Pre-lecture exercises will not be collected for credit. However, you will get more out of each lecture if you do them, and they will be referenced during lecture. We recommend writing out your answers to pre-lecture exercises before class. Pre-lecture exercises usually should not take you more than 20 minutes.

In this pre-lecture exercise, you'll do a warm-up for the substitution method, where you will formally prove something that we already know is true.

In your previous pre-lecture exercise, you considered the recurrence relation

$$
T(n)=2 T(n / 2)+n, T(1)=1
$$

In that exercise (and in class at great length) we saw that when $n$ is a power of 2 , the solution was

$$
T(n)=n(\log (n)+1)
$$

However, we technically never proved this formally. (and we certainly didn't prove anything formally for when $n$ wasn't a power of 2 ). Below, we'll go through this example formally, via a proof by induction.

1. Suppose that $T(n)=2 T(\lfloor n / 2\rfloor)+n, T(0)=0$. (Notice that we are changing up the form a little bit to be careful about what happens when $n$ isn't a power of 2 ). Prove by induction, following the outline below, that $T(n) \leq n(\log (n)+1)$, for all $n \geq 1$.

- Inductive Hypothesis: For all $k$ with $1 \leq k \leq n, T(k) \leq k(\log (k)+1)$.
- Base case: [You fill this in: show that the inductive hypothesis holds for $n=1$ ]
- Inductive step: [You fill this in: show that if the inductive hypothesis holds for $n-1$, then it holds for $n$.]
- Conclusion: [You've proven something by induction; what is it? Is it what you had hoped to prove?]

