
Lecture	3
Recurrence	Relations	and	the	Master	Theorem!



Announcements!

• HW1	is	posted!	

• Due	Friday.

• Sections will	be	Tuesdays	4:30-5:20	,	room	380-381U!

• They	are	optional.

• But	valuable!

• Sign	up	for	Piazza!

• There’s	a	link	on	the	course	website.

• Course	announcements	will	be	posted	on	Piazza.



More	announcements



Last	time….

• Sorting:	InsertionSort and	MergeSort

• Analyzing	correctness	of	iterative	+	recursive	algs

• Via	“loop	invariant”	and	induction

• Analyzing	running	time	of	recursive	algorithms

• By	writing	out	a	tree	and	adding	up	all	the	work	done.

• How	do	we	measure	the	runtime	of	an	algorithm?

• Worst-Case	Analysis

• Big-Oh	Notation



Today

•Recurrence	Relations!
• How	do	we	measure	the	runtime	a	recursive	
algorithm?

• Like	Integer	Multiplication	and	MergeSort?

• The	Master	Method
• A	useful	theorem	so	we	don’t	have	to	answer	this	

question	from	scratch	each	time.



Running	time	of	MergeSort

• Let’s	call	this	running	time	T(n).
• when	the	input	has	length	n.

• We	know	that	T(n)	=	O(nlog(n)).

• But	if	we	didn’t	know	that…
MERGESORT(A):

n	=	length(A)

if n	≤ 1:

return A

L	=	MERGESORT(A[:n/2])

R	=	MERGESORT(A[n/2:])

returnMERGE(L,R)

𝑇 𝑛 ≤ 2 ⋅ 𝑇 𝑛
2 + 11 ⋅ 𝑛	

From	last	time



Recurrence	Relations

• 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 11 ⋅ 𝑛	 is	a	recurrence	relation.

• It	gives	us	a	formula	for	T(n) in	terms	of	T(less	than	n)

• The	challenge:

Given	a	recurrence	relation	for	T(n),	find	a	
closed	form	expression	for	T(n).

• For	example,	T(n)	=	O(nlog(n))



Technicalities	I
Base	Cases

• Formally,	we	should	always	have	base	cases	with	
recurrence	relations.

• 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 11 ⋅ 𝑛		with	𝑇 1 = 1

is	not	the	same	as

• 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 11 ⋅ 𝑛		with	𝑇 1 = 1000000000

• However,	T(1)	=	O(1),	so	sometimes	we’ll	just	omit	it.

Why	does	T(1)	=	O(1)?

Siggi the	Studious	Stork

Plucky	the	

Pedantic	Penguin



On	your	pre-lecture	exercise

• You	played	around	with	these	examples	(when	n	is	
a	power	of	2):

1. 𝑇 𝑛 = 𝑇 *
+ + 𝑛, 																	𝑇 1 = 1

2. 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 𝑛, 											𝑇 1 = 1

3. 𝑇 𝑛 = 4 ⋅ 𝑇 *
+ + 𝑛, 											𝑇 1 = 1

• What	are	the	closed	forms?

[on	board]



One	approach	for	all	of	these

Size	n

n/2n/2

n/4

(Size	1)

…

n/4n/4n/4

n/2tn/2tn/2tn/2tn/2tn/2t

…

• The	“tree”	approach	

from	last	time.

• Add	up	all	the	work	

done	at	all	the	sub-

problems.



Another	
approach:

Recursively	apply	
the	relationship	a	
bunch	until	you	
see	a	pattern.

• 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 11 ⋅ 𝑛

• 𝑇 𝑛 = 2 ⋅ 2 ⋅ 𝑇 *
1 + 22⋅*

+ + 11 ⋅ 𝑛
• 𝑇 𝑛 = 4 ⋅ 𝑇 *

1 + 22 ⋅ 𝑛

• 𝑇 𝑛 = 4 ⋅ 2 ⋅ 𝑇 *
3 + 22⋅*

1 + 22 ⋅ 𝑛
• 𝑇 𝑛 = 8 ⋅ 𝑇 *

3 + 33 ⋅ 𝑛

• Following	the	pattern…

• 𝑻 𝒏 = 𝒏 ⋅ 𝑻 𝟏 + 𝟏𝟏 ⋅ 𝒍𝒐𝒈 𝒏 ⋅ 𝒏 = 𝑶 𝒏 ⋅ 𝐥𝐨𝐠 𝒏

Formally,	this	should	

be	accompanied	

with	a	proof	that	

the	pattern	holds!

More	next	time.

This	slide	skipped	in	class,	provided	here	in	case	

this	way	makes	more	sense	to	you.



More	examples

• Needlessly	recursive	integer	multiplication

• T(n)	=	4	T(n/2)	+	O(n)

• T(n)	=	O(	n2	)

• Karatsuba	integer	multiplication								

• T(n)	=	3	T(n/2)	+	O(n)

• T(n)	=	O(	𝑛?@AB C 	 ≈ n1.6	)

• MergeSort

• T(n)	=	2T(n/2)	+	O(n)

• T(n)	=	O(	nlog(n)	)

T(n)	=	time	to	solve	a	problem	of	size	n.

What’s	the	pattern?!?!?!?!

These	two	are	

the	same	as	the	

ones	on	your	

pre-lecture	

exercise.



The	master	theorem

• A formula	that	solves	
recurrences	when	all	of	the	
sub-problems	are	the	same	
size.

• We’ll	see	an	example	
Wednesday	when	not	all	
problems	are	the	same	size.

• ”Generalized”	tree	method.

Jedi	master	Yoda

A useful 

formula it is.

Know why it works 

you should.



The	master	theorem

• Suppose	𝑇 𝑛 = 𝑎 ⋅ 𝑇 *
F + 𝑂 𝑛H .		Then

Many symbols 

those are….

Three	parameters:

a	:	number	of	subproblems

b	:	factor	by	which	input	size	shrinks

d	:	need	to	do	nd work	to	create	all	the	

subproblems and	combine	their	solutions.	

We	can	also	take	n/b	to	

mean	either	
*
F or	

*
F and	

the	theorem	is	still	true.	



Technicalities	II
Integer	division

• If	n	is	odd,	I	can’t	break	it	up	into	two	problems	of	
size	n/2.

• However	(see	CLRS,	Section	4.6.2),	one	can	show	
that	the	Master	theorem	works	fine	if	you	pretend	
that	what	you	have	is:

• From	now	on	we’ll	mostly	ignore	floors	and	ceilings	
in	recurrence	relations.

𝑇 𝑛 = 𝑇 𝑛
2 + 𝑇 𝑛

2 + 𝑂(𝑛)

𝑇 𝑛 = 2 ⋅ 𝑇 𝑛
2 + 	𝑂(𝑛)

Plucky	the	

Pedantic	Penguin



Examples
(details	on	board)

• Needlessly	recursive	integer	mult.

• T(n)	=	4	T(n/2)	+	O(n)

• T(n)	=	O(	n2	)

• Karatsuba	integer	multiplication								

• T(n)	=	3	T(n/2)	+	O(n)

• T(n)	=	O(	nlog_2(3) ≈ n1.6	)

• MergeSort

• T(n)	=	2T(n/2)	+	O(n)

• T(n)	=	O(	nlog(n)	)

• That	other	one

• T(n)	=	T(n/2)	+	O(n)

• T(n)	=	O(n)

𝑇 𝑛 = 𝑎 ⋅ 𝑇 *
F + 𝑂 𝑛H .

a	=	4

b	=	2

d	=	1

a	=	3

b	=	2

d	=	1

a	=	2

b	=	2

d	=	1

a	>	bd

a	>	bd

a	=	bd

✓
✓
✓

a	=	1

b	=	2

d	=	1

a	<	bd ✓



Proof	of	the	master	theorem

• We’ll	do	the	same	recursion	tree	thing	we	did	for	
MergeSort,	but	be	more	careful.

• Suppose	that 𝑇 𝑛 = 𝑎 ⋅ 𝑇 *
F + 𝑐 ⋅ 𝑛H.

Plucky	the

Pedantic	Penguin

Hang	on!		The	hypothesis	of	the	Master	Theorem	was	

the	the	extra	work	at	each	level	was	O(nd).		That’s	NOT	

the	same	as	work	<=	cnd for	some	constant	c.		

That’s	true	… we’ll	actually	prove	a	weaker	

statement	that	uses	this	hypothesis	instead	of	

the	hypothesis	that	𝑇 𝑛 = 𝑎 ⋅ 𝑇 *
F + 𝑂 𝑛H .	

It’s	a	good	exercise	to	make	this	proof	work	

rigorously	with	the	O()	notation.

Siggi the	Studious	Stork



Recursion	tree

Size	n

n/bn/b

(Size	1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount	of	

work	at	this	

level	

0

#	

problems

1

2

t

logb(n)

1

a

a2

at

𝑎?@AL *

Size	of	

each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇 𝑛
𝑏 + 𝑐 ⋅ 𝑛H

𝑐 ⋅ 𝑛𝑑

𝑎+𝑐	 𝑛
𝑏+

H

𝑎𝑐	 𝑛𝑏
H

𝑎O𝑐	 𝑛
𝑏O

H

𝑎?@AL * 𝑐



Recursion	tree

Size	n

n/bn/b

(Size	1)

…

n/b2

n/btn/btn/btn/btn/btn/bt

…

Level

Amount	of	

work	at	this	

level	

0

#	

problems

1

2

t

logb(n)

1

a

a2

at

𝑎?@AL *

Size	of	

each

problem

n

n/b

n/b2

n/bt

1

…

n/b

n/b2

n/b2
n/b2

n/b2

n/b2

n/b2

𝑇 𝑛 = 𝑎 ⋅ 𝑇 𝑛
𝑏 + 𝑐 ⋅ 𝑛H

𝑐 ⋅ 𝑛𝑑

𝑎+𝑐	 𝑛
𝑏+

H

𝑎𝑐	 𝑛𝑏
H

𝑎O𝑐	 𝑛
𝑏O

H

𝑎?@AL * 𝑐

Total	work	(derivation	on	board)	is	at	most:

𝑐 ⋅ 𝑛H ⋅ P 𝑎
𝑏H

OQRSL(*)

OTU



Now	let’s	check	all	the	cases	
(on	board)



Even	more	generally,	
for	T(n)	=	aT(n/b)	+	f(n)…

[From	CLRS]

Ollie	the	Over-Achieving	Ostrich

Figure	out	how	to	adapt	

the	proof	we	gave	to	prove	

this	more	general	version!





Understanding	the	Master	Theorem

• What	do	these	three	cases	mean?

• Suppose	𝑇 𝑛 = 𝑎 ⋅ 𝑇 *
F + 𝑂 𝑛H .		Then



The	eternal	struggle

Branching	causes	the	number	

of	problems	to	explode!		

The	most	work	is	at	the	

bottom	of	the	tree!

The	problems	lower	in	

the	tree	are	smaller!		

The	most	work	is	at	

the	top	of	the	tree!



Consider	our	three	warm-ups

1. 𝑇 𝑛 = 𝑇 *
+ + 𝑛

2. 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 𝑛

3. 𝑇 𝑛 = 4 ⋅ 𝑇 *
+ + 𝑛



First	example:	tall	and	skinny	tree

Size	n

n/2

n/4

n/2t

1

1. 𝑇 𝑛 = 𝑇 *
+ + 𝑛, 						 𝑎 < 𝑏H

• The	amount	of	work	done	at	the	

top	(the	biggest	problem)	swamps	

the	amount	of	work	done	anywhere	

else.

• T(n)	=	O(	work	at	top	)	=	O(n)

Most	work	at	the	

top	of	the	tree!

WINNER



Third	example:	bushy	tree

Size	n

n/2

3. 𝑇 𝑛 = 4 ⋅ 𝑇 *
+ + 𝑛, 						 𝑎 > 𝑏H

• There	are	a	HUGE	number	of	leaves,	and	the	total	work	is	

dominated	by	the	time	to	do	work	at	these	leaves.

• T(n)	=	O(	work	at	bottom	)	=	O(	4depth	of	tree )	=	O(n2)	

n/2n/2
n/2

1 11111 111

1 11111 111

1 11111 111

1 11111 111

1 11111 111

1 111 111

1 1111 111

WINNER

Most	work	at	

the	bottom	

of	the	tree!



Second	example:	just	right

2. 𝑇 𝑛 = 2 ⋅ 𝑇 *
+ + 𝑛, 						 𝑎 = 𝑏H

• The	branching	just	balances	

out	the	amount	of	work.

Size	n

n/2

n/4

1

n/2

n/4n/4n/4

11111 111

• The	same	amount	of	work	

is	done	at	every	level.

• T(n)	=	(number	of	levels)	*	(work	per	level)

• =		log(n)	*	O(n)	=	O(nlog(n))

1

TIE!



Recap

• The	”Master	Method” makes	our	lives	easier.

• But	it’s	basically	just	codifying	a	calculation	we	
could	do	from	scratch	if	we	wanted	to.



Next	Time

• What	if	the	sub-problems	are	different	sizes?

• And	when	might	that	happen?

BEFORE Next	Time

• Pre-Lecture	Exercise	4!
• Which	should	be	easier	if	you	did	Pre-Lecture	Exercise	3…


