Lecture 13

More dynamic programming!
Longest Common Subsequences, Knapsack, and

(if time) independent sets in trees.

Announcements

* HWS5 due Friday!
* HW6 released Friday!

Last time Pro

¥e programs dynamically
in Mission Impossible

Last time Pro

* Dynamic programming is an algorithm design
paradigm.

e Basic idea:

* |dentify optimal sub-structure

* Optimum to the big problem is built out of optima of small
sub-problems

» Take advantage of overlapping sub-problems
* Only solve each sub-problem once, then use it again and again

» Keep track of the solutions to sub-problems in a table
as you build to the final solution.

Today

* Examples of dynamic programming:
1. Longest common subsequence
2. Knapsack problem
* Two versions!

3. Independent sets in trees

* If we have time...
* (If not the slides will be there as a reference)

The goal of this lecture

* For you to get really bored of dynamic programming

A -, iy
- |

mgflip.com

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

Longest Common Subsequence

* How similar are these two species?

DNA: DNA:
AGCCCTAAGGGCTACCTAGCTT GACAGCCTACAAGCGTTAGCTTG

* Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

Longest Common Subsequence

e Subsequence:
* BDFH is a subsequence of ABCDEFGH

* [f Xand Y are sequences, a common subsequence
is a sequence which is a subsequence of both.

* BDFH is a common subsequence of ABCDEFGH and of
ABDFGHI
* A longest common subsequence...

e ...isa common subsequence that is longest.

* The longest common subsequence of ABCDEFGH and
ABDFGHI is ABDFGH.

We sometimes want to find these

DN@a22a660:~ mary$ cat filel

* Applications in bioinformatics

.L'.
B
C
D
E
F
G
H
D
A

NOa22a660:~ mary$ cat file2

e The unix command diff

o Mmoo m

* Merging in version control ba22a660

3d2

t~ maryy diff filel file2
* svn, git, etc...

DN@aZ22a0660 : ~

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

Step 1: Optimal substructure

Prefixes:
X AlclGcg |G| T
Y AlclGcg|lclTI!lT]!|A

Notation: denote this prefix ACGC by Y,

* Our sub-problems will be finding LCS’s of prefixes to X and Y.
* Let C[i,j] = length_of _LCS(X, Y,)

Optimal substructure ctd.

* Subproblem:
* finding LCS’s of prefixes of X and Y.

 Why is this a good choice?

* There’s some relationship between LCS’s of prefixes and
LCS’s of the whole things.

* These subproblems overlap a lot.

To see this formally, on to...

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. J

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

* QOur sub-problems will be finding

TWO CaSsSes LCS’s of prefixes to X and Y.
: : * Let C[i,j] =length_of_LCS(X,Y;)
Case 1: X[i] = Y[j]

These are
A the same
| |
A C| G G A
Xi
j
|
| |
Yj Alc|lGcg|lc|T]|T]|A

Notation: denote this prefix ACGC by Y,

Then CJi,j] =1 + CJi-1,j-1].
* because LCS(X;)Y;) = LCS(X; ,,Y; ;) followed by | A

e QOur sub-problems will be finding

TWO CaSsSes LCS’s of prefixes to X and Y.
: : * Let C[i,j] = length_of_LCS(X, Y,)
Case 2: X[i] !=Y[j]]
! These are
| A \/ not the
same
X. AlclGg |G| T
|
j
|
f \
Yj AlclGg|lc|T|T]|A

Notation: denote this prefix ACGC by Y,

Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
* either LCS(X,Y;) = LCS(X, ,,Y;) and [T|is not involved,
* or LCS(X,)Y;) = LCS(X,Y, ;) and |A[is not involved,

Recursive formulation
of the optimal solution X, |

Y. A|lCIG|C|T]|T
J
jCaseO
(0 if i=00rj=0
°C[i,j]=<C[i—1,j—1]+1 ifX[i]=Y[j] andi,j >0
\max{ Cli,j —1],Cli —1,j]} ifX[i] #Y][j] andi,j >0 %
Case 1 Case 2
A|lC|G|G|A A|lCIG|G|T
X X
Y. |A|C|G|C|T|T|A Y. |A|C|G|C|T|T

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

&

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

LCS DP omG BBRQ

e LCS(X, Y):

* Cl[i,0]=C[0,j]=0foralli=1,..,m,j=1,...n.
e Fori=1,.,mandj=1,..,n:
 If X[i] = Y[j]:

e C[i,jl = C[i-1,j-1] +1

e Else:

/

Rup,. .
Ming
* C[i,j]l = max{ C[i,j-1], C[i-1,j] } O{”'h} Me.
0 ifi=00rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0

Cli,jl = 3

kmax{ Cli,j—1],Cli —1,j]} ifX[i] #Y[j] andi,j >0

SEHEBE

Cli,j]

|

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

So the LCM of X

and Y has length 3.

SEHEBE

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable
person.

SEHEBE

Cli,j]

|

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

SEHEBE

Cli,j]

0 ifi=0o0rj=0
Cli-1,j—1]+1 if X[i] = Y[j] andi,j >0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

Y
A \ c \ T
* Once we've filled this in,
we can work backwards.
0 0 0
1 1 1
1 2 2
1 2 2
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl=4Cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[a]o]o]>

Y
A \ c \ T
* Once we've filled this in,

we can work backwards.
0 0 0
1 1 1
1 2 2
1 2 2
1 2 2 That 3 must have come

from the 3 above it.

1 2 2

0 ifi=0o0rj=0

Cli,jl1=4{cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[o]a]o]>

Y
A \ c \ T
* Once we've filled this in,
we can work backwards.
Oo|jJO0o}|]oO Adiagonal jump means
that we found an element
1L11]1 of the LCS!
1 2 2
1 2 2 This 3 came from that 2 —
|
1 2) we found a match!
1 2 2
0 ifi=0o0rj=0
Cli,jl1=4{cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

Y
A \ c \ T
* Once we've filled this in,
we can work backwards.
Oo|jJO0o}|]oO Adiagonal jump means
that we found an element
1L11]1 of the LCS!
1 2 2 That 2 may as well
have come from
1 2 2 this other 2. G
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl1=4{cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[o]o]o]>

Y
A \ C \ T
* Once we've filled this in,
we can work backwards.
Oo|jJO0o}|]oO Adiagonal jump means
that we found an element
1L11]1 of the LCS!
1 2 2
1 2 2 G
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl=4Cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

>[o]o]o|=

Y
A \ c \ T
* Once we've filled this in,
we can work backwards.
Oo|jJO0o}|]oO Adiagonal jump means
that we found an element
L] 1]1 of the LCS!
1 2 2
1 2 2 C G
1 2 2
1 2 2
0 ifi=0o0rj=0
Cli,jl=4Cli—1,j—1]+1 if X[i{] = Y[j] andi,j > 0

max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

* Once we've filled this in,
we can work backwards.

* Adiagonal jump means

that we found an element
of the LCS!

A C G

>[o]o]o]>

This is the LCS!

0 ifi=0o0rj=0
Cli,jl={Cli—1,j—1]+1 if X[i] = Y[j] and i,j > 0
max{ C[i,j — 1],C[i — 1,j]} ifX[i] # Y[j] andi,j >0

This gives an algorithm to recover the actual LCS
not just its length

* See lecture notes for pseudocode

* It runs in time O(n + m)
 We walk up and left in an n-by-m array
 We can only do that for n + m steps.

* So actually recovering the LCS from the table is
much faster than building the table was.

e We can find LCS(X,Y) in time O(mn).

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the length
of the longest common subsequence.

* Step 3: Use dynamic programming to find the
length of the longest common subsequence.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual LCS.

 Step 5: If needed, code this up like a reasonable (
person.

This pseudocode actually isn’t so bad

* If we are only interested in the length of the LCS:

* Since we go across the table one-row-at-a-time, we can only
keep two rows if we want.

* If we want to recover the LCS, we need to keep the whole
table.

than O(mn) time?
* A bit better.
* By alog factor or so.

* But doing much better (polynomially better) is an open
problem!

* If you cando it let me know :D

What have we |learned?

* We can find LCS(X,Y) in time O(nm)
e if |Y|=n, |X]|=m

* We went through the steps of coming up with a
dynamic programming algorithm.
* We kept a 2-dimensional table, breaking down the
problem by decrementing the length of X and Y.

Example 2: Knapsack Problem

* We have n items with weights and values:

ltem: %
Weight: 6)
Value: 20 S 14 13 35

* And we have a knapsack:

* it can only carry so much weight: {5/

® Capacity: 10

1
<

2

. Weight: 6 2 4
¢ Capacity: 10 Value: 20 8 14

Ry 2

ltem: h L b (/

11
35

» * Unbounded Knapsack:

* Suppose | have infinite copies of all of the items.
* What’s the most valuable way to fill the knapsack?

g g Total weight: 10
/ / = =1 Total value: 42

* 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What'’s the most valuable way to fill the knapsack?

b g : Total weight: 9
= b / Total value: 35

Some notation

ltem: _ =
WEIght Wl W2 W3 e Wn
Value: V]_ V2 V3 Vn

Capacity: W

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Optimal substructure

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.

First solve the
problem for

Then larger Then larger
small knapsacks knapsacks knapsacks

Optimal substructure

* Suppose this is an optimal solution for capacity x:

net the
Sa\’ “a So\u’(_\oﬂ‘
ot at\edd — h
Coﬂ’(,a " rer \. g g
one €©F Weight w;
Value v, Capacity x
* Then this optimal for capacity x - w;: Value V

D
&

If | could do better than the second solution,
then adding a turtle to that improvement
would improve the first solution.

-)

Capacity x — w;
Value V - v,

item i

Recipe for applying Dynamic Programming

» Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Recursive relationship

* Let K[x] be the optimal value for capacity x.

+

K[x] = max. {

Optimal way to The value of
fill the smaller item i.

The maximum is over
all i so that w; < x.

knapsack

K[x] = max. { K[x =w] + v, }

* (And K[x] = 0 if the maximum is empty).
* Thatis, there are noisothatw; < x

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution. {

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
* K[0]=0
e forx=1, .., W:
 K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] =max{ K|x],K[x —w;] + v;}
e return K[W]

Running time: O(nW)

Why does this work?

=max; { K[x—w] +v;} Because our recursive relationship makes sense.

Can we do better?

* We only need log(W) bits to write down the input W
and to write down all the weights.

* Maybe we could have an algorithm that runs in time
O(nlog(W)) instead of O(nW)?

* Open problem!
e (But probably the answer is no...otherwise P = NP)

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value

of the optimal solution. {

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
* K[0]=0
e forx=1, .., W:
 K[x] =0
e fori=1, .., n:
o ifw; < x:
* K|x] =max{ K|x],K[x —w;] + v;}
e return K[W]

K[x] = max; { K&
e

=max; { K[x—w] +v;}

Let’s write a bottom-up DP algorithm

* UnboundedKnapsack(W, n, weights, values):
« K[0]=0 ’
* ITEMS[0] =0
e forx=1, .. W:
 K[x] =0
e fori=1, .., n:
o if Wi < X:
* K|x] = max{ K|x]|,K[x —w;]| +v;}

* If K[x] was updated: ’
* ITEMS[x] = ITEMS[x—w] U {itemi }

e return ITEMS[W]

K[x] =max.{ M=%
S

=max; { K[x—w] +v;}

A~

ITEMS

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
 ITEMS[0]=0
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e jf Wi < Xx:

* Klx] =max{K[x]|,K[x —w;| +v;}
* If K[x] was updated:
* ITEMS[x] = ITEMS[x —w;] U { item i }

return ITEMS[W]

Weight: 1
Value: 1 4 6

% 2

Cap'ity: 4

e UnboundedKnapsack(W, n, weights, values):
« K[0]=0
 ITEMS[0]=0

Example B

e fori=1,..,n:
° Ile < Xx:
1 2 3 4 * Klx] =max{K[x],K[x —w;| +v;}

A~

* If K[x] was updated:
* ITEMS[x] = ITEMS[x —w;] U { item i }
* return ITEMS[W]

ITEMS

-

Weight:

N
D
(@)

Value:

TEMS[1] = ITEMS[O] + il

N =

Capacity: 4

A~

ITEMS

TEMS[2] = ITEMS[1] + il

UnboundedKnapsack(W, n, weights, values):

K[0]=0
ITEMS[0] =@
forx=1, .. W:
« K[x]=0
fori=1,..,n:
e jf Wi < Xx:

K[x] = max{ K[x],K[x —w;| +v; }
* If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

-

Weight:
Value:

N
D
(@)

L

Capacity: 4

A~

ITEMS

ITEMS[2] = ITEMS[O] +

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
 ITEMS[0]=0
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e jf Wi < x:
* Klx] =max{ K[x],K[x —w;| +v;}
* If K[x] was updated:
* ITEMS[x] = ITEMS[x —w;] U { item i }
* return ITEMS[W]

ltem:
Weight: 1 2 3
Value: 1 4 6

0

Capacity: 4

A~

ITEMS

TEMS[3] = ITEMS[2] + Yk

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
 ITEMS[0]=0
e forx=1,.. W:
« K[x]=0
e fori=1,..n:
e jf Wi < Xx:

* Klx] =max{K[x]|,K[x —w;| +v;}
* If K[x] was updated:
* ITEMS[x] = ITEMS[x —w;] U { item i }
* return ITEMS[W]

-

Weight:
Value:

N
D
(@)

RN =

Capacity: 4

A~

ITEMS

ITEMS[3] = ITEMS[O] +b

UnboundedKnapsack(W, n, weights, values):

K[0]=0
ITEMS[0] =@
forx=1, .. W:
« K[x]=0
fori=1,..,n:
e jf Wi < Xx:

K[x] = max{ K[x],K[x —w;| +v; }
* If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

Weight:
Value:

PR
I
o))

L

Capacity: 4

A~

ITEMS

ITEMS[4] = ITEMS[3] +1ﬁ

UnboundedKnapsack(W, n, weights, values):

« K[0]=0
ITEMS[0] =@
forx=1, .. W:
« K[x]=0
fori=1,..,n:
e jf Wi < Xx:

K[x] = max{ K[x],K[x —w;| +v; }
* If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

Weight: 1
Value: 1 4 6

L

Capacity: 4

A~

ITEMS

ITEMS[4] = ITEMS[2] + ;

UnboundedKnapsack(W, n, weights, values):

K[0]=0
ITEMS[0] =@
forx=1, .. W:
« K[x]=0
fori=1,..,n:
e jf Wi < Xx:

K[x] = max{ K[x],K[x —w;| +v; }
* If K[x] was updated:
ITEMS[x] = ITEMS[x —w;] U { item i }
return ITEMS[W]

ltem:
Weight: 1 2 3
Value: 1 4 6

L

Capacity: 4

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the

actual solution. {
 Step 5: If needed, code this up like a reasonable
person.
(Pass)

What have we |learned?

* We can solve unbounded knapsack in time O(nW).
* |f there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a one-dimensional table, creating smaller
problems by making the knapsack smaller.

. Weight: 6 2 4
. Capacity: 10 Value: 20 8 14

ltem: h L b (/

11
35

* Unbounded Knapsack:
* Suppose | have infinite copies of all of the items.
* What’s the most valuable way to fill the knapsack?

g g Total weight: 10
/ / = =1 Total value: 42

» * 0/1 Knapsack:

* Suppose | have only one copy of each item.
 What'’s the most valuable way to fill the knapsack?

b g : Total weight: 9
= b / Total value: 35

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Optimal substructure: try 1

e Sub-problems:
* Unbounded Knapsack with a smaller knapsack.

=5

o '\

First solve the
problem for

Then larger Then larger
small knapsacks

knapsacks knapsacks

This won’t quite work...

* We are only allowed one copy of each item.

* The sub-problem needs to “know” what items
we’ve used and what we haven’t.

| can’t use
any turtles...

Optimal substructure: try 2

e Sub-problems:

First solve the
problem with
few items

Then more
items

Then yet
more
items

Our sub-problems:

* Indexed by x and |

First j items Capacity x

TwoO cases k tem |

* Case 1: Optimal solution for j items does not use item j.
* Case 2: Optimal solution for j items does use item j.

First j items Capacity x

TwoO cases

Capacity x
Value V
Use only the first j items

First j items

* Then this is an optimal solution for j-1 items:

G

Ca;:ity X
s Value V
First J-1 items Use only the first j-1 items.

TwoO cases

" B

Weight w;
Value v, Capacity x
Value V
First j items Use only the first j items

* Then this is an optimal solution for j-1 items and a
maller knapsack:

Capacity x — w;
Value V —v,

First j-1 items Use only the first j-1 items.

Recipe for applying Dynamic Programming

» Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Recursive relationship

* Let K[x,j] be the optimal value for:
* capacity x,
e with j items.

K[x,j] = max{ K[x, j-1],

Case 1

e (And K[x,0] = 0 and K[O,j] = 0).

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Bottom-up DP algorithm

e Zero-One-Knapsack(W, n, w, v):
e K[x,0] =0 forall x=0,.... W
e K[O,i]=0foralli=0,...,n
e forx=1,...,W:
eforj=1,..,n:
* K[x,j] = K[x, j-1]
cifw, < x
* K[x,j] = max{ K[x,j], }
e return K[W n]

Case 1

Running time O(nW)

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J_l]

e ifw <x:
=0 x=1 x=2 x=3 © KD = max{ KIx,],
KIx—w;, j-1] +v; }
=0 0 0 0 0 e return K[W,n]
0
W -
0
L
0
- W=

current relevant Weight: 1 2 3 &
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

e forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }
=0 0 0 0 0 e return K[W,n]
0 0

W -

0
W

0
- W=

current relevant Weight: 1 2 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[O,i]=0foralli=0,...,n

forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

=0 0 0 0 0 e return K[W,n]
0 1
- -
0
. 2
0

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[O,i]=0foralli=0,...,n

forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

o
o
o
o
.

return K[\W,n]

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[O,i]=0foralli=0,...,n

forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

o
o
o
o
.

return K[\W,n]

v
5 |¥-|v-

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

Example

x=0 x=1 x=2 x=3
0 0 0 0
j=0
_ 0 1 0
) ™Y
0 1
= h =2 h
0 1
- = iy
ltem:
current relevant Weight:
entry previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
* Klx,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
* return K[W,n]

2 3 L
4 6 Capacity: 3

Example

x=0 x=1 x=2 x=3
0 0 0 0
j=0
_ 0 1 1
1"*)71 'Ei[» 1"*
0 1
. W ey
0 1
- = iy
ltem:
current relevant Weight:
entry previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
* Klx,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
* return K[W,n]

2 3 L
4 6 Capacity: 3

Example

x=0 x=1 x=2 x=3
=0 0 0 0 0
0 1 1
W - 1"9R™
. 0 1 1
e 2| (e
0 1
- = S e
ltem:
current relevant Weight:
entry previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
* Klx,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
* return K[W,n]

2 3
4 6 Capacity: 3

Example

x=0 x=1 x=2 x=3
0 0 0 0
j=0
_ 0 1 1
1"*)71 'Ei[» 1"*
0 1 4
< i"* =2 i’lf &
0 1
- = iy
ltem:
current relevant Weight:
entry previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
* Klx,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
* return K[W,n]

2 3 L
4 6 Capacity: 3

Example

x=0 x=1 x=2 x=3
0 0 0 0
j=0
_ 0 1 1
1"*)71 'Ei[» 1"*
0 1 4
< i"* =2 i’lf &
0 1 4
- = |
ltem:
current relevant Weight:
entry previous entry Value:

Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
e forj=1,..,n:
* K[x,jl = K[x, j-1]
o ifw,<x
* Klx,j] = max{ K[x,j],
KIx—w;, j-1] +v; }
* return K[W,n]

2 3 L
4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

e forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

0 0 0 0 e return K[W,n]

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

e forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

0 0 0 0 e return K[W,n]

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

e forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

0 0 0 0 e return K[W,n]

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

Example O et

¢ K[XIJ] = K[XI J_l]

o ifw,<x
x=0 x=1 = x=2 x=3 © K[x,j] = max{ KIx],
KIx—w;, j-1] +v; }
. 0 0 0 0 * return K[\W,n]
j=0
_ 0 1 1 1
W (e ww
0 1 4 5
v h 1=2 h ¢ |m=
0 1 4
- o h =3 h ¢

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n

e forx=1,..W:
Example « forj=1,..,n:
* Klx,j] = K[x, j-1]
o ifw,<x
x=0 x=1 x=2 x=3 © K[x,j] = max{ K[x,]],

KIx—w;, j-1] +v; }

0 0 0 0 e return K[W,n]

current relevant Weight: 1 - 3
entry ~ previous entry Value: 1 4 6 Capacity: 3

current
entry

x=0 x=1 X=2 X=3
=0 0 0 0 0
0 1
L
0 1
T
0 1
s

relevant
previous entry

ltem:

Weight:
Value:

Zero-One-Knapsack(W, n, w, v):
K[x,0] =0 forall x=0,...,.W
K[O,i]=0foralli=0,...,n

forx=1,..W:

e forj=1,..,n:
° K[XIJ] = K[XI J'l]
o if w; < X

return K[\W,n]

KIx,j] = max{ K[x,j],
K[x — W, j-1] + v }

e
xQ

Capacity: 3

* Zero-One-Knapsack(W, n, w, v):
* K[x,0]=0forallx=0,..W
* K[O,i]=0foralli=0,...,n
e forx=1,..W:
Example ot
* K[x,jl = K[x, j-1]
o ifw,<x
x=0 x=1 X=2 X=3 * K[x,j] = max{ K[x,j],
KIx—w;, j-1] +v; }

0 0 0 0 e return K[W,n]

put one watermelon in your
knapsack!

™
5

h & So the optimal solution is to
6

v
5-|¥-|-

current relevant Weight: 1 2 3
entry previous entry Value: 1 4 6 Capacity: 3

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

person. You do this one!
(We did it on the slide in the previous
example, just not in the pseudocode!)

What have we |learned?

e We can solve 0/1 knapsack in time O(nW).
* |f there are n items and our knapsack has capacity W.

* We again went through the steps to create DP
solution:

* We kept a two-dimensional table, creating smaller
problems by restricting the set of allowable items.

Question

e How did we know which substructure to use in
which variant of knapsack?

Answer in retrospect:

This one made sense for
unbounded knapsack
because it doesn’t have
any memory of what
items have been used.

In 0/1 knapsack, we
can only use each item
once, so it makes sense

to leave out one item
at a time.

Operational Answer: try some stuff, see what works!

Example 3: Independent Set

if we still have time

An independent set
is a set of vertices
so that no pair has
an edge between
them.

e Given a graph with
weights on the
vertices...

* What is the
independent set with
the largest weight?

Actually this problem is NP-complete.

So we are unlikely to find an efficient algorithm

e But if we also assume that the graph is a tree...

‘

Atreeisa
connected
graph with no
cycles.

G

=

Problem:

find a maximal independent set in a tree (with vertex weights).

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure. -

* Step 2: Find a for the value of
the optimal solution

 Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Optimal substructure

 Subtrees are a natural candidate.
* There are two cases: ‘

1. The root of this tree is in a not in

a maximal independent set.

(U
A

Case 1:

the root is not in an maximal independent set

e Use the optimal solution ‘
from these smaller problems.

e o
e - \\ / 1
»” \ I \
e \ I \
/' \\ | \
s \ 1 \
e \‘ 1 \‘
/’ ' || \
,l “ i \
v \
I, v \

1 \ I \

] Lo 1
l, 1 1 “
I ‘ 11 \
| I 1
1 1 | \
\ ll] |I

\

\
A —— ;N J
) L ~ A

Case 2:

the root is in an maximal independent set

 Then its children can’t be.

* Below that, use the optimal
solution from these smaller
subproblems.

\

\ \

1]

1 / \

4 n - \ ! !
I I I \ / \
! ! / Vo \
\ T Vo \
~ 7 N / \]

Recipe for applying Dynamic Programming

» Step 1: Identify optimal substructure. %
* Step 2: Find a for the value o

the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

Recursive formulation: try 1

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

e Alu] =

ZvEu.Children Alv]

max

weight(u) + Zvea.grandchildren

When we implement this, how do
we keep track of this term?

C

Recursive formulation: try 2

Keep two arrays!

* Let A[u] be the weight of a maximal independent set
in the tree rooted at u.

* Let B[u] =); Alv]

veu.children

ZvEu.ChildI‘en Alv]
* Alu] = max

weight(u) + 2 children

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.
* Step 2: Find a for the value of

the optimal solution. ,

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

A top-down DP algorithm

 MIS subtree(u): Mitjy,,
e if uis aleaf:

| th ,
 Afu] = weight(u) € reCUfS/'Vee n 3l o
e Blu]=0 Calls,

* else:

e for vin u.children:
* MIS_subtree(v)

* Alu] =max{) _ hildrenAlv], weight(u) + }
Running time?
M |S(T) * We visit each vertex once, and at
. every vertex we do O(1) work:
MIS—SUbtree(T' rOOt) * Make a recursive call
* return A[T.root] * look stuff up in tables
* Running time is O(|V])

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

e MIS subtree(u):

PP , t
if u is a leaf: eXCept wen ditc;ame eudocog
* return weight(u) are just c4yi ed th table
inStead . Ilng Mi Supbt and
* else: flooking up Afy] ree(v)
. . 0]
e forvin u.children: "Blv]

e MIS_subtree(v)

* return max{), MIS_subtree(v),

veu.children

weight(u) +). MIS_subtree(v) }

veugrandchildren

* MIS(T):
e return MIS_subtree(T.root)

Why is this different from divide-and-conquer?

That’s always worked for us with tree problems before...

How often would we ask ’
about the subtree rooted
here?

Once for this node
and once for

But we then ask . ‘ a ‘ ‘

about this node

twice, and here. \ ‘ ‘

This will blow up exponentially
without using dynamic ‘
programming to take advantage ‘ ‘ ‘ ‘ ‘ ‘ ‘

of overlapping subproblems.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value

of the optimal solution. ,
* Step 4: If needed, keep track of some additional

info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable

person. ‘
You do this one!

What have we |learned?

* We can find maximal independent sets in trees in
time O(|V|) using dynamic programming!

* For this example, it was natural to implement our
DP algorithm in a top-down way.

Recap

* Today we saw examples of how to come up with
dynamic programming algorithms.
* Longest Common Subsequence
* Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

Recipe for applying Dynamic Programming

* Step 1: Identify optimal substructure.

* Step 2: Find a for the value of
the optimal solution.

 Step 3: Use dynamic programming to find the value
of the optimal solution.

* Step 4: If needed, keep track of some additional
info so that the algorithm from Step 3 can find the
actual solution.

 Step 5: If needed, code this up like a reasonable
person.

- ‘ I b o
35 o 5

Recap

' SOBORINGI!
* Today we saw examples of how to come up with
dynamic programming algorithmes.
* Longest Common Subsequence

e Knapsack two ways
maximal independent set in trees.

* There is a recipe for dynamic programming
algorithms.

* Sometimes coming up with the right substructure
takes some creativity

* You’ll get lots of practice on Homework 6! ©

Next week

* Greedy algorithms!

Before next time

* Pre-lecture exercise: Greed is good!

