Lecture 16

Min Cut and Karger’s Algorithm

Announcements

* HW 7 due Friday

* HW 8 released Friday
* Psych! There is no HWS.

 Wednesday December 13
e 3:30-6:30pm

Advertisement! |
CS83 with Omer Reingold: D o o

\6(\‘\0‘6'660
/cs 83 - PLAYBACK

THEATER FOR
RESEARCH

A FEEL GOOD COURSE

Last time

* Minimum Spanning Trees!
* Prim’s Algorithm
* Kruskal’s Algorithm

Today

* Minimum Cuts!
e Karger’s algorithm
e Karger-Stein algorithm

* Back to randomized algorithms!

*For today, all graphs
are undirected and

Recall: cuts in graphs amweighted.

* A cutis a partition of the vertices into two nonempty
parts.

*For today, all graphs
are undirected and

Recall: cuts in graphs amweighted.

* A cutis a partition of the vertices into two nonempty
parts. g

This is not a cut

This is a cut

These edges cross the cut.
 They go from one part to the other.

This is a cut

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why “global”?

Minimum cut which
separates a specified

* Next time we’ll talk about min s-t cuts vertex s from t

-

* Today, there are no special vertices, so the
minimum cut is “global.”

A (global) minimum cut

is a cut that has the fewest edges possible crossing it.

Why might we care about global
minimum cuts?

* One example is image segmentation:

Why might we care about global
minimum cuts? g edige

weights*
between similar

/ pixels.

* One example is image segmentation:

* We’ll see more applications for other sorts of min-cuts next
week

*For the rest of today edges aren’t weighted; but the algorithm can be adapted to deal with edge weights.

Karger’s algorithm

* Finds global minimum cuts in undirected graphs
* Randomized algorithm

e Karger’s algorithm might be wrong.
* Compare to QuickSort, which just might be slow.

* Why would we want an algorithm that might be
wrong?
e With high probability it won’t be wrong.

* Maybe the stakes are low and the cost of a
deterministic algorithm is high.

Different sorts of gambling

e QuickSort is a Las Vegas randomized algorithm

* It is always correct. :esi]”_‘is |ista
ecnnical term.

* |t might be slow.

Formally:
e Forallinputs A, QuickSort(A)
returns a sorted array.

* Forallinputs A, with high
probability over the choice of
pivots, QuickSort(A) runs quickly.

Different sorts of gambling

e Karger’s Algorithm is a Monte Carlo randomized algorithm
* It is always fast.
* |t might be wrong.

Formally:
* For all inputs G, with probability at
least _ over the randomness in

Karger’s algorithm, Karger(G) returns
a minimum cut.

e Forallinputs G, with probability 1
Karger’s algorithm runs in time no
more than

Karger’s Algorithm

* Pick a random edge.
* Contract it.
* Repeat until you only have two vertices left.

——————
,,,,,

’ N
\
\
\
\
1
!
/ New node!

/

N

~ P4

~
\-___,’\\

Why is this a good idea? We’ll see shortly.

Karger’s algorithm

Karger’s algorithm

Create a
supernode!

——— —,
-
-

Create a
superedge!

Karger’s algorithm

Create a
LT supernode!

/7 Y

[b)

\ d,

1 1

\ Y; /@,b}
Create a
superedge! {Cajz Create a

c !
b) \é;g\ superedge!

(— "

Karger’s algorithm

-
-~ Ss

Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. y f@,bjz superedge! /e

Create a
superedge!

Create a
supernode!

Karger’s algorithm

- —
- N\

\
Create a
superedge!

P ~
~
s N,

> Create a
20
superedge!

~ ’

Create a
supernode!

Karger’s algorithm

-
- So

random
edge!

g

Karger’s algorithm

-
- So

L &
™
{c,a}
{c,b}
{d,a}
|| P!
[od ;{e/}

Karger’s algorithm

-
- So

{ ab |
‘\\ ° 'I' f@)bjz
\‘ _r
random edge! {c,a}
{c,b}
{d,a}
=l C,d %

Karger’s algorithm

—————
i Ss

Karger’s algorithm

random
edge!

Karger’s algorithm

fffff
~
= N

N /

Karger’s algorithm

~ /

random
edge!

Karger’s algorithm

Now stop!

* There are only two nodes left.

The minimum cut is given by

—————
7 Ss

%, theremaining super-nodes:
=\ a,b,c,d l= \ ¢ {alblcld} and {e;hrf;g}
AN lo 1
M- 7 b} {G,Q'J(,
— N - ’, ---------
’— // D .
/ \
l I‘ e;h;g;f ':
|

S
~ ’

The minimum cut is given by

c,d} and {e,h,f,g}

’

b

{a,

] the remaining super-nodes:
s algorithm -

/]

Karger

Karger’s algorithm

 Does it work?

* |s it fast? ’

How do we implement this?

* See Lecture 16 IPython Notebook for one way

* This maintains a secondary “superGraph” which keeps
track of superNodes and superEdges

* There’s a hidden slide with pseudocode

* Running time?
* We contract at most n-2 edges

* Each time we contract an edge we get rid of a vertex, and we
get rid of at most n — 2 vertices total.

* Naively each contraction takes time O(n)

* Maybe there are about n nodes in the superNodes that we are
merging.

* So total running time O(n?).

* We cando O(m - a(n)) with a union-find data structure, but
0(n?) is good enough for today.

PS ey d OCO d e Let u denote the SuperNode in I" containing u

Say E3 3 is the SuperEdge between u, v.

o Karger(G=(V’E)): This slide skipped in class

e [' ={SuperNode(v):vinV} // one supernode for each vertex
* Egp ={(uv)}for(uyv)inE // one superedge for each edge
* Eyp ={}for(uyv)notinE.
e F=copyofE // we’ll choose randomly from F
’ Whlle | Fl >2: The while loop runs n-2 times

* (u,v) « uniformly random edge in F

* merge(u,v) merge takes time O(n) naively

// merge the SuperNode containing u with the SuperNode containing v.
* F < F\Egp
// remove all the edges in the SuperEdge between those SuperNodes.

return the cut given by the remaining two superNodes.

° mergE(u,v): // merge also knows about I and the Eg 5 ‘s
* X= SuperNode(uuvv) // create a new supernode
. — — 3 2
 foreachwinT \ {u,v}: total runtime O(n?)
o Ef,v_v — El_l,v_v U Eﬁw We can do a bit better with

fancy data structures, but

e Remove u and v from I' and add x. let’s go with this for now.

Karger’s algorithm

e Does it work? ‘

e No?

e |s it fast?
* O(n?)

Why did that work?

* We got really lucky!

* This could have gone wrong in so many ways.

59

Ka rge r’S d |gO r|t h M Say we had chosen this edge

Ka rge r’S d |gO r|t h M Say we had chosen this edge

Now there is no way we could return a cut
that separates b and e.

Even worse

If the algorithm EVER chooses either of these edges,
it will be wrong.

How likely is that?

* For this particular graph, | did it 10,000 times:

How often does Karger get minimum cuts? (out of 10K trials)

0.5 1 The algorithm is
only correct about
0.4 - 20% of the time!

Frequency of cuts of that size

0 1 2 3 4 5 6 7
Size of cut

That doesn’t sound good

* Too see why it’s good after all, we’ll
do a case study of this graph.—

* Let’s compare Karger’s algorithm to
the algorithm:

Choose a completely random cut
and hope that it’s a minimum cut.

The plan:

* See that 20% chance of correctness is
actually nontrivial.

STRAW MAN®

e Use repetition to boost an algorithm 2
COMPLETELY.S ~

that’s correct 20% of the time to an Py RS
algorithm that’s correct 99% of the time. RANDOM CUTS * L ekl

Random cuts

e Suppose that we chose cuts uniformly at random.
* That is, pick a random way to split the vertices into 2 parts.

etc

Random cuts

e Suppose that we chose cuts uniformly at random.
* That is, pick a random way to split the vertices into 2 parts.

* The probability of choosing the minimum cut is*...

number of min cuts in that graph

2
= ~ 0.008
number of ways to split 8 vertices in 2 parts 28 — 2

e Aka, we get a minimum cut 0.8% of the time.

*For this example in particular

Karger is better than completely random!

Frequency of different cut sizes (out of 10K trials)

equency of cuts of that size
o o, ©
(¥ S

I
o
bt

o
o

0.5 - N completely random
BN karger
Karger’s alg. is correct : |
about 20% of the time '
Completely random is '
correct about 0.8% of |
the time \
_ ; —
0 2 4 6 8 10

Size of cut

What’s going on?

* Which is more likely?

A: The algorithm never
chooses either of the
edges in the minimum cut.

Thing 1: It’s unlikely that
Karger will hit the min cut
since it’s so small!

Lucky the
lackadaisical lemur

B: The algorithm never
chooses any of the edges
in this big cut.

* Neither A nor B are very likely, but A is more likely than B.

) . Thing 2: By only contracting
W h at S gO | n g O ﬂ ? edges we are ignoring certain

really-not-minimal cuts.

Lucky the
lackadaisical lemur

B: This cut can’t be returned by
Karger’s algorithm!

(Because how would a and g end up
in the same super-node?)

A: This cut can be returned
by Karger’s algorithm.

This cut actually separates the graph into three pieces, so it’s
not minimal — either half of it is a smaller cut.

Why does that help?

e Okay, so it’s better than random...
* We're still wrong about 80% of the time.

e The main idea:

* If I'm wrong 20% of the time, then if | repeat it a few
times I'll eventually get it right.

The plan:

e See that 20% chance of
correctness is actually nontrivial.

e Use repetition to boost an
algorithm that’s correct 20% of the
time to an algorithm that’s correct
99% of the time.

Thought experiment
from pre-lecture exercise

» Suppose you have a magic button that produces one of 5
numbers, {a,b,c,d,e}, uniformly at random when you push it.

 Q: What is the minimum of a,b,c,d,e?

3 5 5
3 2 2

How many times do you have to push the button
before you see the minimum value?

What is the probability that you have to push it
more than 5 times? 10 times?

[On board]

[This is approximately what’s on the board]

This is the same calculation

we’ve done a bunch of times: Slide sk|pped in class

Number of times

o E[we push the button] — 1/(020) =5

until we get the
minimum value

This one we’ve done less frequently:

We push the button
o Pr[t times and don’t] = (1 — Oz)t

ever get the min

We push the button 5
° Pr[5 times and don't]= (1 — 02) ~ 0.33

ever get the min

We push the button 10
¢ Pr[10 times and don’t] = (1 — 02) ~ 0.1

ever get the min

In this context

Q/ * Run Karger’s! The cut size is 6!
* Run Karger’s! The cut size is 3!
* Run Karger’s! The cut size is 3!

* Run Karger’s! The cut size is 2! - Correct!

* Run Karger’s! The cut size is 5!

If the success probability is about 20%, then if you
run Karger’s algorithm 5 times and take the best
answer you get, that will likely be correct!

For this particular graph

* Repeat Karger’s algorithm about 5 times, and we
will get a min cut with decent probability.

* |In contrast, we’d have to choose a random cut about
1/0.008 = 125 times!

Hang on! This “20%” figure just
came from running experiments on
this particular graph. What about
general graphs? Can we prove this?

The plan:

* See that 20% chance of
Also, we should be a bit more correctness is actually nontrivial.

precise about this “about 5

.) e Use repetition to boost an
times™ statement.

algorithm that’s correct 20% of the

: : time to an algorithm that’s correct
Plucky th
ucky the pedantic penguin 99% of the time.

®

Questions 25 5@ gy &

To generalize this approach to all graphs

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?

e Say, with probability 0.997?
* Or more generally, probability1 — 6 ?

Answer to Question 1

Claim:

The probability that Karger’s algorithm returns a
minimum cut Is

at least 1
/)

In this case, 1/(8) = 0.036, so we are
2

guaranteed to win at least 3.6% of the time.

%

o
Answers g " ey

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
 Say, with probability 0.997
* Or more generally, probability 1 — o6 ?

Before we prove the Claim

2. How many times should we run Karger’s
algorithm to succeed with probability 1 — 6 ?

Success probability for repeating Karger's algorithm a bunch
10 A

<
o

<
(=)}
'

<
N

<
(N

Empirical success probability

<@
o

0 5 10 15 20 25 30
Number of repetitions

A computation

* Suppose :

Punchline: If we repeat T = (3) In(1/8) times,
we win with probability at least 1 — 4.

* the probability of successfully returning a minimum cutis p € [0, 1],
« we want failure probability at most § € (0,1).

Independent

e Pr[don’t return amin cut in T*trials] = (1 — p)!
*Sop-= 1/(721) by the Claim. Let’s choose T = (721) In(1/0)

* Pr[don't return a min cutin T trials]

=1 -p)f
o < (e—’P)T

e — p DT

¢ — e_ln(%)

¢« =§

Theorem
Assuming the claim about 1/(’21)

e Suppose G has n vertices.

* Consider the following algorithm:
* bestCut = None

e fort=1,..., (Z)ln (%) :
e candidateCut « Karger(G)

e if candidateCut is smaller than bestCut:
e bestCut « candidateCut
* return bestCut

* Then Pr[this doesn’t return a min cut | < é.

How many repetitions
would you need if
instead of Karger we
just chose a uniformly
random cut?

%

&
Answers g " ey

1. What is the probability that Karger’s algorithm
returns a minimum cut?

2. How many times should we run Karger’s
algorithm to “probably” succeed?
 Say, with probability 0.997
* Or more generally, probability 1 — o6 ?

What’s the running time?

. (’;) In (%) repetitions, and O(n?) per repetition.

+50,0(n?-(H)In(5)) = 0m® imne’™

Again we can do better with a union-find
data structure. Write pseudocode for—or
better yet, implement—a fast version of
Karger’s algorithm! How fast can you
make the asymptotic running time?

Ollie the over-achieving ostrich

Theorem
Assuming the claim about 1/(721)

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at
least 0.99 in time O(n%).

Now let’s prove the claim...

Claim

The probability that Karger’s algorithm returns a
minimum cut Is

at least 1
/)

Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e,, ..., €,
* PR[return S*] = PR[none of the e, cross S*]
= PR[e, doesn’t cross S* |
X PR[e, doesn’t cross S* | e, doesn’t cross S*]

X PR[e, , doesn’t cross S* | e,...,e, 5 don’t cross S*]

/J
I
I
/]
[
I (e
/|

1
I
I S*
| |

Focus in on:
PR[e; doesn’t cross S* | ey,...,e;; don’t cross S*]

* Suppose: After j-1 iterations, we haven’t messed up yet!
* What’s the probability of messing up now?

Focus in on:
PR[e, doesn’t cross S* | ey,...,e;; don’t cross S* |

* Suppose: After j-1 iterations, we haven’t messed up yet!
* What’s the probability of messing up now?

*
Say there are k edges that cross S .

* Every remaining node has degree at least k. vertex s the number o
. ’ i t of it.
« Otherwise we’d have a smaller cut. eaBEs Loming oLt ot

Thus, there are at least (n-j+1)k/2 edges total.
* b/cthere are n-j+ 1 nodes left, each with degree at least k.

So the probability that we b I (D\.
i ab |}

choose one of the k edges M’ I' 9

crossing S* atstepjisatmost: /N T~ L

k __ 2 ((eh
(n—j+1)k - S ‘
(.) n—j+1 (c %

Focus in on:
PR[e, doesn’t cross S* | ey,...,e;; don’t cross S* |

* So the probability that we choose one of the k edges
crossing S* at step j is at most:

k 2
((n—j2+1)k) — n—j+1

* The probability we don’t choose one of the k edges is at
least.: f
;2 _n-j1 {ab) : e

~ ’

Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e,, ..., €,
* PR[return S*] = PR[none of the e, cross S*]
= PR[e, doesn’t cross S* |
X PR[e, doesn’t cross S* | e, doesn’t cross S*]

X PR[e, , doesn’t cross S* | e,...,e, 5 don’t cross S*]

/J
I
I
/]
[
I (e
/|

1
I
I S*
| |

Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e,, ..., €,
* PR[return S*] = PR[none of the e, cross S*]

-(5) (5) (=) (5) ()~ G Q) 6 6)

/J
I
I
/]
[
I (e
/|
1
I
I S*
| |

Now let’s prove that claim
Say that S* is a minimum cut.

* Suppose the edges that we choose are e, e,, ..., €,
 PR[return S*] = PR[none of the e, cross S*

1 CLayy,

(2

Theorem
Assuming the claim about 1/(721)

Suppose G has n vertices. Then [repeating Karger’s
algorithm] finds a min cut in G with probability at
least 0.99 in time O(n%).

That proves this
Theorem!

What have we |learned?

* If we randomly contract edges:
* It’s unlikely that we’ll end up with a min cut.
e Butit’s not TOO unlikely

* By repeating, we likely will find a min cut.
Here | chose § = 0.01
just for concreteness.

* Repeating this process: |
* Finds a global min cut in time O(n#), with probability 0.99.
 We can run a bit faster if we use a union-find data structure.

. 1 .
*Note, in the lecture notes, we take 6 = =~ which makes the

running time O(n*log(n)). It depends on how sure you want to be!

More generally

* Whenever we have a Monte-Carlo algorithm with a
small success probability, we can boost the success
probability by repeating it a bunch and taking the
best solution.

Can we do better?

* Repeating O(n?) times is pretty expensive.
* O(n%) total runtime to get success probability 0.99.

* The Karger-Stein Algorithm will do better!
* The trick is that we’ll do the repetitions in a clever way.
* O(n?log?(n)) runtime for the same success probability.

 Warning! This is a tricky algorithm! We’ll sketch the
approach here: the important part is the high-level idea,
not the details of the computations.

To see how we might save on repetitions,
let’s run through Karger’s algorithm again.

Probability that we didn’t mess up:

Karger’s algorithm 12/14

There are 14 edges, 12 of
which are good to contract.

Karger’s algorithm

Create a
supernode!

——— —,
-
-

Create a
superedge!

Karger’s algorithm

Create a
LT supernode!

/7 Y

[b)

\ d,

1 1

\ Y; /@,b}
Create a
superedge! {Cajz Create a

c !
b) \é;g\ superedge!

(— "

Probability that we didn’t mess up:

Karger’s algorithm 11/13

Now there are only 13 edges,
since the edge betweenaandb
disappeared.

Karger’s algorithm

-
- So

U4
g: a,b Create a
\

. y f@,bjz superedge! /e

Create a
superedge!

Create a
supernode!

Karger’s algorithm

- —
- N\

\
Create a
superedge!

P ~
~
s N,

> Create a
20
superedge!

~ ’

Create a
supernode!

Probability that we didn’t mess up:

Karger’s algorithm 10/12

Now there are only 12 edges,
since the edge between e and h
disappeared.

-
- So

random
edge!

g

Karger’s algorithm

-
- So

L &
™
{c,a}
{c,b}
{d,a}
|| P!
[od ;{e/}

Probability that we didn’t mess up:

Karger’s algorithm ~ g/14

random edge!
(We pick at
random from
the original
edges).

NNNNN

Karger’s algorithm

—————
i Ss

Karger’s algorithm

Probability that we didn’t mess up:

5/7

random
edge!

Karger’s algorithm

fffff
~
= N

N /

Karger’s algorithm

—————

- ~
~
2 N

Probability that we didn’t mess up:

3/5

random
edge!

~ /

Karger’s algorithm

—————
7 S

~
———————

aaaaa
» SS

~
~ -’
~~~~~~~



Karger’s algorithm

Now stop!

* There are only two nodes left.

—————
7 Ss

U4 \
:', \\
i ab,cd i
\

\

\‘\ ¢', {el b} Ij Q

~ -
~ - » d}
~~~~~~~~~~
I,’, \\

4
\\\\\

Probability of not messing up

* At the beginning, it’s pretty likely we’ll be fine.

* The probability that we mess up gets worse and
worse over time.

12/14 | 1113 q09/15

9/11

0.8 |

0.7 |-

Moral:

Repeating the stuff from
the beginning of the
algorithm is wasteful!

3/5

probability
of success

0.6 |-

o5} iteration

L 1 1 1 1
0 1 2 3 4 5

In words

* Run Karger’s algorithm on G for a bit.

e Until there are % supernodes left.

* Then split into two independent copies, G, and G,
* Run Karger’s algorithm on each of those for a bit.

()
V2
* Then split each of those into two independent copies...

e Until there are = g supernodes left in each.

In pseudocode

» KargerStein(G = (V,E)):
°ne« |V]
e ifn<4:
* find a min-cut by brute force \\ time O(1)
* Run Karger’s algorithm on G with independent

o . n .
repetitions until {ﬁ‘ nodes remain.

* G,, G, « copies of what’s left of G

S, = KargerStein(G,)

S, = KargerStein(G,)

return whichever of S, S, is the smaller cut.

n nodes

Recursion
tree

Contract a
bunch of edges
n

% nodes

Make 2
copies

Contract a
bunch of edges

Contract a
bunch of edges

n
nodes 7 nodes

n

Va

Make 2
copies

Make 2
copies

V8

nodes

Recursion tree

. 1
* depth islog 5(n) = 1oogg((\1/1§)) = 2log(n)

 number of leaves is 22/08(n) = n2

/—

This counts as one level —
for this analysis

—
This counts as one level Contract a
for this analysis : bunch of
edges

\

Make 2
copies

Contract a
bunch of edges

Contract a
bunch of
edges

Two questions

* Does this work?

e Is it fast? <

At the jth |eve| The amount of work per level is

the amount of work needed to
reduce the number of nodes by

a factor of V2.

* That’s at most O(n?).
* since that’s the time it takes to
run Karger’s algorithm once,
Z(jfl)/z cutting down the number of
nodes supernodes to two.

Contract a
bunch of edges

e Qurrecurrence relationis...

T(n) = 2T(n/v/2) + O(n?)

Make 2
copies

The Master Theorem says...

T(n) = O(n%log(n))

Jedi Master Yoda

n n

20j+1)/2 2(j+1)/2
nodes nodes

Two questions

* Does this work? =

* |s it fast?
* Yes, O(n?%log(n)).

Suppose we contract n—t edges, until

Why n/,‘ / 2 P, there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €y, oy €14
* PR[none of the e, cross S* (up to the n-t'th)]
= PR[e, doesn’t cross S* |
X PR[e, doesn’t cross S* | e, doesn’t cross S*]

X PR[e, doesn’t cross S* | ey,...,e, ., don’t cross S*]

Suppose we contract n—t edges, until

Why n/,‘ / 2 P, there are t supernodes remaining.

e Suppose the first n-t edges that we choose are
€1, €5, ey €1y
* PR[none of the e, cross S* (up to the n-t'th)]
-(7) (2 (2) 62))~ (5) &) (&)
(t—1
o

Choose t = n/+/2

n (n
— (==
= V2 (\E) ~ 1 when n is large
n-(n—1) 2

n nodes

Recursion
tree

Contract a

Pr[fail =1/2
bunch of edges "l failure] = 1/
— nod

7; hodes

n Make 2

n
Contract a V2 nodes copies ﬁ nodes Contract a

bunch of edges bunch of edges
Pr[failure] = 1/2 Pr[failure] =1/2

n

Va

n
nodes 7 nodes

Make 2
copies

Make 2
copies

e
Va
nodes nodes
Pr[failure] =1/2

Pr[failure] =1/2

N or i

PrObablllty n nodes
of success

Is the probability that there’s \ ’
®odes
g

Each with
probability 1/2

n
a path from the root to a leaf V2 &
with no failures.

Make 2

n d .
- hodes copies

&

n n
i nodes 7 no@s,

Make 2
copies

Make 2
copies

The problem we need to analyze

* Let T be binary tree of depth 2log(n)

* Each node of T succeeds or fails independently with
probability 1/2

* What is the probability that there’s a path from the
root to any leaf that’s entirely successful?

Analysis

* Say the tree has height d.

* Let py be the probability that
there’s a path from the root to a
leaf that doesn’t fail.

A
\
af*

\ _pr [M

at least one subtree
has a successful path

)
/PI'[- wins]
-. % both win] /

wlh-]

°= % (Pd—1 + Pa-1 — Pc21—1)

. — 1.2

Contract a
bunch of

edges z(dlll)/z

nolles

Make 2
copies

node;

/
[
4

0 A
> \

It’s a recurrence relation!

1 2
*Pa = Pa-1 — 7 Pa-1

*Po=1

* We are real good at those.

* |n this case, the answer is:

1

* Claim: forall d, p; = Tl

Recurrence relation

1
d+1
* Proof: induction on d.

* Claim: foralld, p; =

e Basecase:1 > 1. YEP.
* Inductive step: sayd > 0.

* Suppose thatp,_1 = %.

. _ B,
Pa = Pa-1 — 7 Pd-1
1 1 1
° 2 .
d 2 d?
° 2 l - 1
d d(d+1)
. 1
T d+1

* Pa =
* Po =

1
Pa-1 — 7 Pda-1

|
p—

This slide
skipped in class

What does that mean for Karger-Stein?

1
[] : > -
Claim: forall d, pg = "

* For d = 2log(n)
e thatis, d = the height of the tree:

1
>
P2log(n) = 2log(n) + 1

e aka,

Pr[Karger-Stein is successful | = () (1og1(n))

Altogether now

* We can do the same trick as before to amplify the
success probability.

* Run Karger-Stein O (log(n) - log (%)) times to achieve
success probability 1 — 6.

e Each iteration takes time O(n?log(n))
e That’s what we proved before.

* Choosing 6 = 0.01 as before, the total runtime is
0(n?log(n) -log(n)) = 0(n?log(n)?)

Much better than O(n?)!

What have we |learned?

e Just repeating Karger’s algorithm isn’t the best use
of repetition.
* We're probably going to be correct near the beginning.
* Instead, Karger-Stein repeats when it counts.
n

V2
that we fail is close to %.

* If we wait until there are —= nodes left, the probability

* This lets us find a global minimum cut in an
undirected graph in time O(n? log?(n)).
* Notice that we can’t do better than n? in a dense graph
(we need to look at all the edges), so this is pretty good.

Recap

* Some algorithms:
e Karger’s algorithm for global min-cut
* Improvement: Karger-Stein

* Some concepts:

 Monte Carlo algorithms:
* Might be wrong, are always fast.

* We can boost their success probability with repetition.
 Sometimes we can do this repetition very cleverly.

Next time

e Another sort of min-cut: I
* s-t min-cut '
* also max-flow!

Before next time /

* Pre-lecture exercise: examples of cuts and flows.

