
Lecture	15
Minimum	Spanning	Trees

Announcements

• HW6	due	Friday SUNDAY

• It’s	a	long	problem	set

• Next	week	is	Thanksgiving	break,	so	there’s	no	rush	to	
get	started	on	HW7.

• You	can	use	late	days	until	Tuesday	at	3pm.

• HOWEVER:	The	course	staff	also	get	Thanksgiving	break,	
so	take	advantage	of	Piazza/office	hours	before	Friday.

• HW7	still	released	Friday	(11/17)

• Due	Friday	12/1	(NOT Friday	11/24)

Last	time

• Greedy	algorithms

• Make	a	series	of	choices.

• Choose	this	activity,	then	that	one,	..

• Never	backtrack.

• Show	that,	at	each	step,	your	choice	does	not	rule	out	
success.

• At	every	step,	there	exists	an	optimal	solution	consistent	with	
the	choices	we’ve	made	so	far.

• At	the	end	of	the	day:

• you’ve	built	only	one	solution,	

• never	having	ruled	out	success,	

• so	your	solution	must	be	correct.

Today

• Greedy	algorithms	for	Minimum	Spanning	Tree.

• Agenda:

1. What	is	a	Minimum	Spanning	Tree?

2. Short	break	to	introduce	some	graph	theory	tools

3. Prim’s	algorithm

4. Kruskal’s algorithm

Minimum	Spanning	Tree
Say	we	have	an	undirected	weighted	graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	spanning	tree	is	a	tree that	connects	all	of	the	vertices.

A	tree	is	a	

connected	graph	

with	no	cycles!

Minimum	Spanning	Tree
Say	we	have	an	undirected	weighted	graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	spanning	tree	is	a	tree that	connects	all	of	the	vertices.

A	tree	is	a	

connected	graph	

with	no	cycles!

This	is	a	

spanning	tree.

The cost of	a	

spanning	tree	is	

the	sum	of	the	

weights	on	the	

edges.

It	has	cost	67

Minimum	Spanning	Tree
Say	we	have	an	undirected	weighted	graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	spanning	tree is	a	tree that	connects	all	of	the	vertices.

A	tree is	a	

connected	graph	

with	no	cycles!

This	is	also	a	

spanning	tree.

It	has	cost	37

Minimum	Spanning	Tree
Say	we	have	an	undirected	weighted	graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	spanning	tree is	a	tree that	connects	all	of	the	vertices.

minimum of	minimal	cost

Minimum	Spanning	Tree
Say	we	have	an	undirected	weighted	graph

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	spanning	tree	is	a tree	that	connects	all	of	the	vertices.

This	is	a	minimum	

spanning	tree.

It	has	cost	37

minimum of	minimal	cost

Why	MSTs?

• Network	design

• Connecting	cities	with	roads/electricity/telephone/…

• cluster	analysis

• eg,	genetic	distance

• image	processing

• eg,	image	segmentation

• Useful	primitive	

• for	other	graph	algs

Figure	2:	Fully	parsimonious	minimal	spanning	tree	of	933	SNPs	for	282	isolates	of Y.	pestis colored	by	location.

Morelli	et	al.	Nature	genetics	2010

How	to	find	an	MST?

• Today	we’ll	see	two	greedy	algorithms.

• In	order	to	prove	that	these	greedy	algorithms	work,	we’ll	
need	to	show	something	like:

Suppose	that	our	choices	so	far	

haven’t	ruled	out	success.		

Then	the	next	greedy	choice	that	we	make	

also	won’t	rule	out	success.

• Here,	successmeans	finding	an	MST.

From	your	pre-lecture	exercise
• How	would	we	design	a	greedy	algorithm?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Brief	aside
for	a	discussion	of	cuts	in	graphs!

Cuts	in	graphs

• A	cut is	a	partition	of	the	vertices	into	two	parts:

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This	is	the	cut	“{A,B,D,E}	and	{C,I,H,G,F}”

Cuts	in	graphs

• One	or	both	of	the	two	parts	might	be	disconnected.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

This	is	the	cut	“{B,C,E,G,H}	and	{A,D,I,F}”

Let	S be	a	set	of	edges	in	G

• We	say	a	cut	respects S	if	no	edges	in	S	cross	the	cut.

• An	edge	crossing	a	cut	is	called light if	it	has	the	
smallest	weight	of	any	edge	crossing	the	cut.	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 6
8

11

8

4

S	is	the	set	of		thick	orange	edges

Let	S be	a	set	of	edges	in	G

• We	say	a	cut	respects S	if	no	edges	in	S	cross	the	cut.

• An	edge	crossing	a	cut	is	called light if	it	has	the	
smallest	weight	of	any	edge	crossing	the	cut.	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 6
8

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

Lemma

• Let	S	be	a	set	of	edges,	and	consider	a	cut	that	respects	S.

• Suppose	there	is	an	MST	containing	S.

• Let	(u,v)	be	a	light	edge.

• Then	there	is	an	MST	containing	S	∪ {(u,v)}	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

Lemma

• Let	S	be	a	set	of	edges,	and	consider	a	cut	that	respects	S.

• Suppose	there	is	an	MST	containing	S.

• Let	(u,v)	be	a	light	edge.

• Then	there	is	an	MST	containing	S	∪ {(u,v)}	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

It’s	”safe”	to	add	this	edge!
Aka:

If	we	haven’t	ruled	

out	the	possibility	of	

success	so	far,	then	

adding	a	light	edge	

still	won’t	rule	it	out.

Proof	of	Lemma

• Assume	that	we	have:	

• a	cut that	respects	S

yx

u

v b

a

Proof	of	Lemma

• Assume	that	we	have:	

• a	cut that	respects	S

• S is	part	of	some	MST	T.

• Say	that	(u,v)	is	light.

• lowest	cost	crossing	the	cut
yx

u

v b

a

Proof	of	Lemma

• Assume	that	we	have:	

• a	cut that	respects	S

• S is	part	of	some	MST	T.

• Say	that	(u,v)	is	light.

• lowest	cost	crossing	the	cut

• But	say	(u,v)	is	not	in	T.

• So	adding	(u,v)	to	T

will	make	a	cycle.

yx

u

v b

a

Claim:	Adding	any	additional	edge	to	

a	spanning	tree	will	create	a	cycle.

Proof:	Both	endpoints	are	already	in	

the	tree	and	connected	to	each	other.

Proof	of	Lemma

• Assume	that	we	have:	

• a	cut that	respects	S

• S is	part	of	some	MST	T.

• Say	that	(u,v)	is	light.

• lowest	cost	crossing	the	cut

• But	say	(u,v)	is	not	in	T.

• So	adding	(u,v)	to	T

will	make	a	cycle.

• So	there	is	at	least	one	
other	edge	in	this	cycle	
crossing	the	cut.	

• call	it	(x,y)

yx

u

v b

a

Claim:	Adding	any	additional	edge	to	

a	spanning	tree	will	create	a	cycle.

Proof:	Both	endpoints	are	already	in	

the	tree	and	connected	to	each	other.

Proof	of	Lemma	ctd.

• Consider	swapping	(u,v)	for	(x,y)	in	T.

• Call	the	resulting	tree	T’.

yx

u

v b

a

• Claim:	T’	is	still	an	MST.
• It	is	still	a	tree:

• we	deleted	(x,y)

• It	has	cost	at	most	that	of	T	
• because	(u,v)	was	light.

• T	 had	minimal	cost.

• So	T’	does	too.

Proof	of	Lemma	ctd.

• Consider	swapping	(u,v)	for	(x,y)	in	T.

• Call	the	resulting	tree	T’.

yx

u

v b

a

• So	T’	is	an	MST	

containing	(u,v).
• This	is	what	we	wanted.

Lemma

• Let	S	be	a	set	of	edges,	and	consider	a	cut	that	respects	S.

• Suppose	there	is	an	MST	containing	S.

• Let	(u,v)	be	a	light	edge.

• Then	there	is	an	MST	containing	S	∪ {(u,v)}	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

End	aside
Back	to	MSTs!

Back	to	MSTs

• How	do	we	find	one?

• Today	we’ll	see	two	greedy	algorithms.

• The	strategy:

• Make	a	series	of	choices, adding	edges	to	the	tree.

• Show	that	each	edge	we	add	is	safe	to	add:

• we	do	not	rule	out	the	possibility	of	success

• we	will	choose	light	edges	crossing	cuts	and	use	the	Lemma.

• Keep	going	until	we	have	an	MST.

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Idea	1
Start	growing	a	tree,	greedily	add	the	shortest	edge	
we	can	to	grow	the	tree.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

We’ve	discovered	

Prim’s	algorithm!

• slowPrim(G	=	(V,E),	starting	vertex	s):

• Let	(s,u)	be	the	lightest	edge	coming	out	of	s.

• MST	=	{	(s,u)	}

• verticesVisited =	{	s,	u	}

• while |verticesVisited|	<	|V|:

• find	the	lightest	edge	(x,v)	in	E	so	that:

• x	is	in	verticesVisited

• v	is	not	in	verticesVisited

• add	(x,v)	to	MST

• add	v	to	verticesVisited

• return	MST Naively,	the	running	time	is	O(nm):
• For	each	of	n-1	iterations	of	the	while	loop:

• Maybe	go	through	all	the	edges.

n	iterations	of	this	

while	loop.

Maybe	take	time	

m	to	go	through	all	

the	edges	and	find	

the	lightest.

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowPrim”…

Does	it	work?

• We	need	to	show	that	our	greedy	choices	don’t	
rule	out	success.

• That	is,	at	every	step:

• There	exists	an	MST	that	contains	all	of	the	edges	we	
have	added	so	far.

• Now	it	is	time	to	use	our	lemma!

Lemma

• Let	S	be	a	set	of	edges,	and	consider	a	cut	that	respects	S.

• Suppose	there	is	an	MST	containing	S.

• Let	(u,v)	be	a	light	edge.

• Then	there	is	an	MST	containing	S	∪ {(u,v)}	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

Partway	through	Prim

• Assume	that	our	choices	S so	far	are	safe.

• they	don’t	rule	out	success

• Consider	the	cut	{visited,	unvisited}

• This	cut	respects	S.

78
DCB

A

H G F

I E

9

10

14
4

2

2

1

7 68

11

4

S is	the	set	of	

edges	selected	so	far.

Partway	through	Prim

• Assume	that	our	choices	S so	far	are	safe.

• they	don’t	rule	out	success

• Consider	the	cut	{visited,	unvisited}

• S respects	this	cut.

• The	edge	we	add	next	is	a	light	edge.

• Least	weight	of	any	edge	crossing	the	cut.

78
DCB

A

H G F

I E

9

10

14
4

2

2

1

7 68

11

4

S is	the	set	of	

edges	selected	so	far.

add	this	one	next

• By	the	Lemma,	

that	edge	is	safe.
• it	also	doesn’t	

rule	out	

success.

Hooray!

• Our	greedy	choices	don’t	rule	out	success.

• This	is	enough	(along	with	an	argument	by	
induction)	to	guarantee	correctness	of	Prim’s	
algorithm.

Formally(ish)

• Inductive	hypothesis:
• After	adding	the	t’th edge,	there	exists	an	MST	with	the	
edges	added	so	far.

• Base	case:
• After	adding	the	0’th	edge,	there	exists	an	MST	with	the	
edges	added	so	far.		YEP.

• Inductive	step:
• If	the	inductive	hypothesis	holds	for	t	(aka,	the	choices	so	far	
are	safe),	then	it	holds	for	t+1	(aka,	the	next	edge	we	add	is	
safe).

• That’s	what	we	just	showed.

• Conclusion:
• After	adding	the	n-1’st	edge,	there	exists	an	MST	with	the	
edges	added	so	far.

• At	this	point	we	have	a	spanning	tree,	so	it	better	be	minimal.

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

•Yes!

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowPrim”…

How	do	we	actually	implement	this?	

• Each	vertex	keeps:

• the	distance from	itself	to	the	growing	spanning	tree

• how	to	get	there.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

I’m	7	away.

C	is	the	closest.

I	can’t	get	to	the	

tree	in	one	edge

if	you	can	get	there	in	one	edge.

How	do	we	actually	implement	this?	

• Each	vertex	keeps:

• the	distance from	itself	to	the	growing	spanning	tree

• how	to	get	there.

• Choose	the	closest	vertex,	add	it.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

I’m	7	away.

C	is	the	closest.

I	can’t	get	to	the	

tree	in	one	edge

if	you	can	get	there	in	one	edge.

How	do	we	actually	implement	this?	

• Each	vertex	keeps:

• the	distance from	itself	to	the	growing	spanning	tree

• how	to	get	there.

• Choose	the	closest	vertex,	add	it.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

I’m	7	away.

C	is	the	closest.

I	can’t	get	to	the	

tree	in	one	edge

if	you	can	get	there	in	one	edge.

How	do	we	actually	implement	this?	

• Each	vertex	keeps:

• the	distance from	itself	to	the	growing	spanning	tree

• how	to	get	there.

• Choose	the	closest	vertex,	add	it.

• Update	stored	info.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

I’m	7	away.

C	is	the	closest.

I’m	10	away.		F	is	

the	closest.

if	you	can	get	there	in	one	edge.

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞∞

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

∞∞

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞∞

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

∞∞

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

∞4

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

∞

∞

∞

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

∞

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

∞8

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x	is	“active”

Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

x

x

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

67

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

∞

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

10

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

10

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

Efficient	implementation
Every	vertex	has	a	key	and	a	parent

27

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

7

10

4

84

0

k[x]

x

k[x]	is	the	distance	of	x	

from	the	growing	tree

Can’t	reach	x	yet

• Activate	the	unreached vertex	u	with	the	smallest	key.

• for	each	of	u’s	neighbors	v:

• k[v]	=	min(k[v],	weight(u,v))

• if	k[v]	updated,	p[v]	=	u

• Mark	u	as	reached,	and	add	(p[u],u)	to	MST.	

x x	is	“active”

x Can	reach	x

a b p[b]	=	a,	meaning	that	

a	was	the	vertex	that	

k[b]	comes	from.

Until all	the	vertices	are	reached:

2

etc.

This	should	look	pretty	familiar

• Very	similar	to	Dijkstra’s	algorithm!
• For	the	IPython notebook,	I	actually	copied	and	pasted	
from	the	Lecture	11	IPython notebook…

• Differences:
1. Keep	track	of	p[v]	in	order	to	return	a	tree	at	the	end

• But	Dijkstra’s	can	do	that	too,	that’s	not	a	big	difference.

2. Instead	of	d[v]	which	we	update	by
• d[v]	=	min(d[v],	d[u]	+	w(u,v))

we	keep	k[v]	which	we	update	by
• k[v]	=	min(k[v],	w(u,v))

• To	see	the	difference,	consider:
U

S T

3

22

One	thing	that	is	similar:

Running	time

• Exactly	the	same	as	Dijkstra:

• O(mlog(n))	using	a	Red-Black	tree	as	a	priority	queue.

• O(m	+	nlog(n))	amortized	time	if	we	use	a	Fibonacci	Heap*.

*See	CS166

See	IPython

notebook	for	

implementation

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

•Yes!

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowPrim”…

• Implement	it	basically	the	same	way	
we’d	implement	Dijkstra!

What	have	we	learned?

• Prim’s	algorithm	greedily	grows	a	tree

• smells	a	lot	like	Dijkstra’s	algorithm

• It	finds	a	Minimum	Spanning	Tree	in	time	O(mlog(n))	

• if	we	implement	it	with	a	Red-Black	Tree

• To	prove	it	worked,	we	followed	the	same	recipe	for	
greedy	algorithms	we	saw	last	time.

• Show	that,	at	every	step,	we	don’t	rule	out	success.

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That	won’t	

cause	a	cycle

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That	won’t	

cause	a	cycle

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That	won’t	

cause	a	cycle

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That	won’t	

cause	a	cycle

That’s	not	the	only	greedy	algorithm
what	if	we	just	always	take	the	cheapest	edge?
whether	or	not	it’s	connected	to	what	we	have	so	far?

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

That	won’t	

cause	a	cycle

We’ve	discovered	

Kruskal’s algorithm!

• slowKruskal(G	=	(V,E)):

• Sort	the	edges	in	E	by	non-decreasing	weight.

• MST	=	{}

• for e	in	E	(in	sorted	order):

• if	adding	e	to	MST	won’t	cause	a	cycle:

• add	e	to	MST.

• returnMST

Naively,	the	running	time	is	???:
• For	each	of	m	iterations	of	the	for	loop:

• Check	if	adding	e	would	cause	a	cycle…

m	iterations	through	this	loop

How	do	we	check	this?

How	would you	

figure	out	if	added	e	

would	make	a	cycle	

in	this	algorithm?

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowKruskal”…

Let’s	do	this	

one	first

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	forest is	a	

collection	of	

disjoint	trees

At	each	step	of	Kruskal’s,	
we	are	maintaining	a	forest.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

A	forest is	a	

collection	of	

disjoint	trees

At	each	step	of	Kruskal’s,	
we	are	maintaining	a	forest.

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

At	each	step	of	Kruskal’s,	
we	are	maintaining	a	forest.

A	forest is	a	

collection	of	

disjoint	trees

When	we	add	an	edge,	we	merge	two	trees:

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

At	each	step	of	Kruskal’s,	
we	are	maintaining	a	forest.

A	forest is	a	

collection	of	

disjoint	trees

When	we	add	an	edge,	we	merge	two	trees:

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

At	each	step	of	Kruskal’s,	
we	are	maintaining	a	forest.

A	forest is	a	

collection	of	

disjoint	trees

When	we	add	an	edge,	we	merge	two	trees:

We	never	add	an	edge	within	a	tree	since	that	would	create	a	cycle.

Keep	the	trees	in	a	special	data	structure

“treehouse”?

Union-find	data	structure
also	called	disjoint-set	data	structure

• Used	for	storing	collections	of	sets

• Supports:

• makeSet(u):	create	a	set	{u}

• find(u):	return	the	set	that	u	is	in

• union(u,v):	merge	the	set	that	u	is	in	with	the	set	that	v	is	in.

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

x
y

z

Union-find	data	structure
also	called	disjoint-set	data	structure

• Used	for	storing	collections	of	sets

• Supports:

• makeSet(u):	create	a	set	{u}

• find(u):	return	the	set	that	u	is	in

• union(u,v):	merge	the	set	that	u	is	in	with	the	set	that	v	is	in.

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

x y

z

Union-find	data	structure
also	called	disjoint-set	data	structure

• Used	for	storing	collections	of	sets

• Supports:

• makeSet(u):	create	a	set	{u}

• find(u):	return	the	set	that	u	is	in

• union(u,v):	merge	the	set	that	u	is	in	with	the	set	that	v	is	in.

makeSet(x)

makeSet(y)

makeSet(z)

union(x,y)

find(x)

x y

z

Kruskal pseudo-code

• kruskal(G	=	(V,E)):

• Sort	E	by	weight	in	non-decreasing	order

• MST	=	{}																																			//	initialize	an	empty	tree

• for v	in	V:

• makeSet(v)																															//	put	each	vertex	in	its	own	tree	in	the	forest

• for (u,v)	in	E:																											//	go	through	the	edges	in	sorted	order

• if find(u)	!=	find(v):									//	if	u	and	v	are	not	in	the	same	tree

• add	(u,v)	to	MST

• union(u,v)																									//	merge	u’s	tree	with	v’s	tree

• returnMST

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

To	start,	every	vertex	is	in	its	own	tree.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Once	more…

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 6
8

11

8

4

Then	start	merging.

Stop	when	we	have	one	big	tree!

Running	time
• Sorting	the	edges	takes	O(m	log(n))
• In	practice,	if	the	weights	are	small	integers	we	can	use	
radixSort and	take	time	O(m)

• For	the	rest:
• n	calls	to	makeSet

• put	each	vertex	in	its	own	set

• 2m	calls	to	find
• for	each	edge,	find its	endpoints

• n	calls	to	union
• we	will	never	add	more	than	n-1	edges	to	the	tree,

• so	we	will	never	call	unionmore	than	n-1	times.

• Total	running	time:
• Worst-case	O(mlog(n)),	just	like	Prim.

• Closer	to	O(m)	if	you	can	do	radixSort

In	practice,	each	of	

makeSet,	find,	and	union	

run	in	constant	time*

*technically,	they	run	in	amortized	time	O(𝛼(𝑛)),	where	𝛼(𝑛) is	the	inverse	Ackerman	function.	

𝛼 𝑛 ≤ 4 provided	that	n	is	smaller	than	the	number	of	atoms	in	the	universe.	

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowKruskal”…

• Worst-case	running	time	O(mlog(n))	using	a	
union-find	data	structure.

Now	that	we	

understand	this	

“tree-merging”	view,	

let’s	do	this	one.

Does	it	work?

• We	need	to	show	that	our	greedy	choices	don’t	
rule	out	success.

• That	is,	at	every	step:

• There	exists	an	MST	that	contains	all	of	the	edges	we	
have	added	so	far.

• Now	it	is	time	to	use	our	lemma!
again!

Lemma

• Let	S	be	a	set	of	edges,	and	consider	a	cut	that	respects	S.

• Suppose	there	is	an	MST	containing	S.

• Let	(u,v)	be	a	light	edge.

• Then	there	is	an	MST	containing	S	∪ {(u,v)}	

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

Partway	through	Kruskal

• Assume	that	our	choices	S so	far	are	safe.

• they	don’t	rule	out	success

• The	next	edge	we	add	will	merge	two	trees,	T1,	T2

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

S is	the	set	of	

edges	selected	so	far.

Partway	through	Kruskal

• Assume	that	our	choices	S so	far	are	safe.

• they	don’t	rule	out	success

• The	next	edge	we	add	will	merge	two	trees,	T1,	T2

• Consider	the	cut	{T1,	V	– T1}.

• A	respects	this	cut.

• Our	new	edge	is	light	for	the	cut

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

S is	the	set	of	

edges	selected	so	far.

This	is	the	

next	edge

Partway	through	Kruskal

• Assume	that	our	choices	S so	far	are	safe.

• they	don’t	rule	out	success

• The	next	edge	we	add	will	merge	two	trees,	T1,	T2

• Consider	the	cut	{T1,	V	– T1}.

• A	respects	this	cut.

• Our	new	edge	is	light	for	the	cut

DCB

A

H G F

I E

7

9

10

14
4

2

2

1

7 68

11

8

4

S is	the	set	of	

edges	selected	so	far.

This	is	the	

next	edge

• By	the	Lemma,	

that	edge	is	safe.
• it	also	doesn’t	

rule	out	

success.

Hooray!

• Our	greedy	choices	don’t	rule	out	success.

• This	is	enough	(along	with	an	argument	by	
induction)	to	guarantee	correctness	of	Kruskal’s
algorithm.

Formally(ish)

• Inductive	hypothesis:
• After	adding	the	t’th edge,	there	exists	an	MST	with	the	
edges	added	so	far.

• Base	case:
• After	adding	the	0’th	edge,	there	exists	an	MST	with	the	
edges	added	so	far.		YEP.

• Inductive	step:
• If	the	inductive	hypothesis	holds	for	t	(aka,	the	choices	so	far	
are	safe),	then	it	holds	for	t+1	(aka,	the	next	edge	we	add	is	
safe).

• That’s	what	we	just	showed.

• Conclusion:
• After	adding	the	n-1’st	edge,	there	exists	an	MST	with	the	
edges	added	so	far.

• At	this	point	we	have	a	spanning	tree,	so	it	better	be	minimal.

This	is	exactly	the	

same	slide	that	we	

had	for	Prim’s	

algorithm.

Two	questions

1. Does	it	work?

• That	is,	does	it	actually	return	a	MST?

•Yes

2. How	do	we	actually	implement	this?

• the	pseudocode	above	says	“slowKruskal”…

• Using	a	union-find	data	structure!

What	have	we	learned?

• Kruskal’s algorithm	greedily	grows	a	forest

• It	finds	a	Minimum	Spanning	Tree	in	time	O(mlog(n))	

• if	we	implement	it	with	a	Union-Find	data	structure
• if	the	edge	weights	are	reasonably-sized	integers	and	we	ignore	the	inverse	
Ackerman	function,	basically	O(m)	in	practice.

• To	prove	it	worked,	we	followed	the	same	recipe	for	
greedy	algorithms	we	saw	last	time.

• Show	that,	at	every	step,	we	don’t	rule	out	success.

Compare	and	contrast

• Prim:

• Grows	a	tree.

• Time	O(mlog(n))	with	a	red-black	tree

• Time	O(m	+	nlog(n))	with	a	Fibonacci	heap

• Kruskal:

• Grows	a	forest.

• Time	O(mlog(n))	with	a	union-find	data	structure

• If	you	can	do	radixSort on	the	edge	weights,	morally	O(m)

Prim	might	be	a	

better	idea	on	

dense	graphs

Kruskal might	be	a	better	idea	

on	sparse	graphs	if	you	can	

radixSort edge	weights

Both	Prim	and	Kruskal

• Greedy	algorithms	for	MST.

• Similar	reasoning:

• Optimal	substructure:	subgraphs	generated	by	cuts.

• The	way	to	make	safe	choices	is	to	choose	light	edges	
crossing	the	cut.

DCB

A

H G F

I E

7
9

10

14
4

2

2

1

7 68

11

8

4

S	is	the	set	of		thick	orange	edges

This	edge	is	light

Can	we	do	better?
State-of-the-art	MST	on	connected	undirected	graphs

• Karger-Klein-Tarjan 1995:	

• O(m)	time	randomized	algorithm

• Chazelle	2000:																		

• O(m⋅ 𝛼(𝑛))	time	deterministic	algorithm

• Pettie-Ramachandran	2002:

• O

	

																																																							

	

	

time	deterministic	algorithm

The	optimal	number	of	comparisons	

N*(n,m)	you	need	to	solve	the	

problem,	whatever	that	is…

What	is	this	number?

Do	we	need	that	silly	𝛼 𝑛 ?

Open	questions!

Recap

• Two	algorithms	for	Minimum	Spanning	Tree

• Prim’s	algorithm

• Kruskal’s algorithm

• Both	are	(more)	examples	of	greedy	algorithms!

• Make	a	series	of	choices.

• Show	that	at	each	step,	your	choice	does	not	rule	out	
success.

• At	the	end	of	the	day,	you	haven’t	ruled	out	success,	so	
you	must	be	successful.

Next	time

• Cuts	and	flows!

• In	the	meantime,

