

Computing Fibonacci Numbers

* T(n)=T(n-1) + T(n-2) + O(1) 300

e T(n) =T(n-1) + T(n-2) forn = 2 250

 SoT(n)grows at least as fast as
the Fibonacci numbers
themselves...

* Fun fact, that’s like ¢p™ where

¢ = 1+2\/5 is the golden ratio.

- Naive Fibonacci

Time(ms)
- nN
u
s 8

—
o
o

()

(=]

20 25

* aka, EXPONENTIALLY QUICKLY ® 0 5 10 15

What's going on? That’s a lot of
. . t d
Consider Fib(8) comnutation!

Mavybe this would be better:

def fasterFibonacci(n):
e F =1, 1, None, None, .., None]
* \\ F has length n
e for i = 2, .., n:
e F[i] = F[i-1] + F[i-2]
* return F[n]

Much better running time!

Computing Fibonacci Numbers

1’_,
I, N
0008 9 ’_1’
/
,I
I,,‘)
__ 0.006 1 7
£ v
g
= 0.004 -
0.002 -
= Naive Fibonacci
=== faster Fibonacci
0000 Ll Ll))) L]

0 5 10 15 20 25 30

This was an example of...

What is dynamic programming?

* It is an algorithm design paradigm
* like divide-and-conquer is an algorithm design paradigm.
e Usually it is for solving optimization problems

e eg, shortest path

* (Fibonacci numbers aren’t an optimization problem, but
they are a good example...)

Elements of dynamic programming

1. Optimal sub-structure:

* Big problems break up into sub-problems.
* Fibonacci: F(i) fori <n
e Bellman-Ford: Shortest paths with at most i edges fori < n

* The solution to a problem can be expressed in terms of
solutions to smaller sub-problems.

* Fibonacci:
F(i+1) = F(i) + F(i-1)
* Bellman-Ford:
d*1[y] < min{ , min, {d?[u] + weight(u,v)}}

N

Shortest path with at most
i edges from s to u.

Elements of dynamic programming

2. Overlapping sub-problems:

* The sub-problems overlap a lot.
* Fibonacci:
* Lots of different F[j] will use F[i].

e Bellman-Ford:
 Lots of different entries of d*1) will use d[v].

* This means that we can save time by solving a sub-problem
just once and storing the answer.

Elements of dynamic programming

* Optimal substructure.

* Optimal solutions to sub-problems are sub-solutions to the
optimal solution of the original problem.

e Overlapping subproblems.
* The subproblems show up again and again

e Using these properties, we can design a dynamic
programming algorithm:
* Keep a table of solutions to the smaller problems.
e Use the solutions in the table to solve bigger problems.

* At the end we can use information we collected along the
way to find the solution to the whole thing.

Two ways to think about and/or
implement DP algorithms

* Top down

* Bottom up

This picture isn’t hugely relevant but I like it. arson

Bottom up approach

what we just saw.

 For Fibonacci:

* Solve the small problems first
e fill in F[O],F[1]

* Then bigger problems

* Then bigger problems
 fill in F[n-1]

* Then finally solve the real problem.
 fill in F[n]

Bottom up approach

what we just saw.

 For Bellman-Ford:

* Solve the small problems first
e fill in d©

* Then bigger problems

* Then bigger problems
* fill in d(n2

* Then finally solve the real problem.
e fill in d(n-1)

Top down approach

* Think of it like a recursive algorithm.

* To solve the big problem:

* Recurse to solve smaller problems

* Those recurse to solve smaller problems
* etc..

* The difference from divide and
conquer: I\

* Memo-ization

* Keep track of what small problems you’ve /ME/MO
already solved to prevent re-solving the

same problem twice.

Example of top-down Fibonacci

* define a global list F = [1,1,None, None,

* def Fibonacci(n):

* if F[n] != None

* return F[n]
* else:

e F[n] = Fibonacci(n-1) + Fibonacci(n-2)

* return F[n]

.., None]

Computing Fibonacci Numbers

r

Memo-ization:
Keeps track (in ,F)
of the stuff youve

already done.

Time(ms)

0.008

0.006 A

0.004 A

0.002 A

0.000

= Naive Fibonacci
=== faster Fibonacci, bottom-up
""" faster Fibonacci, top-down

T T T T T

10 15 20 25 30

s
Collapse
Memo-ization visualization — reesfedress
the same work
twice!

1 re Ll: -_-,: ;-:

Memo-ization Visualization

ctd
Collapse But otherwise
repeated nodes treat it like the
and don' do the same old
same work recursive
twice! algorithm.
* define a global list F = [1,1,None, None, .., None]

* def Fibonacci(n):

* if F[n] != None:

* return F[n]
* else:

* F[n] = Fibonacci(n-1) + Fibonacci(n-2)
* return F[n]

What have we |learned?

* Dynamic programming:
e Paradigm in algorithm design.

Uses optimal substructure

Uses overlapping subproblems

Can be implemented bottom-up or top-down.
It’s a fancy name for a pretty common-sense idea:

Dont
duplicate
work if you
dont have to!

Why “dynamic programming” ?

* Programming refers to finding the optimal “program.”
e asin, a shortest route is a plan aka a program.

* Dynamic refers to the fact that it’s multi-stage.
e But also it’s just a fancy-sounding name.

Manipulating computer code in an action movie?

Why “dynamic programming” ?

e Richard Bellman invented the name in the 1950’s.

* At the time, he was working for the RAND
Corporation, which was basically working for the
Air Force, and government projects needed flashy
names to get funded.

* From Bellman’s autobiography:

* “It’s impossible to use the word, dynamic, in the
pejorative sense...l thought dynamic programming was
a good name. It was something not even a
Congressman could object to.”

Floyd-Warshall Algorithm

Another example of DP

* This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

Destination

Floyd-Warshall Algorithm

Another example of DP

* This is an algorithm for All-Pairs Shortest Paths (APSP)

* Thatis, | want to know the shortest path from u to v for ALL
pairs u,v of vertices in the graph.

* Not just from a special single source s.

* Naive solution (if we want to handle negative edge weights):
* ForallsinG:
* Run Bellman-Ford on G starting at s.
* Time O(n-nm) = O(n’m),
* may be as bad as n* if m=n?

Label the vertices 1,2,...,n

Optimal substructure (We omit some edges n the
f picture below).

Our DP algorithm
will fill in the
n-by-n arrays

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,...,k-1}.

p© pw, .., DI

i’rera’rively and
Let D¢1[u,v] be the solution then we'll be done.
to Sub-problem(k-1).

This is the shortest
@ path fromutov

Vertlces 1 through the blue set.
- k-1 It has length D1)[u,v]

Label the vertices 1,2,...,n

Optimal substructure (We omit some edges n the
f picture below).

Our DP algorithm
will fill in the
n-by-n arrays

Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest
path from u to v, so that all the internal
vertices on that path are in {1,...,k-1}.

p© pw, .., DI
iteratively and
Let D¢1[u,v] be the solution then we'll be done.
to Sub-problem(k-1). k+1

Question: How can we find D®[u,v] using D{k1)?

Y
This is the shortest
@ k-1 path fromutov

Vertices 1 through the blue set.
s k-1 It has length D[u,v]

How can we find D®[u,v] using D{k1)?

DK[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path arein {1, ..., k}.

How can we find D®[u,v] using D{k1)?

D[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path arein {1, ..., k}.

<.
-

S7};"71'5 Path was the
'Ortest before -
@ Still the shortect oIS

Vef'tlces L.k .

Case 1: we don’t)
need vertex k. T, @

" D(k)[u’v] = D(k_l)[U,V]
_—

How can we find D®[u,v] using D{k1)?

D[u,v] is the cost of the shortest path from u to v so
that all internal vertices on that path arein {1, ..., k}.

Case 2: we need
%,.b.
vertex k. G,
-

D O &

Case 2 continued

Suppose there are no negative

cycles.

* Then WLOG the shortest path from
u to v through {1,...,k} is simple.

If that path passes through k, it

must look like this:

This path is the shortest path
from u to k through {1,...,k-1}.

e sub-paths of shortest paths are

shortest paths
Same for this path.

Case 2: we need
vertex k.

»

»

DK[u,v] = D[y, k] + D[k v]

How can we find D®[u,v] using Dlk1)?

e DK[u,v] = min{ D% 1[u,v], DIU[u, k] + DIk v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from k to v
through {1,...,k-1} through {1,...,k-1}

e Optimal substructure:
* We can solve the big problem using smaller problems.

e Overlapping sub-problems:

e D1k v] can be used to help compute D¥)[u,v] for lots
of different u’s.

How can we find D®[u,v] using Dlk1)?

* D®[u,v] = min{ D"“Y[u,v], D%Y[u,k] + DIN[k,v] }

Case 1: Cost of Case 2: Cost of shortest path
shortest path from u to k and then from k to v
through {1,...,k-1} through {1,...,k-1}

* Using our Dynamic programming paradigm, this
immediately gives us an algorithm!

Floyd-Warshall algorithm

* Initialize n-by-n arrays DK for k = 0,...,n
e DI[u,u] =0 for all u, for all k C;gcekz’isftcssz

e DM[u,v] = oo for all u # v, for all k only path through

» DO[u,v] = weight(u,v) for all (u,v) in E.«<— zero other vertices
are edges directly

* Fork = 1, ..., n: from u to v.
* For pairs u,v in V?:
e DKu,v] = min{ D“Y[u,v], DD[u, k] + D&k v] }

e Return DM

This is a bottom-up Dynamic programming algorithm.

We've basically just shown

e Theorem:

If there are no negative cycles in a weighted directed graph G,
then the Floyd-Warshall algorithm, running on G, returns a
matrix D" so that:

D(M[u,v] = distance between u and v in G.

Work out the details of the

[]) . !
o Runnlng time: O(n3) proof! (Or see Lecture
Notes for a few more

e Better than running BF n times! details).
* Not really better than running Dijkstra n times.

e Butit’s simpler to implement and handles negative weights.

* Storage:

* Need to store two n-by-n arrays, and the original graph.
As with Bellman-Ford, we don’t really need to store all n of the D),

What if there are negative cycles?

* Just like Bellman-Ford, Floyd-Warshall can detect
negative cycles:

* Negative cycle & 3 vs.t. thereis a path from v to v that
goes through all n vertices that has cost < 0.

* Negative cycle © J vs.t. DIM[y,v] <O0.

e Algorithm:
* Run Floyd-Warshall as before.
* |f there is some v so that D"[v,v] < O:
* return negative cycle.

What have we |learned?

* The Floyd-Warshall algorithm is another example of
dynamic programming.

* It computes All Pairs Shortest Paths in a directed
weighted graph in time O(n3).

Another Example of DP?

* Longest simple path (say all edge weights are 1):

What is the longest simple path from s to t?

This is an optimization problem...

e Can we use Dynamic Programming?

e Optimal Substructure?
* Longest path from s to t = longest path from s to a
+ longest path fromato t?

\\
1Y
\\ NOPE!
R
I

This doesn’t give optimal sub-structure

Optimal solutions to subproblems don’t give us an optimal
solution to the big problem. (At least if we try to do it this way).

* The subproblems we came up with aren’t independent:
* Once we've chosen the longest path fromatot
* which uses b,

° our shouldn’t be allowed to use b
* since b was already used.

Actually, the longest simple path

problem is NP-complete.
 We don’t know of any polynomial-
time algorithms for it, DP or
otherwise!

Recap

 Two more shortest-path algorithms:
e Bellman-Ford for single-source shortest path
* Floyd-Warshall for all-pairs shortest path

* Dynamic programming!
* This is a fancy name for:

* Break up an optimization problem into smaller problems

e The optimal solutions to the sub-problems should be sub-
solutions to the original problem.

* Build the optimal solution iteratively by filling in a table of
sub-solutions.

* Take advantage of overlapping sub-problems!

Next time

* More examples of dynamic programming!

We will stop bullets with our

action-packed coding skills,

and also maybe find longest
common subsequences.

Before next time

* Pre-lecture exercise: finding optimal substructure

