Lecture 5

Randomized algorithms and QuickSort

Announcements

* HW1 is graded! Thanks TAs for super-fast turnaround!!
* HW2 is posted! Due Friday.

* Please send any OAE letters to Jessica Su
(stysu@stanford.edu) by Friday.

e Garrick attempts to make my cultural references more
up-to-date:

Lin § grade
school mul-

e . -
- /
: '0
it t
a1 W
b= 1 ‘.—,,." Le § !"
o ix ’
v Fy. Thanks

Garrick!

Karatsuba
integer mul-

Last time

* We saw a divide-and-conquer algorithm to solve the
Select problem in time O(n) in the worst-case.

* It all came down to picking the pivot...

Selection We choose a pivot randomly

= SELECT with random pivot and then a bad gu ets to
70 1 — SELECT with {dumb impl. of) fancy pi — . suy s
| —— MergeSort SELECT decide what the array was.
0 SELECT with
- 07 We choose a pivot cleverly
c 4
. 40 L and.then a bad guy gets to
F 30 1 decide what the array was.
20
. , The bad guy gets to decide
PRRCS . ay
o] s <—— what the array was and then

6 560 10'00 1560 20'00 25'00 30b0 35'00 we choose a pIVOt randomly'
n

Randomized algorithms

* We make some random choices during the algorithm.
* We hope the algorithm works.

* We hope the algorithm is fast.

e.g., Select with a random pivot
is @ randomized algorithm.

Selection

0 = SELECT with randonj pivot
: ;Eel;zg‘;:;trsaéfggb impl. of) fancy pivot It WaS aCtua I Iy

601 SELECT with worst pivot

. ‘ always correct
E 40 :
g Looks like

2 it’s probably

10 1 p— fast but not

O B

always.

0 500 1000 1500 2000 2500 3000 3500
n

Today

" 4

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCksort IS importa nt to know. (in contrast with BogoSort...)

How do we measure the runtime
of a randomized algorithm?

Scenario 1 Scenario 2
1. Bad guy picks the input. 1. Bad guy picks the input.

2. You run your randomized 2. Bad guy chooses the

algorithm. @@ % randomness (fixes the

dice) a
\d

* In Scenario 1, the running time is a random variable.
* It makes sense to talk about expected running time.

* In Scenario 2, the running time is not random.
* We call this the worst-case running time of the randomized algorithm.

Today

* How do we analyze randomized algorithms?

iwd algorithms for sorting.

e A few rando

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCksort IS importa nt to know. (in contrast with BogoSort...)

° Bogoso rt(A) . Suppose that you can draw a random

integer in {1,...,n} in time O(1). How would E r ' I p ‘
* While true: Xd €

you randomly permute an array in-place in

time O(n)?
* Randomly permute A.
e Check if Ais sorted.
* If Ais sorted, return A. Ollie the over-achieving ostrich

 What is the expected running time?
* You analyzed this in your pre-lecture exercise [also on board now]

* What is the worst-case running time?
 [on board]

Today

* How do we analyze randomized algorithms?
* A few randomized algorithms for sorting.

* BogoSort
e QuickSort '

* BogoSort is a pedagogical tool.
¢ QUiCksort IS importa nt to know. (in contrast with BogoSort...)

a better randomized algorithm:

QuickSort

* Runs in expected time O(nlog(n)).

e Worst-case runtime O(n?).

* In practice often more desirable.
* (More later)

QUiCkSO rt We want to sort

this array.
Do it at random.
This PARTITION step
Next, partition the array into A takes fime O(n).
‘. ” «“« ” random pivot! (Notice that we
bigger than 5” or “less than 5 don’t sort each half).
[same as in SELECT]
Arrange
them like so: L = array with things R = array with things
smaller than A[pivot] larger than A[pivot]

e [LEBIe
L and R:

PseudoPseudoCode IPython Lecture 5

notebook for

for what we just saw actual code.

* QuickSort(A):

* If len(A) <=1:
* return

* Pick some x = A[i] at random. Call this the pivot.

* PARTITION the rest of A into: Aecurme that all elements
* L (less than x) and e /g
e R (greater than X) that’s not the case?

e Replace A with [L, x, R] (thatis, rearrange A in this order)

* QuickSort(L)

° QUiCkSOI"t(R) How would you do all this in-place?

Without hurting the running time?
(We'll see later...)

Running time?
* T(n) =T(LD +T(R]) + 0(n)

* In an ideal world...
* if the pivot splits the array exactly in half...

T =2-7(5)+ 0 vtopia X

 \We’ve seen that a bunch:
T(n) = 0(nlog(n)).

The expected running time of
QuickSort is O(nlog(n)).

Proof:

n—1

- E[ILI = E[IRI = "3

* The expected number of items on each side of the pivot is half of
the things.

 |f that occurs,
the running timeisT(n) = O(nlog(n)).
* Therefore,

the expected running time is O (n log(n)).

*Disclaimer: this proof is wrong.

Red flag

Slow [Sort(A):
() We can use the same argument
* Iflen(A) <= 1: to prove something false.
* return

Pick the pivot x to be either max(A) or min(A), randomly
* \\ We can find the max and min in O(n) time

PARTITION the rest of A into:
* L (less than x) and

°R

(greater than x)

Replace A with [L, x, R] (thatis, rearrange A in this order)

Slow

Sort(L)

Slow

Sort(R) e Same recurrence relation:
T(n) =T(L) +T(R])+ 0(n)
* But now, one of |L| or |R] is n-1.
* Running time is O(n?), with probability 1.

The expected running time of
SlowSort is O(nlog(n)).

Proof:

+ E[ILI] = E[IRI] = "~

* The expected number of items on each side of the pivot is half of
the things.

 |f that occurs,
the running timeisT(n) = O(nlog(n)).
* Therefore,

the expected running time is O (n log(n)).

*Disclaimer: this proof is wrong.

What’s wrong?
* E[ILI] = E[IRI] = "~

* The expected number of items on each side of the pivot is half of
the things.

 |f that occurs,
the running timeisT(n) = O0(nlog(n)).
* Therefore,

the expected running time is O (nlog(n)).

This argument says:

That’s not how _
expectations work! T(n) = some function of |L| and |R|/

ﬂ E|T(n)] = E[some function of |L| and |R|]J

E[T(n)] = some function of E|L| and E|R| x

Plucky the Pedantic Penguin

Instead

 We'll have to think a little harder about how the
algorithm works.

Next goal:

* Get the same
conclusion, correctly!

| Tempting but _, % Rigorous
incorrect % Bl analysis
argument | RN

Example of recursive calls

e[S a]]a] wosesne
5 Partition on either side of 5

Recurse on [3142]
and pick 3 as a pivot.

Partition
around 3.

Recurse on
[12] and
pick 2 as a
pivot.

partition
around 2.

Recurse on
[1] (done).

=
N
S

2|4

[4] (done).

U1
N
o

5 6

6
5 6
5 6

Recurse on [76] and
pick 6 as a pivot.

7/

~

Partition on
either side of 6

Recurse on [7], it has
size 1 so we’re done.

How long does this take to run?

* We will count the number of comparisons that the

algorithm does.
e This turns out to give us a good idea of the runtime. (Not obvious).

* How many times are any two items Compared?

E In the example before,
everything was compared
to 5 once in the first

n 5 E step....and never again.

5 But not everything was
compared to 3.

5 was, and so were 1,2 and 4.

sl [s] (6

Each pair of items is compared
either O or 1 times. Which is it?

Let’s assume that the numbers
H in the array are actually the

numbers 1,...,n

Of course this doesn’t have to be the case! It'sagood &=
exercise to convince yourself that the analysis will still go
through without this assumption. (Or see CLRS)
* Whether or not a,b are compared is a random variable, that depends on the
choice of pivots. Let’s say
|1 if a and b are ever compared
Xap = faand b d
0 if aan are never compare
* Inthe previous example X, ; = 1, because item 1 and item 5 were compared.

* But X3, =0, because item 3 and item 6 were NOT compared.
e Both of these depended on our random choice of pivot!

Counting comparisons

* The number of comparisons total during the algorithm is

> Y

a=1b=a+1

* The expected number of comparisons is

n n n

a=1b=a+1 a=1b=a+1

using linearity of expectations.

expected number of comparisons:
n n

Counting comparisons),), i

a=1b=a+1

* So we just need to figure out E[X, , |

°E[Xb]—P(Xab 1)1+P(Xab—0) 0=P(X,,=1)
 (using definition of expectation)

* So we need to figure out

P(X, , = 1) = the probability that a and b are ever compared.
v v
Say thata =2 and b =6. What is the probability
E that 2 and 6 are ever compared?
This is exactly the probability that either 2 or 6 is first
6 3 5 2 4 picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be
3 1 2 4 5 7 separated and never see each other again.

Counting comparisons

P(X.p=1)
= probability a,b are ever compared
= probability that one of a,b are picked first out of
all of the b — a +1 numbers between them.

2 choices out of b-a+1...
_ 2
b-a+1

v v

All together now...

Expected number of comparisons

[n Zn] This is the expected number of
a=14b=a+1 a b comparisons throughout the algorithm

° — —1 Zb a+1 [a, b] linearity of expectation

°o — :1 Z S P(Xa,b - 1) definition of expectation

2

-1 Zb a+1 P the reasoning we just did

* This is a big nasty sum, but we can do it.
* We get that this is less than 2n In(n).

Do this sum!

b

Ollie the over-achieving ostrich

Almost done

 We saw that E[number of comparisons | = O(n log(n))
* |s that the same as E[running time |?

* In this case, yes. * QuickSort(A):
e Iflen(A)<=1:
* return
e Pick some x = A[i] at random. Call this the pivot.

 We need to argue that :
* PARTITION the rest of A into:

the running time is * L (less than x) and
. . * R (greater than x)
dominated by the time . ![qﬁplacg A)with [L, x, R] (thatis, rearrange A in
. is order
to do comparisons. . Quicksort(l)

* QuickSort(R)

* (See CLRS for details).

Conclusion

* Expected running time of QuickSort is O(nlog(n))

Rigorous
analysis

Bonus material in the lecture
notes: a second way to show this!

Worst-case running time

e Suppose that an adversary is choosing the
“random” pivots for you.

* Then the running time might be O(n?)
e Eg, they’d choose to implement SlowSort
* |n practice, this doesn’t usually happen.

A note on implementation

* This pseudocode is easy to understand and analyze, but
is not a good way to implement this algorithm.

e QuickSort(A):
* Iflen(A)<=1:
* return

* Pick some x = A[i] at random. Call this the pivot.
* PARTITION the rest of A into:

* L(less than x) and

* R (greater than x)

* Replace A with [L, x, R] (thatis, rearrange A in this order)
* QuickSort(L)
* QuickSort(R)

* Instead, implement it in-place (without separate L and R)
* You may have seen this in 106b.

* Here are some Hungarian Folk Dancers showing you how it’s done:
https://www.youtube.com/watch?v=ywWBy6J5gz8

e Check out IPython notebook for Lecture 5 for two different ways.

A better way to do Partition

Pivot

Choose it randomly, then swap it
3 7/ 1 3 5 6 4 with the last one, so it’s at the end.

3817 1‘3‘5‘6‘4‘ Initialize

(’ Swap!

IandI

StepI forward.

107 8|35

6 ‘ 4 ‘ When I sees something
smaller than the pivot,

1|38
1|38
[1]3]4

7

7

7

swap the things ahead

of the bars and
increment both bars.

5164
5
56 8

Repeat till the end, then
6 :

put the pivot in the right

\place.

See CLRS or Lecture 5 IPython
notebook for pseudocode/real code.

QuickSort vs.
smarter QuickSort vs.

@ python
Mergesort? =

See IPython notebook for Lecture 5
* All seem pretty comparable...

Hoare Partition is a

MergeSort v. QuickSort different way of doing it
(c.f. CLRS Problem 7-1),
=== myDumbMergeSort ,/" which you might have
20 1 = myDumbQuickSort o seen elsewhere. You are
- = inPlaceQuickSort, CLRS Partition /’ not responsible for
----- inPlaceQuickSort, Hoare Partition 2 . .:‘.’- knowing it for this class.
15 - -
w
(=
R T
E The slicker in-place
ones use less space,
5 - and also are a smidge
faster on my system.
0 -

L]

0 500 1000 1500 2000 2500 3000

*In fact, | don’t know how to do this if

QuickSort vs MergeSort o e i it

C
QuickSort (random pivot) MergeSort (deterministic) §
... * Worst-case: O(n?) . §
Running time [sweaieds Ol ol Worst-case: O(n log(n)) ;
=.
e Java for primitive types
e Caqgsort » Java for objects
* Unix * Perl
° gt+

Not easily* if you want to
In-Place? maintain both stability and
el)| Yes, pretty easily runtime.

extra memory) (But pretty easily if you can
sacrifice runtime).

(wexa uo 10N)
"unj Joj isnf ase asay]

Stable? No Yes
Good cache locality if Merge step is really
SR EE implemented for arrays efficient with linked lists

Today

* How do we analyze randomized algorithms?

* A few randomized algorithms for sorting.

* BogoSort
e QuickSort

* BogoSort is a pedagogical tool.
¢ QUiCksort IS importa nt to know. (in contrast with BogoSort...)

@

Recap

Recap

* How do we measure the runtime of a randomized
algorithm?)
* Expected runtime @
* Worst-case runtime O

* QuickSort (with a random pivot) is a randomized
sorting algorithm.
* In many situations, QuickSort is nicer than MergeSort.
* In many situations, MergeSort is nicer than QuickSort.

different implementations of lists A (array vs linked list, etc). What'’s faster?
(This is an exercise best done in C where you have a bit more control than in Python).

Code up QuickSort and MergeSort in a few different languages, with a few l

Ollie the over-achieving ostrich

Next time

* Can we sort faster than ®(nlog(n))??

Before next time

* Pre-lecture exercise for Lecture 6.
* Can we sort even faster than QuickSort/MergeSort?

https://xkcd.com/1185/

(h/t Dana)

INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LIST):
IF LENGH(LIST) < 2:
RETORN LIST
PVOT = INT (LENGTH(LIST) / 2)
A= mmmmmasoer(usﬂ:mvoﬂ;
B = HALFHEARTEDMERGE SORT (LisT [PMVOT]
// UOMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMNZED BOGOSORT
/l RONS IN O(N LoGN)
FOR N FROM 1 TO LOG(LENGTH(LIST)):
SHUFFLE(LST):
IF 15SORTED (LIST):
RETORN LisT
RETURN “KERNEL PRGE FAULT (ERROR (ODE: 2)"

DEFNE JOBINERAEW QUICKSORT (LisT):
0K S0 You CHOOSE A PVOT
THEN DIVIDE THE ST IN HALF
FOR EACH HALF:
(HECX T SEE F IT% SORED
NO WAIT ITDOESNT MATTER
COMPARE ERCH ELEMENT To THE PWOT
THE BIGGER ONES GO IN ANEBJ ST
THE EQUAL ONES GO INTD, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS UST A
THE NEW ONE 15 LIST B
PUT THE B1G ONES INTO UST B
NOW TAKE THE SECOND (IST
CALL IT LS, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
[TJUST RECURSMELY CAUS ITSELF
UNTIL BOTH LS5 ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM T ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LsT):
IF [SSORTED (LIST):
RETURN LIST
FOR N FROM 1 T© 10000:
PINOT =RANDOM (0, LENGTH(L1ST))
UST = UsT [Pvor:]+ LIST :PvoT]
IF I5S0RTED(LST):
RETURN UST
IF ISSORTED(LST):
RETURN UST:
IF 18SORTED (LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF 1ISSORTED (LIST): // COME ON COME ON
RETURN UST
/| OH JEEZ
// T1 GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5")
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SysteM("RM -RF /%)
SYSTEM("RD /5 /Q C:\+") //PORTABILITY
RETORN [1,2, 3,4, 5]

