
Lecture	16
Min	Cut	and	Karger’s Algorithm

Announcements

• HW	7	due	Friday

• HW	8	released	Friday

• Psych!		There	is	no	HW8.

• FINAL	EXAM:

• Wednesday	December	13

• 3:30	– 6:30pm

Advertisement!	
CS83	with	Omer	Reingold:

Winter	quarter

Fri 1:30	PM	- 4:20	PM

Last	time

• Minimum	Spanning	Trees!

• Prim’s	Algorithm

• Kruskal’s Algorithm

Today

• Minimum	Cuts!

• Karger’s algorithm

• Karger-Stein	algorithm

• Back	to	randomized	algorithms!

Recall:	cuts	in	graphs

• A	cut	is	a	partition	of	the	vertices	into	two	nonempty
parts.

*For	today,	all	graphs	

are	undirected	and		

unweighted.

Recall:	cuts	in	graphs

• A	cut	is	a	partition	of	the	vertices	into	two	nonempty
parts.

Part	1 Part	2

*For	today,	all	graphs	

are	undirected	and		

unweighted.

This	is	not	a	cut

This	is	a	cut

This	is	a	cut These	edges	cross	the	cut.
• They	go	from	one	part	to	the	other.

A	(global)	minimum	cut
is	a	cut	that	has	the	fewest	edges	possible	crossing	it.

A	(global)	minimum	cut
is	a	cut	that	has	the	fewest	edges	possible	crossing	it.

Why	“global”?

• Next	time	we’ll	talk	about	min	s-t	cuts

• Today,	there	are	no	special	vertices,	so	the	
minimum	cut	is	“global.”

t

s

Minimum	cut	which	

separates	a	specified	

vertex	s	from	t

A	(global)	minimum	cut
is	a	cut	that	has	the	fewest	edges	possible	crossing	it.

Why	might	we	care	about	global	
minimum	cuts?

• One	example	is	image	segmentation:

Why	might	we	care	about	global	
minimum	cuts?

• One	example	is	image	segmentation:

• We’ll	see	more	applications	for	other	sorts	of	min-cuts	next	
week

big	edge	

weights*	

between	similar	

pixels.		

*For	the	rest	of	today	edges	aren’t	weighted;	but	the	algorithm	can	be	adapted	to	deal	with	edge	weights.

Karger’s algorithm

• Finds	global minimum	cuts	in	undirected	graphs

• Randomized	algorithm

• Karger’s algorithm	might	be	wrong.

• Compare	to	QuickSort,	which	just	might	be	slow.

• Why	would	we	want	an	algorithm	that	might	be	
wrong?

• With	high	probability	it	won’t	be	wrong.

• Maybe	the	stakes	are	low	and	the	cost	of	a	
deterministic	algorithm	is	high.

Different	sorts	of	gambling

• QuickSort is	a	Las	Vegas	randomized	algorithm

• It	is	always	correct.

• It	might	be	slow.	

Formally:

• For	all	inputs	A,	QuickSort(A)	

returns	a	sorted	array.

• For	all	inputs	A,	with	high	

probability	over	the	choice	of	

pivots,	QuickSort(A)	runs	quickly.

Yes,	this	is	a	

technical	term.

Different	sorts	of	gambling

• Karger’s Algorithm	is	a	Monte	Carlo	randomized	algorithm

• It	is	always	fast.

• It	might	be	wrong.			

Formally:

• For	all	inputs	G,	with	probability	at	

least	___	over	the	randomness	in	

Karger’s algorithm,	Karger(G)	returns	

a	minimum	cut.

• For	all	inputs	G,	with	probability	1	

Karger’s algorithm	runs	in	time	no	

more	than	____.

Karger’s Algorithm

• Pick	a	random	edge.

• Contract it.

• Repeat	until	you	only	have	two	vertices	left.

Why	is	this	a	good	idea?		We’ll	see	shortly.

b

a

b
a

New	node!

h

g

e

f

b

d

a

c

Karger’s algorithm

h

g

e

f

b

d

a

c

Karger’s algorithm

random	

edge!

h

g

e

f

b

d

a

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

h

g

e

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

h

g

e

f

d

a,b

c

Karger’s algorithm

random	

edge!

h

g

e

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

g

e,h

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

g

e,h

f

d

a,b

c

Karger’s algorithm

random	

edge!

g

e,h

f

a,b

Karger’s algorithm

c,d

g

e,h

f

a,b

Karger’s algorithm

c,d

random	edge!

g

e,h

f

a,b,c,d

Karger’s algorithm

g

e,h

f

a,b,c,d

Karger’s algorithm

random	

edge!

e,h,g

f

a,b,c,d

Karger’s algorithm

e,h,g

f

a,b,c,d

Karger’s algorithm

random	

edge!

e,h,g,f

a,b,c,d

Karger’s algorithm

Now	stop!
• There	are	only	two	nodes	left.

The	minimum	cut	is	given	by	

the	remaining	super-nodes:
• {a,b,c,d}	and	{e,h,f,g}

h

g

e

f

b

d

a

c

Karger’s algorithm

The	minimum	cut	is	given	by	

the	remaining	super-nodes:
• {a,b,c,d}	and	{e,h,f,g}

Karger’s algorithm

• Does	it	work?

• Is	it	fast?

How	do	we	implement	this?

• See	Lecture	16	IPython Notebook	for	one	way	

• This	maintains	a	secondary	“superGraph”	which	keeps	
track	of	superNodes and	superEdges

• There’s	a	hidden	slide	with	pseudocode

• Running	time?

• We	contract	at	most	n-2	edges

• Each	time	we	contract	an	edge	we	get	rid	of	a	vertex,	and	we	
get	rid	of	at	most	n	– 2	vertices	total.

• Naively	each	contraction	takes	time	O(n)

• Maybe	there	are	about	n	nodes	in	the	superNodes that	we	are	
merging.

• So	total	running	time	O(n2).

• We	can	do	𝑂(𝑚 ⋅ 𝛼 𝑛) with	a	union-find	data	structure,	but	
𝑂(𝑛() is	good	enough	for	today.

Pseudocode

• Karger(G=(V,E)):
• Γ =	{	SuperNode(v)	:	v	in	V	}				 //	one	supernode for	each	vertex

• 𝐸𝒖.,𝒗. =	{(u,v)}	for	(u,v)	in	E			 //	one	superedge for	each	edge

• 𝐸𝒖.,𝒗. =	{}	for	(u,v)	not	in	E.
• F	=	copy	of	E																																																																	//	we’ll	choose	randomly	from	F

• while |Γ|	>	2:
• (u,v)	← uniformly	random	edge	in	F

• merge(u,	v)						

//	merge	the	SuperNode containing	u	with	the	SuperNode containing	v.

• 𝐹 ← 𝐹 ∖ 𝐸𝒖.,𝒗.
//	remove	all	the	edges	in	the	SuperEdge between	those	SuperNodes.

• return the	cut	given	by	the	remaining	two	superNodes.

• merge(u,	v):																																		//	merge	also	knows	about	Γ	and	the	𝐸𝒖.,𝒗. ‘s

• 𝒙. =	SuperNode(𝒖. ∪ 𝒗.)			 //	create	a	new	supernode

• for	each	w in	Γ ∖ {𝒖., 𝒗.}:

• 𝐸𝒙.,𝒘. = 𝐸𝒖.,𝒘. ∪ 𝐸𝒗.,𝒘.
• Remove	𝒖. and	𝒗. from	Γ and	add	𝒙..

merge takes	time	O(n)	naively	

The while	loop	runs	n-2	times

total	runtime	O(n2)

We	can	do	a	bit	better	with	

fancy	data	structures,	but	

let’s	go	with	this	for	now.

Let	𝒖.	denote	the	SuperNode in	Γ containing	u
Say	𝐸𝒖.,𝒗. is	the	SuperEdge between	𝒖., 𝒗..	

This	slide	skipped	in	class

Karger’s algorithm

• Does	it	work?

• No?

• Is	it	fast?

• O(n2)

Why	did	that	work?

•We	got	really	lucky!

• This	could	have	gone	wrong	in	so	many	ways.

h

g

e

f

b

d

a

c

Karger’s algorithm

random	

edge!

Say	we	had	chosen	this	edge

h

g

f
b,e

d

a

c

Karger’s algorithm Say	we	had	chosen	this	edge

Now	there	is	no	way	we	could	return	a	cut	

that	separates	b	and	e.

h

g

e

f

b

d

a

c

Even	worse
If	the	algorithm	EVER chooses	either	of	these	edges,	

it	will	be	wrong.

How	likely	is	that?

• For	this	particular	graph,	I	did	it	10,000	times:

h

g

e

f
b

d

a

c

The	algorithm	is	

only	correct	about	

20%	of	the	time!

That	doesn’t	sound	good

• Too	see	why	it’s	good	after	all,	we’ll	
do	a	case	study	of	this	graph.

• Let’s	compare	Karger’s algorithm	to	
the	algorithm:

The	plan:

• See	that	20%	chance	of	correctness	is	

actually	nontrivial.

• Use	repetition	to	boost	an	algorithm	

that’s	correct	20%	of	the	time	to	an	

algorithm	that’s	correct	99%	of	the	time.

h

g

e

fb

d

a

c

Choose	a	completely	random	cut	

and	hope	that	it’s	a	minimum	cut.

Random	cuts

• Suppose	that	we	chose	cuts	uniformly	at	random.

• That	is,	pick	a	random	way	to	split	the	vertices	into	2	parts.

etc

Random	cuts

• Suppose	that	we	chose	cuts	uniformly	at	random.

• That	is,	pick	a	random	way	to	split	the	vertices	into	2	parts.

• The	probability	of	choosing	the	minimum	cut	is*…

number	ofmin cuts	in	that	graph

number	of	ways	to	split	8	vertices	in	2	parts
=

2

2O 	− 2
≈ 0.008	

• Aka,	we	get	a	minimum	cut	0.8%	of	the	time.

*For	this	example	in	particular

Karger is	better	than	completely	random!

Karger’s alg.	is	correct	

about	20%	of	the	time

Completely	random	is	

correct	about	0.8%	of	

the	time

h

g

e

fb

d

a

c

What’s	going	on?

• Which	is	more	likely?

• Neither	A	nor	B	are	very	likely,	but	A	is	more	likely	than	B.

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A:	The	algorithm	never	

chooses	either	of	the	

edges	in	the	minimum	cut.

B:	The	algorithm	never	

chooses	any	of	the	edges	

in	this	big	cut.

Lucky	the	

lackadaisical	lemur

Thing	1:	It’s	unlikely	that	

Karger will	hit	the	min	cut	

since	it’s	so	small!

What’s	going	on?

h

g

e

f
b

d

a

c

h

g

e

f
b

d

a

c

A:	This	cut	can	be	returned	

by	Karger’s algorithm.

B:	This	cut	can’t	be	returned	by	

Karger’s algorithm!		

(Because	how	would	a	and	g	end	up	

in	the	same	super-node?)

Lucky	the	

lackadaisical	lemur

Thing	2:	By	only	contracting	

edges	we	are	ignoring	certain	

really-not-minimal	cuts.

This	cut	actually	separates	the	graph	into	three	pieces,	so	it’s	

not	minimal	– either	half	of	it	is	a	smaller	cut.

Why	does	that	help?

• Okay,	so	it’s	better	than	random…

• We’re	still	wrong	about	80%	of	the	time.

• The	main	idea:	repeat!

• If	I’m	wrong	20%	of	the	time,	then	if	I	repeat	it	a	few	
times	I’ll	eventually	get	it	right.

The	plan:

• See	that	20%	chance	of	

correctness	is	actually	nontrivial.

• Use	repetition	to	boost	an	

algorithm	that’s	correct	20%	of	the	

time	to	an	algorithm	that’s	correct	

99%	of	the	time.

Thought	experiment
from	pre-lecture	exercise

• Suppose	you	have	a	magic	button	that	produces	one	of	5	
numbers,	{a,b,c,d,e},	uniformly	at	random	when	you	push	it.

• Q:	What	is	the	minimum	of	a,b,c,d,e?

6
3

3
2 2

5 5

How	many	times	do	you	have	to	push	the	button	

before	you	see	the	minimum	value?	

What	is	the	probability	that	you	have	to	push	it	

more	than	5	times?		10	times?

[On	board]

[This	is	approximately	what’s	on	the	board]

• E[]	=	1/(0.20)	=	5

• Pr[]	=	(1	 −	0.2)U	

• Pr[]	=	(1	 −	0.2)V ≈ 0.33		

• Pr[]	=	(1	 −	0.2)XY ≈ 0.1		

Slide	skipped	in	class
Number	of	times	

we	push	the	button	

until	we	get	the	

minimum	value

This	is	the	same	calculation	

we’ve	done	a	bunch	of	times:

We	push	the	button	

t	times	and	don’t	

ever	get	the	min

We	push	the	button	

5	times	and	don’t	

ever	get	the	min

We	push	the	button	

10	times	and	don’t	

ever	get	the	min

This	one	we’ve	done	less	frequently:

In	this	context

• Run	Karger’s!		The	cut	size	is	6!

• Run	Karger’s!		The	cut	size	is	3!

• Run	Karger’s!		The	cut	size	is	3!

• Run	Karger’s!		The	cut	size	is	2!

• Run	Karger’s!		The	cut	size	is	5!

If	the	success	probability	is	about	20%,	then	if	you	

run	Karger’s algorithm	5 times	and	take	the	best	

answer	you	get,	that	will	likely	be	correct!

Correct!

For	this	particular	graph

• Repeat	Karger’s algorithm	about	5	times,	and	we	
will	get	a	min	cut	with	decent	probability.

• In	contrast,	we’d	have	to	choose	a	random	cut	about	
1/0.008	=	125	times!

The	plan:

• See	that	20%	chance	of	

correctness	is	actually	nontrivial.

• Use	repetition	to	boost	an	

algorithm	that’s	correct	20%	of	the	

time	to	an	algorithm	that’s	correct	

99%	of	the	time.

h

g

e

fb

d

a

c

Hang	on!		This	“20%”	figure	just	

came	from	running	experiments	on	

this	particular	graph.		What	about	

general	graphs?		Can	we	prove	this?

Plucky	the	pedantic	penguin

Also,	we	should	be	a	bit	more	

precise	about	this	“about	5	

times”	statement.

Questions
To	generalize	this	approach	to	all	graphs

1. What	is	the	probability	that	Karger’s algorithm	
returns	a	minimum	cut?

2. How	many	times	should	we	run	Karger’s
algorithm	to	“probably”	succeed?

• Say,	with	probability	0.99?

• Or	more	generally,	probability	1	 − 𝛿	?

Answer	to	Question	1

The	probability	that	Karger’s algorithm	returns	a	
minimum	cut	is	

at	least	X]
^

_

In	this	case,	X `
^

_ = 0.036,		so	we	are	

guaranteed	to	win	at	least	3.6%	of	the	time.

Claim:

Answers

1. What	is	the	probability	that	Karger’s algorithm	
returns	a	minimum	cut?

2. How	many	times	should	we	run	Karger’s
algorithm	to	“probably”	succeed?

• Say,	with	probability	0.99?

• Or	more	generally,	probability	1	 − 𝛿	?

According	to	the	claim,	at	most		
X
]
^

Before	we	prove	the	Claim

2. How	many	times	should	we	run	Karger’s
algorithm	to	succeed	with	probability	1	 − 𝛿	?

h

g

e

f
b

d

a

c

A	computation

• Suppose	:

• the	probability	of	successfully	returning	a	minimum	cut	is	𝒑 ∈ 𝟎, 𝟏 ,	

• we	want	failure	probability	at	most	𝛿 ∈ 0,1 .

• Pr	[don′t	return	amin cut	in	T	trials] = 1 − 𝑝 m

• So	p	=	1/
n
(by	the	Claim.		Let’s	choose	T	=	

n
(ln(1/𝛿)

.

• Pr	[don′t	return	a	min	cut	in	T	trials]
• = 1	 − 𝑝 m

• ≤ 𝑒rs m

• = 𝑒rsm

• = 𝑒r tu
v
w

• = 𝛿
1 − p ≤ 𝑒rs

Independent

Punchline:	If	we	repeat	T	=	
𝒏
𝟐 	ln(𝟏/𝜹) times,	

we	win	with	probability	at	least	𝟏 − 𝜹.

1 − p

𝑒rs

Theorem
Assuming	the	claim	about	1/

n
(…

• Suppose	G	has	n	vertices.

• Consider	the	following	algorithm:
• bestCut =	None

• for	t = 1,… , n
(ln

X

|
:

• candidateCut← Karger(G)

• if candidateCut is	smaller	than	bestCut:

• bestCut← candidateCut

• return bestCut

• Then	Pr[this	doesn}t	return	a	min cut] ≤ 𝛿.

How	many	repetitions	

would	you	need	if	

instead	of	Karger we	

just	chose	a	uniformly	

random	cut?

Answers

1. What	is	the	probability	that	Karger’s algorithm	
returns	a	minimum	cut?

2. How	many	times	should	we	run	Karger’s
algorithm	to	“probably”	succeed?

• Say,	with	probability	0.99?

• Or	more	generally,	probability	1	 − 𝛿	?

According	to	the	claim,	at	most		
X
]
^

n
(log

X

|
	times.	

What’s	the	running	time?

•
n
(ln

X

|
repetitions,	and	O(n2)	per	repetition.

• So,	𝑂 	𝑛(⋅ n
(ln

X

|
= O n�

Again	we	can	do	better	with	a	union-find	

data	structure.	Write	pseudocode	for—or	

better	yet,	implement—a	fast	version	of	

Karger’s algorithm!		How	fast	can	you	

make	the	asymptotic	running	time?

Ollie	the	over-achieving	ostrich

Treating	𝜹 as	

constant.

Theorem
Assuming	the	claim	about	1/

n
(…

Suppose	G	has	n	vertices.		Then	[repeating	Karger’s
algorithm]	finds	a	min	cut	in	G	with	probability	at	

least	0.99	in	time	O(n4).

Now	let’s	prove	the	claim…

Claim

The	probability	that	Karger’s algorithm	returns	a	
minimum	cut	is	

at	least	X]
^

_

Now	let’s	prove	that	claim
Say	that	S*	is	a	minimum	cut.

• Suppose	the	edges	that	we	choose	are	e1, e2,	…,	en-2

• PR[return	S*]	=	PR[none	of	the	ei cross	S*]

=	PR[e1 doesn’t	cross	S*]

×	PR[e2 doesn’t	cross	S*	|	e1	doesn’t	cross	S*]	

…

×	PR[en-2 doesn’t	cross	S*	|	e1,…,en-3 don’t	cross	S*]

h

g

e

f
b

d

a

c

S*

Focus	in	on:

PR[ej doesn’t	cross	S*	|	e1,…,ej-1 don’t	cross	S*]

• Suppose:	After	j-1	iterations,	we	haven’t	messed	up	yet!

• What’s	the	probability	of	messing	up	now?

g

e,h

f

d

a,b

c

These	two	edges	

haven’t	been	chosen	

for	contraction!

Focus	in	on:

PR[ej doesn’t	cross	S*	|	e1,…,ej-1 don’t	cross	S*]

• Suppose:	After	j-1	iterations,	we	haven’t	messed	up	yet!

• What’s	the	probability	of	messing	up	now?

g

f

d
c

a,b

e,h

• Say	there	are	k	edges	that	cross	S*

• Every	remaining	node	has	degree	at	least	k.
• Otherwise	we’d	have	a	smaller	cut.

• Thus,	there	are	at	least	(n-j+1)k/2	edges	total.
• b/c	there	are	n	- j	+	1	nodes	left,	each	with	degree	at	least	k.

So	the	probability	that	we	

choose	one	of	the	k	edges	

crossing	S*	at	step	j	is	at	most:

𝒌
𝒏�𝒋�𝟏 𝒌

𝟐

=
𝟐

𝒏r𝒋�𝟏

Recall:	the	degree	of	the	

vertex	is	the	number	of	

edges	coming	out	of	it.

Focus	in	on:

PR[ej doesn’t	cross	S*	|	e1,…,ej-1 don’t	cross	S*]

• So	the	probability	that	we	choose	one	of	the	k	edges	
crossing	S*	at	step	j	is	at	most:

�
]���v �

^

=
(

nr��X

• The	probability	we	don’t	choose	one	of	the	k	edges	is	at	
least:

									1	 −	
(

nr��X
=

nr�rX

nr��X
g

f

d
c

a,b

e,h

Now	let’s	prove	that	claim
Say	that	S*	is	a	minimum	cut.

• Suppose	the	edges	that	we	choose	are	e1, e2,	…,	en-2

• PR[return	S*]	=	PR[none	of	the	ei cross	S*]

=	PR[e1 doesn’t	cross	S*]

×	PR[e2 doesn’t	cross	S*	|	e1	doesn’t	cross	S*]	

…

×	PR[en-2 doesn’t	cross	S*	|	e1,…,en-3 don’t	cross	S*]

h

g

e

f
b

d

a

c

S*

Now	let’s	prove	that	claim
Say	that	S*	is	a	minimum	cut.

• Suppose	the	edges	that	we	choose	are	e1, e2,	…,	en-2

• PR[return	S*]	=	PR[none	of	the	ei cross	S*]

=
nr(

n

nr�

nrX

nr�

nr(

nrV

nr�

nr�

nr�
⋯

�

�

�

V

(

�

X

�

h

g

e

f
b

d

a

c

S*

Now	let’s	prove	that	claim
Say	that	S*	is	a	minimum	cut.

• Suppose	the	edges	that	we	choose	are	e1, e2,	…,	en-2

• PR[return	S*]	=	PR[none	of	the	ei cross	S*]

=
nr(

n

nr�

nrX

nr�

nr(

nrV

nr�

nr�

nr�
⋯

�

�

�

V

(

�

X

�

=	
(

n nrX

=	
X
]
^

h

g

e

f
b

d

a

c

S*

Theorem
Assuming	the	claim	about	1/

n
(…

Suppose	G	has	n	vertices.		Then	[repeating	Karger’s
algorithm]	finds	a	min	cut	in	G	with	probability	at	

least	0.99	in	time	O(n4).

That	proves	this	

Theorem!

What	have	we	learned?

• If	we	randomly	contract	edges:

• It’s	unlikely	that	we’ll	end	up	with	a	min	cut.

• But	it’s	not	TOO	unlikely

• By	repeating,	we	likely	will	find	a	min	cut.

• Repeating	this	process:

• Finds	a	global	min	cut	in	time	O(n4),	with	probability	0.99.

• We	can	run	a	bit	faster	if	we	use	a	union-find data	structure.

Here	I	chose	𝛿 = 0.01
just	for	concreteness.

*Note,	in	the	lecture	notes,	we	take	𝛿 =
X

n
, which	makes	the	

running	time	O(n4log(n)).		It	depends	on	how	sure	you	want	to	be!

More	generally

• Whenever	we	have	a	Monte-Carlo	algorithm	with	a	
small	success	probability,	we	can	boost the	success	
probability	by	repeating	it	a	bunch	and	taking	the	
best	solution.

Can	we	do	better?

• Repeating	O(n2)	times	is	pretty	expensive.
• O(n4)	total	runtime	to	get	success	probability	0.99.

• The	Karger-Stein	Algorithm will	do	better!
• The	trick	is	that	we’ll	do	the	repetitions	in	a	clever	way.

• O(n2log2(n))	runtime	for	the	same	success	probability.

• Warning!		This	is	a	tricky	algorithm!		We’ll	sketch	the	
approach	here:	the	important	part	is	the	high-level	idea,	
not	the	details	of	the	computations.

To	see	how	we	might	save	on	repetitions,	

let’s	run	through	Karger’s algorithm	again.

h

g

e

f

b

d

a

c

Karger’s algorithm

h

g

e

f

b

d

a

c

Karger’s algorithm

random	

edge!

Probability	that	we	didn’t	mess	up:

12/14

There	are	14	edges,	12	of	

which	are	good	to	contract.

h

g

e

f

b

d

a

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

h

g

e

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

h

g

e

f

d

a,b

c

Karger’s algorithm

random	

edge!

Probability	that	we	didn’t	mess	up:

11/13

Now	there	are	only	13	edges,	

since	the	edge	between	a	and	b	

disappeared.

h

g

e

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

g

e,h

f

d

a,b

c

Karger’s algorithm

Create	a	

supernode!

Create	a	

superedge!

Create	a	

superedge!

g

e,h

f

d

a,b

c

Karger’s algorithm

random	

edge!

Probability	that	we	didn’t	mess	up:

10/12

Now	there	are	only	12	edges,	

since	the	edge	between	e	and	h	

disappeared.

g

e,h

f

a,b

Karger’s algorithm

c,d

g

e,h

f

a,b

Karger’s algorithm

c,d

random	edge!

(We	pick	at	

random	from	

the	original	

edges).

Probability	that	we	didn’t	mess	up:

9/11

g

e,h

f

a,b,c,d

Karger’s algorithm

g

e,h

f

a,b,c,d

Karger’s algorithm

random	

edge!

Probability	that	we	didn’t	mess	up:

5/7

e,h,g

f

a,b,c,d

Karger’s algorithm

e,h,g

f

a,b,c,d

Karger’s algorithm

random	

edge!

Probability	that	we	didn’t	mess	up:

3/5

e,h,g,f

a,b,c,d

Karger’s algorithm

e,h,g,f

a,b,c,d

Karger’s algorithm

Now	stop!
• There	are	only	two	nodes	left.

Probability	of	not	messing	up

• At	the	beginning,	it’s	pretty	likely	we’ll	be	fine.

• The	probability	that	we	mess	up	gets	worse	and	
worse	over	time.

12/14 11/13 10/12 9/11

5/7

3/5
Moral:
Repeating	the	stuff	from	

the	beginning	of	the	

algorithm	is	wasteful!		
iteration

p
ro
b
a
b
il
it
y
	

o
f	
su
cc
e
ss

Instead…
h

g

e

f
b

d

a

c

h

g

e

f

d

a,b

c

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

h

e

d

a,b

c

f,g

e

d

a,b

c

f,g,h

h
d

a,b,e

c

f,g

Contract!

Contract!

Contract!
Contract!

FORK!

etc
etc

This	branch	

made	a	bad	

choice.

But	it’s	okay	since	

this	branch	made	

a	good	choice.

In	words

• Run	Karger’s algorithm	on	G	for	a	bit.

• Until	there	are	
u

(�
supernodes left.

• Then	split	into	two	independent	copies,	G1 and	G2

• Run	Karger’s algorithm	on	each	of	those	for	a	bit.

• Until	there	are	

�
^�

(�
=	
n

(
supernodes left	in	each.

• Then	split	each	of	those	into	two	independent	copies…

In	pseudocode

• KargerStein(G	=	(V,E)):

• n	← |V|

• if	n	<	4:

• find	a	min-cut	by	brute	force																				\\ time	O(1)

• Run	Karger’s algorithm	on	G	with	independent	

repetitions	until	
n

(�
nodes	remain.

• G1,	G2← copies	of	what’s	left	of	G

• S1 =	KargerStein(G1)

• S2 =	KargerStein(G2)

• return whichever	of	S1,	S2 is	the	smaller	cut.

Recursion	
tree

n	nodes

n

(�
nodes

Contract	a	

bunch	of	edges

n

(�
nodes

n

(�
nodes

Make	2	

copies

n

��
nodes

Contract	a	

bunch	of	edges

n

��

nodes

Make	2	

copies

n

��

nodes

n

��
nodes

Contract	a	

bunch	of	edges

n

��

nodes

Make	2	

copies

n

��

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes
𝑛

8�

nodes

Recursion	tree

• depth	is	log (� 𝑛 =
t�� n

t��	((�)
= 2log	(𝑛)

• number	of	leaves	is	22log(n) =	n2

n	nodes

n

(�

nodes

Contract	a	

bunch	of	edges

n

(�

nodes

n

(�

nodes

Make	2	

copies

n

��

nodes

n

��

nodes

Contract	a	

bunch	of	

edges

Contract	a	

bunch	of	

edges

This	counts	as	one	level

for	this	analysis

This	counts	as	one	level

for	this	analysis

Two	questions

• Does	this	work?

• Is	it	fast?

At	the	jth level

n

(�/^

nodes

Contract	a	

bunch	of	edges

Make	2	

copies

n

((��v)/^

nodes

n

((��v)/^

nodes

n

((��v)/^

nodes

• The	amount	of	work	per	level	is	

the	amount	of	work	needed	to	

reduce	the	number	of	nodes	by	

a	factor	of	 2� .

• That’s	at	most	O(n2).	
• since	that’s	the	time	it	takes	to	

run	Karger’s algorithm	once,	

cutting	down	the	number	of	

supernodes to	two.

• Our	recurrence	relation	is…

T(n)	=	2T(n/ 2�)	+	O(n2)

• The	Master	Theorem	says…

T(n)	=	O(n2log(n))

Jedi	Master	Yoda

Two	questions

• Does	this	work?

• Is	it	fast?

• Yes,	O(n2log(n)).

Why	n/ 2� ?

• Suppose	the	first	n-t	edges	that	we	choose	are

e1, e2,	…,	en-t

• PR[none	of	the	ei cross	S*	(up	to	the	n-t’th)]

=	PR[e1 doesn’t	cross	S*]

×	PR[e2 doesn’t	cross	S*	|	e1	doesn’t	cross	S*]	

…

×	PR[en-t doesn’t	cross	S*	|	e1,…,en-t-1 don’t	cross	S*]

Suppose	we	contract	n	– t		edges,	until	

there	are	t	supernodes remaining.

Why	n/ 2� ?

• Suppose	the	first	n-t	edges	that	we	choose	are	

e1, e2,	…,	en-t

• PR[none	of	the	ei cross	S*	(up	to	the	n-t’th)]

=	
nr(

n

nr�

nrX

nr�

nr(

nrV

nr�

nr�

nr�
⋯

U�X

U��

U

U�(

UrX

U�X

=	
U⋅(UrX)

n⋅(nrX)

=

]
^�
⋅
]
^�
rX

n⋅(nrX)
≈

𝟏

𝟐

Choose	𝒕 = 𝒏/ 𝟐�

when	n	is	large

Suppose	we	contract	n	– t		edges,	until	

there	are	t	supernodes remaining.

Recursion	
tree

n	nodes

n

(�
nodes

Contract	a	

bunch	of	edges

n

(�
nodes

n

(�
nodes

Make	2	

copies

n

��
nodes

Contract	a	

bunch	of	edges

n

��

nodes

Make	2	

copies

n

��

nodes

n

��
nodes

Contract	a	

bunch	of	edges

n

��

nodes

Make	2	

copies

n

��

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes

Pr[failure]	=	1/2

Pr[failure]	=	1/2Pr[failure]	=	1/2

Pr[failure]	=	1/2Pr[failure]	=	1/2

etc.

Probability	
of	success

n	nodes

n

(�
nodes

n

(�
nodes

n

(�
nodes

Make	2	

copies

n

��
nodes

n

��

nodes

Make	2	

copies

n

��

nodes

n

��
nodes

n

��

nodes

Make	2	

copies

n

��

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes

n

O�

nodes

Is	the	probability	that	there’s	

a	path	from	the	root	to	a	leaf	

with	no	failures.

Each	with	

probability	1/2

or

The	problem	we	need	to	analyze

• Let	T	be	binary	tree	of	depth	2log(n)

• Each	node	of	T	succeeds	or	fails	independently	with	
probability	1/2

• What	is	the	probability	that	there’s	a	path	from	the	
root	to	any	leaf	that’s	entirely	successful?

Analysis
• Say	the	tree	has	height	d.

• Let	𝒑𝒅 be	the	probability	that	
there’s	a	path	from	the	root	to	a	
leaf	that	doesn’t	fail.

• 𝑝� =
X

(
⋅ Pr 	

	 	
	 										
	 																								

	

• =	
X

(
⋅
Pr 	

	 	
	 							
	 					

+ Pr 	

	 	
	 							
	 					

−Pr 	

	 	
	 																			
	 					

• =	
X

(
⋅ 𝑝�rX + 𝑝�rX 	− 𝑝�rX

(

• =	𝑝�rX 	−
X

(
⋅ 𝑝�rX

(

2�/(

nodes

Contract	a	

bunch	of	

edges

Make	2	

copies

2(�rX)/(

nodes

2(�rX)/(

nodes

2(�rX)/(

nodes

at	least	one	subtree	

has	a	successful	path

wins wins

both	win

It’s	a	recurrence	relation!

• 𝑝� =	𝑝�rX 	−
X

(
⋅ 𝑝�rX

(

• 𝑝Y = 1

• We	are	real	good	at	those.		

• In	this	case,	the	answer	is:

• Claim:	for	all	d,	𝑝� ≥
X

��X

Prove	this!	(Or	see	

hidden	slide	for	a	proof).

Siggi the	Studious	Stork

Recurrence	relation

• Claim:	for	all	d,	𝑝� ≥
X

��X

• Proof:	induction	on	d.

• 𝑝� =	𝑝�rX 	−
X

(
⋅ 𝑝�rX

(

• 𝑝Y = 1

• Base	case:	1 ≥ 1. YEP.
• Inductive	step:		say	d	>	0.

• Suppose	that	𝑝�rX ≥
X

�
.

• 𝑝� =	𝑝�rX 	−
X

(
⋅ 𝑝�rX

(

• ≥
X

�
−
X

(
⋅
X

�^

• ≥
X

�
−

X

� ��X

• =
X

��X	 This	slide	

skipped	in	class

What	does	that	mean	for	Karger-Stein?

• For	d	=	2log(n)	

• that	is,	d	=	the	height	of	the	tree:

𝑝(t��	(n) ≥
1

2log	(𝑛) + 1

• aka,	

Pr[Karger-Stein	is	successful]	=	Ω
X

t�� n

Claim:	for	all	d,	𝑝� ≥
X

��X

Altogether	now

• We	can	do	the	same	trick	as	before	to	amplify	the	
success	probability.

• Run	Karger-Stein	𝑂 log 𝑛 ⋅ log
X

|
	times	to	achieve	

success	probability	1	 − 𝛿.

• Each	iteration	takes	time	𝑂 𝑛(log 𝑛 	
• That’s	what	we	proved	before.

• Choosing	𝛿 = 0.01 as	before,	the	total	runtime	is

𝑂 𝑛(log 𝑛 ⋅ log 𝑛 = 	𝑂 𝑛(log 𝑛 (

Much	better	than	O(n4)!

What	have	we	learned?

• Just	repeating	Karger’s algorithm	isn’t	the	best	use	
of	repetition.

• We’re	probably	going	to	be	correct	near	the	beginning.

• Instead,	Karger-Stein	repeats	when	it	counts.

• If	we	wait	until	there	are	
n

(�
nodes	left,	the	probability	

that	we	fail	is	close	to	½.

• This	lets	us	find	a	global	minimum	cut	in	an	
undirected	graph	in	time	O(n2 log2(n)).

• Notice	that	we	can’t	do	better	than	n2 in	a	dense	graph	
(we	need	to	look	at	all	the	edges),	so	this	is	pretty	good.

Recap

• Some	algorithms:

• Karger’s algorithm	for	global	min-cut

• Improvement:	Karger-Stein

• Some	concepts:

• Monte	Carlo	algorithms:

• Might	be	wrong,	are	always	fast.

• We	can	boost	their	success	probability	with	repetition.

• Sometimes	we	can	do	this	repetition	very	cleverly.

Next	time

• Another	sort	of	min-cut:

• s-t	min-cut

• also	max-flow!

• Pre-lecture	exercise:	examples	of	cuts	and	flows.

Before next	time

