Lecture 16

Min Cut and Karger's Algorithm

Announcements

- HW 7 due Friday
- HW 8 released Friday
 - Psych! There is no HW8.

• FINAL EXAM:

- Wednesday December 13
- 3:30 6:30pm

Advertisement! CS83 with Omer Reingold:

Winter quarter Fri 1:30 PM - 4:20 PM

CS 83 - PLAYBACK THEATER FOR RESEARCH

A FEEL GOOD COURSE

Last time

- Minimum Spanning Trees!
 - Prim's Algorithm
 - Kruskal's Algorithm

Today

- Minimum Cuts!
 - Karger's algorithm
 - Karger-Stein algorithm
 - Back to randomized algorithms!

*For today, all graphs are **undirected and unweighted.**

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty parts.

Recall: cuts in graphs

• A cut is a partition of the vertices into two nonempty parts. Part 1 Part 2

This is not a cut

This is a cut

This is a cut

These edges cross the cut.

• They go from one part to the other.

A (global) minimum cut is a cut that has the fewest edges possible crossing it.

A (global) minimum cut is a cut that has the fewest edges possible crossing it.

Why "global"?

Minimum cut which separates a specified vertex s from t

• Next time we'll talk about min s-t cuts

S

 Today, there are no special vertices, so the minimum cut is "global."

A (global) minimum cut is a cut that has the fewest edges possible crossing it.

Why might we care about global minimum cuts?

• One example is image segmentation:

Why might we care about global minimum cuts?

• One example is image segmentation:

 We'll see more applications for other sorts of min-cuts next week

*For the rest of today edges aren't weighted; but the algorithm can be adapted to deal with edge weights.

between similar

pixels.

- Finds **global minimum cuts** in undirected graphs
- Randomized algorithm
- Karger's algorithm **might be wrong**.
 - Compare to QuickSort, which just might be slow.
- Why would we want an algorithm that might be wrong?
 - With high probability it won't be wrong.
 - Maybe the stakes are low and the cost of a deterministic algorithm is high.

Different sorts of gambling

- QuickSort is a Las Vegas randomized algorithm
 - It is always correct.
 - It might be slow.

Yes, this is a technical term.

Formally:

- For all inputs A, QuickSort(A) returns a sorted array.
- For all inputs A, with high probability over the choice of pivots, QuickSort(A) runs quickly.

Different sorts of gambling

- Karger's Algorithm is a Monte Carlo randomized algorithm
 - It is always fast.
 - It might be wrong.

Formally:

- For all inputs G, with probability at least _____ over the randomness in Karger's algorithm, Karger(G) returns a minimum cut.
- For all inputs G, with probability 1 Karger's algorithm runs in time no more than ____.

- Pick a random edge.
- Contract it.
- Repeat until you only have two vertices left.

Why is this a good idea? We'll see shortly.

Now stop!

• There are only two nodes left.

The **minimum cut** is given by

- the remaining super-nodes:
- {a,b,c,d} and {e,h,f,g}

The **minimum cut** is given by the remaining super-nodes: • {a,b,c,d} and {e,h,f,g}

Karger's algorithm

• Does it work?

How do we implement this?

- See Lecture 16 IPython Notebook for one way
 - This maintains a secondary "superGraph" which keeps track of superNodes and superEdges
 - There's a hidden slide with pseudocode
- Running time?
 - We contract at most n-2 edges
 - Each time we contract an edge we get rid of a vertex, and we get rid of at most n – 2 vertices total.
 - Naively each contraction takes time O(n)
 - Maybe there are about n nodes in the superNodes that we are merging.
 - So total running time O(n²).
 - We can do $O(m \cdot \alpha(n))$ with a union-find data structure, but $O(n^2)$ is good enough for today.

Pseudocode

Karger(G=(V,E)):

Let \overline{u} denote the SuperNode in Γ containing u Say $E_{\overline{u},\overline{v}}$ is the SuperEdge between $\overline{u}, \overline{v}$.

This slide skipped in class

- Γ = { SuperNode(v) : v in V }
- $E_{\overline{u},\overline{v}} = \{(u,v)\}$ for (u,v) in E
- $E_{\overline{u},\overline{v}} = \{\}$ for (u,v) not in E.
- F = copy of E
- while $|\Gamma| > 2$:
 - $(u,v) \leftarrow$ uniformly random edge in F
 - merge(u, v)

// one supernode for each vertex
// one superedge for each edge

// we'll choose randomly from F

The **while** loop runs n-2 times

merge takes time O(n) naively

// merge the SuperNode containing u with the SuperNode containing v.

• $F \leftarrow F \setminus E_{\overline{u},\overline{v}}$

// remove all the edges in the SuperEdge between those SuperNodes.

- return the cut given by the remaining two superNodes.
- **merge**(u, v):
 - \overline{x} = SuperNode($\overline{u} \cup \overline{v}$)
 - for each **w** in $\Gamma \setminus \{\overline{\boldsymbol{u}}, \overline{\boldsymbol{v}}\}$:
 - $E_{\overline{x},\overline{w}} = E_{\overline{u},\overline{w}} \cup E_{\overline{v},\overline{w}}$
 - Remove $\overline{\boldsymbol{u}}$ and $\overline{\boldsymbol{v}}$ from Γ and add $\overline{\boldsymbol{x}}$.

// merge also knows about Γ and the $E_{\overline{u},\overline{\nu}}$'s

// create a new supernode

total runtime O(n²)

We can do a bit better with fancy data structures, but let's go with this for now.

Karger's algorithm

- Does it work?
 - No?
- Is it fast?
 - O(n²)

Why did that work?

- We got really lucky!
- This could have gone wrong in so many ways.

Karger's algorithm

Say we had chosen this edge

Karger's algorithm

Say we had chosen this edge

Now there is **no way** we could return a cut that separates b and e.

Even worse

If the algorithm EVER chooses either of these edges, it will be wrong.

How likely is that?

• For this particular graph, I did it 10,000 times:

That doesn't sound good

• Too see why it's good after all, we'll do a case study of this graph.

• Let's compare Karger's algorithm to the algorithm:

Choose a completely random cut and hope that it's a minimum cut.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Random cuts

- Suppose that we chose cuts uniformly at random.
 - That is, pick a random way to split the vertices into 2 parts.

Random cuts

- Suppose that we chose cuts uniformly at random.
 - That is, pick a random way to split the vertices into 2 parts.
- The probability of choosing the minimum cut is*... number of min cuts in that graph number of ways to split 8 vertices in 2 parts $=\frac{2}{2^8-2} \approx 0.008$
- Aka, we get a minimum cut 0.8% of the time.

Karger is better than completely random!

What's going on?

е

• Which is more likely?

a

Thing 1: It's unlikely that Karger will hit the min cut since it's so small!

Lucky the lackadaisical lemur

B: The algorithm never chooses any of the edges in **this big cut**.

A: The algorithm never chooses either of the edges in **the minimum cut**.

• Neither A nor B are very likely, but A is more likely than B.

g

What's going on?

Thing 2: By only contracting edges we are ignoring certain really-not-minimal cuts.

Lucky the lackadaisical lemur

This cut actually separates the graph into three pieces, so it's not minimal – either half of it is a smaller cut.

by Karger's algorithm.

Why does that help?

- Okay, so it's better than random...
- We're still wrong about 80% of the time.
- The main idea: repeat!
 - If I'm wrong 20% of the time, then if I repeat it a few times I'll eventually get it right.

The plan:

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

Thought experiment from pre-lecture exercise

- Suppose you have a magic button that produces one of 5 numbers, {a,b,c,d,e}, uniformly at random when you push it.
- Q: What is the minimum of a,b,c,d,e?

3 3 5 5 3 2 2

How many times do you have to push the button before you see the minimum value?

What is the probability that you have to push it more than 5 times? 10 times?

[On board]

[This is approximately what's on the board]

This is the same calculation we've done a bunch of times:

Slide skipped in class

Number of times

This one we've done less frequently:

We push the button

• Pr[t times and don't] = $(1 - 0.2)^t$ ever get the min

• Pr[5 times and don't] = $(1 - 0.2)^5 \approx 0.33$ ever get the min

We push the button

• Pr[10 times and don't] =
$$(1 - 0.2)^{10} \approx 0.1$$

ever get the min

1 A

In this context

- Run Karger's! The cut size is 6!
- Run Karger's! The cut size is 3!
 - Run Karger's! The cut size is 3!
- Run Karger's! The cut size is 2!
 - Correct!

• Run Karger's! The cut size is 5!

If the success probability is about 20%, then if you run Karger's algorithm 5 times and take the best answer you get, that will likely be correct!

For this particular graph

- a b f g c d e h
- Repeat Karger's algorithm about 5 times, and we will get a min cut with decent probability.
 - In contrast, we'd have to choose a random cut about 1/0.008 = 125 times!

Hang on! This "20%" figure just came from running experiments on this particular graph. What about general graphs? Can we prove this?

Also, we should be a bit more precise about this "about 5 times" statement.

Plucky the pedantic penguin

- See that 20% chance of correctness is actually nontrivial.
- Use repetition to boost an algorithm that's correct 20% of the time to an algorithm that's correct 99% of the time.

1. What is the probability that Karger's algorithm returns a minimum cut?

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Answer to Question 1

Claim:

The probability that Karger's algorithm returns a minimum cut is

at least
$$\frac{1}{\binom{n}{2}}$$

In this case, $\frac{1}{\binom{8}{2}} = 0.036$, so we are guaranteed to win at least 3.6% of the time.

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at most $\frac{1}{\binom{n}{2}}$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

Before we prove the Claim

2. How many times should we run Karger's algorithm to succeed with probability $1 - \delta$?

A computation

Punchline: If we repeat $\mathbf{T} = \binom{n}{2} \ln(1/\delta)$ times, we win with probability at least $1 - \delta$.

- Suppose :
 - the probability of successfully returning a minimum cut is $p \in [0, 1]$,
 - we want failure probability at most $\delta \in (0,1)$.

Independent

- Pr[don't return a min cut in T trials] = $(1 p)^T$
- So $p = 1/\binom{n}{2}$ by the Claim. Let's choose $T = \binom{n}{2} \ln(1/\delta)$.
- Pr[don't return a min cut in T trials]
 - = $(1 p)^T$
 - $\leq (e^{-p})^T$
 - = e^{-pT}

•
$$= e^{-\ln\left(\frac{1}{\delta}\right)}$$

• = δ

e^{-p} 1-p

 $1 - p \le e^{-p}$

Theorem

Assuming the claim about $1/\binom{n}{2}$...

- Suppose G has n vertices.
- Consider the following algorithm:
 - bestCut = None
 - for $t = 1, ..., {n \choose 2} ln\left(\frac{1}{\delta}\right)$:
 - candidateCut ← Karger(G)
 - if candidateCut is smaller than bestCut:
 - bestCut ← candidateCut
 - return bestCut

How many repetitions would you need if instead of Karger we just chose a uniformly random cut?

• Then Pr[this doesn't return a min cut] $\leq \delta$.

1. What is the probability that Karger's algorithm returns a minimum cut?

According to the claim, at most $\frac{1}{\binom{n}{2}}$

- 2. How many times should we run Karger's algorithm to "probably" succeed?
 - Say, with probability 0.99?
 - Or more generally, probability 1δ ?

 $\binom{n}{2}\log\left(\frac{1}{\delta}\right)$ times.

What's the running time?

• $\binom{n}{2} \ln \left(\frac{1}{\delta}\right)$ repetitions, and O(n²) per repetition. • So, $O\left(n^2 \cdot \binom{n}{2} \ln \left(\frac{1}{\delta}\right)\right) = O(n^4)$ Treating δ as constant.

> Again we can do better with a union-find data structure. Write pseudocode for—or better yet, implement—a fast version of Karger's algorithm! How fast can you make the asymptotic running time?

Ollie the over-achieving ostrich

Theorem Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

Now let's prove the claim...

Claim

The probability that Karger's algorithm returns a minimum cut is at least $\frac{1}{\binom{n}{2}}$

Now let's prove that claim Say that S* is a minimum cut.

. . .

- Suppose the edges that we choose are e₁, e₂, ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]
 - = $PR[e_1 \text{ doesn't cross } S^*]$ $\times PR[e_2 \text{ doesn't cross } S^* | e_1 \text{ doesn't cross } S^*]$
 - \times **PR**[e_{n-2} doesn't cross S* | e₁,...,e_{n-3} don't cross S*]

Focus in on: **PR**[e_j doesn't cross S* | e₁,...,e_{j-1} don't cross S*]

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?

Focus in on: **PR**[e_j doesn't cross S* | e₁,...,e_{j-1} don't cross S*]

- Suppose: After j-1 iterations, we haven't messed up yet!
- What's the probability of messing up now?
- Say there are k edges that cross S*
- Every remaining node has degree at least k.
 - Otherwise we'd have a smaller cut.
- Thus, there are at least (n-j+1)k/2 edges total.
 - b/c there are n j + 1 nodes left, each with degree at least k.

So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

Recall: the **degree** of the vertex is the number of edges coming out of it.

Focus in on: **PR**[e_j doesn't cross S* | e₁,...,e_{j-1} don't cross S*]

 So the probability that we choose one of the k edges crossing S* at step j is at most:

$$\frac{k}{\left(\frac{(n-j+1)k}{2}\right)} = \frac{2}{n-j+1}$$

• The probability we **don't** choose one of the k edges is at least:

$$1 - \frac{2}{n-j+1} = \frac{n-j-1}{n-j+1}$$
 (a,b)
c d (e,h)

Now let's prove that claim Say that S* is a minimum cut.

. . .

- Suppose the edges that we choose are e₁, e₂, ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]
 - = $PR[e_1 \text{ doesn't cross } S^*]$ $\times PR[e_2 \text{ doesn't cross } S^* | e_1 \text{ doesn't cross } S^*]$
 - \times **PR**[e_{n-2} doesn't cross S* | e₁,...,e_{n-3} don't cross S*]

Now let's prove that claim Say that S* is a minimum cut.

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{4}{6}\right) \left(\frac{3}{5}\right) \left(\frac{2}{4}\right) \left(\frac{1}{3}\right)$$

Now let's prove that claim Say that S* is a minimum cut.

- Suppose the edges that we choose are e_1 , e_2 , ..., e_{n-2}
- PR[return S*] = PR[none of the e_i cross S*]

Theorem Assuming the claim about $1/\binom{n}{2}$...

Suppose G has n vertices. Then [repeating Karger's algorithm] finds a min cut in G with probability at least 0.99 in time O(n⁴).

That proves this Theorem!

What have we learned?

- If we randomly contract edges:
 - It's unlikely that we'll end up with a min cut.
 - But it's not **TOO** unlikely
 - By repeating, we likely will find a min cut.

```
Here I chose \delta = 0.01 just for concreteness.
```

- Repeating this process:
 - Finds a global min cut in time O(n⁴), with probability 0.99.
 - We can run a bit faster if we use a **union-find** data structure.

*Note, in the lecture notes, we take $\delta = \frac{1}{n}$, which makes the running time O(n⁴log(n)). It depends on how sure you want to be!

More generally

 Whenever we have a Monte-Carlo algorithm with a small success probability, we can **boost** the success probability by repeating it a bunch and taking the best solution.

Can we do better?

- Repeating O(n²) times is pretty expensive.
 - O(n⁴) total runtime to get success probability 0.99.
- The Karger-Stein Algorithm will do better!
 - The trick is that we'll do the repetitions in a clever way.
 - O(n²log²(n)) runtime for the same success probability.
 - Warning! This is a tricky algorithm! We'll sketch the approach here: the important part is the high-level idea, not the details of the computations.

To see how we might save on repetitions, let's run through Karger's algorithm again.

Probability that we didn't mess up: 12/14

There are 14 edges, 12 of which are good to contract.

Probability that we didn't mess up: 11/13

Now there are only 13 edges, since the edge between a and b disappeared.

Probability that we didn't mess up: 10/12

Now there are only 12 edges, since the edge between e and h disappeared.

Probability that we didn't mess up: 9/11

Probability that we didn't mess up: 3/5

Now stop!

• There are only two nodes left.

Probability of not messing up

- At the beginning, it's pretty likely we'll be fine.
- The probability that we mess up gets worse and worse over time.

In words

- Why $\frac{n}{\sqrt{2}}$? We'll see later. • Run Karger's algorithm on G for a bit.
 - Until there are $\frac{n}{\sqrt{2}}$ supernodes left.
- Then split into two independent copies, G₁ and G₂
- Run Karger's algorithm on each of those for a bit.
 - Until there are $\frac{\left(\frac{\pi}{\sqrt{2}}\right)}{\sqrt{2}} = \frac{n}{2}$ supernodes left in each.
- Then split each of those into two independent copies...

In pseudocode

- KargerStein(G = (V,E)):
 - $n \leftarrow |V|$
 - if n < 4:
 - find a min-cut by brute force \\ time O(1)
 - Run Karger's algorithm on G with independent repetitions until $\left|\frac{n}{\sqrt{2}}\right|$ nodes remain.
 - G₁, G₂ ← copies of what's left of G
 - S₁ = KargerStein(G₁)
 - S₂ = KargerStein(G₂)
 - **return** whichever of S₁, S₂ is the smaller cut.

Recursion tree

- depth is $\log_{\sqrt{2}}(n) = \frac{\log(n)}{\log(\sqrt{2})} = 2\log(n)$
- number of leaves is $2^{2\log(n)} = n^2$

Two questions

- Does this work?
- Is it fast?

- The amount of work per level is the amount of work needed to reduce the number of nodes by a factor of $\sqrt{2}$.
- That's at most O(n²).
 - since that's the time it takes to run Karger's algorithm once, cutting down the number of supernodes to two.
- Our recurrence relation is... $T(n) = 2T(n/\sqrt{2}) + O(n^{2})$

The Master Theorem says... $T(n) = O(n^2 \log(n))$

Jedi Master Yoda

Two questions

• Does this work?

- Is it fast?
 - Yes, O(n²log(n)).

Why $n/\sqrt{2}$?

. . .

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

e₁, e₂, ..., e_{n-t}

PR[none of the e_i cross S* (up to the n-t'th)]
 = PR[e₁ doesn't cross S*]

× **PR**[e_2 doesn't cross S* | e_1 doesn't cross S*]

 \times **PR**[e_{n-t} doesn't cross S* | e₁,...,e_{n-t-1} don't cross S*]

Why $n/\sqrt{2}$?

Suppose we contract n – t edges, until there are t supernodes remaining.

Suppose the first n-t edges that we choose are

 $e_{1}, e_{2}, ..., e_{n-t}$ • PR[none of the e_i cross S* (up to the n-t'th)] $= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \left(\frac{n-5}{n-3}\right) \left(\frac{n-6}{n-4}\right) \cdots \left(\frac{t+1}{t+3}\right) \left(\frac{t}{t+2}\right) \left(\frac{t-1}{t+1}\right)$ $= \frac{t \cdot (t-1)}{n \cdot (n-1)} \quad \text{Choose } t = n/\sqrt{2}$ $= \frac{\frac{n}{\sqrt{2}} \cdot \left(\frac{n}{\sqrt{2}} - 1\right)}{n \cdot (n-1)} \approx \frac{1}{2} \quad \text{when n is large}$

The problem we need to analyze

- Let T be binary tree of depth 2log(n)
- Each node of T succeeds or fails independently with probability 1/2
- What is the probability that there's a path from the root to any leaf that's entirely successful?

Analysis

- Say the tree has height d.
- Let p_d be the probability that there's a path from the root to a leaf that **doesn't fail**.

 $2^{d/2}$

nodes

 $2^{(d-1)/2}$

Contract a

bunch of

edges

It's a recurrence relation!

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

•
$$p_0 = 1$$

- We are real good at those.
- In this case, the answer is:
 - Claim: for all d, $p_d \ge \frac{1}{d+1}$

Prove this! (Or see hidden slide for a proof).

Siggi the Studious Stork

Recurrence relation

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

• $p_0 = 1$

• Claim: for all d,
$$p_d \ge \frac{1}{d+1}$$

- **Proof**: induction on d.
 - Base case: $1 \ge 1$. YEP.
 - Inductive step: say d > 0.

• Suppose that
$$p_{d-1} \ge \frac{1}{d}$$

1

•
$$p_d = p_{d-1} - \frac{1}{2} \cdot p_{d-1}^2$$

• $\geq \frac{1}{d} - \frac{1}{2} \cdot \frac{1}{d^2}$
• $\geq \frac{1}{d} - \frac{1}{2} \cdot \frac{1}{d^2}$

$$= \frac{1}{d+1} d(d+1)$$

This slide skipped in class

What does that mean for Karger-Stein?

Claim: for all d, $p_d \ge \frac{1}{d+1}$

- For d = 2log(n)
 - that is, d = the height of the tree:

$$p_{2\log(n)} \ge \frac{1}{2\log(n) + 1}$$

• aka,

Pr[Karger-Stein is successful] = $\Omega\left(\frac{1}{\log(n)}\right)$

Altogether now

- We can do the same trick as before to amplify the success probability.
 - Run Karger-Stein $O\left(\log(n) \cdot \log\left(\frac{1}{\delta}\right)\right)$ times to achieve success probability 1δ .
- Each iteration takes time $O(n^2 \log(n))$
 - That's what we proved before.
- Choosing $\delta = 0.01$ as before, the total runtime is

 $O(n^2 \log(n) \cdot \log(n)) = O(n^2 \log(n)^2)$

Much better than O(n⁴)!

What have we learned?

- Just repeating Karger's algorithm isn't the best use of repetition.
 - We're probably going to be correct near the beginning.
- Instead, Karger-Stein repeats when it counts.
 - If we wait until there are $\frac{n}{\sqrt{2}}$ nodes left, the probability that we fail is close to $\frac{1}{2}$.
- This lets us find a global minimum cut in an undirected graph in time O(n² log²(n)).
 - Notice that we can't do better than n² in a dense graph (we need to look at all the edges), so this is pretty good.

Recap

- Some algorithms:
 - Karger's algorithm for global min-cut
 - Improvement: Karger-Stein
- Some concepts:
 - Monte Carlo algorithms:
 - Might be wrong, are always fast.
 - We can boost their success probability with repetition.
 - Sometimes we can do this repetition very cleverly.

Next time

- Another sort of min-cut:
 - s-t min-cut
 - also max-flow!

Before next time

• Pre-lecture exercise: examples of cuts and flows.