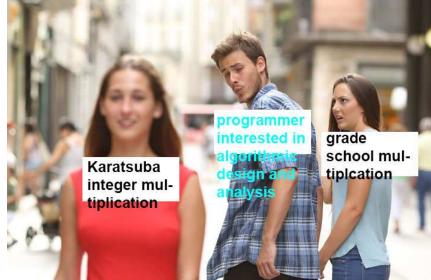
## Lecture 5

#### Randomized algorithms and QuickSort

#### Announcements

- HW1 is graded! Thanks TAs for **super**-fast turnaround!!
- HW2 is posted! Due Friday.
- Please send any OAE letters to Jessica Su (<u>stysu@stanford.edu</u>) by Friday.
- Garrick attempts to make my cultural references more up-to-date:

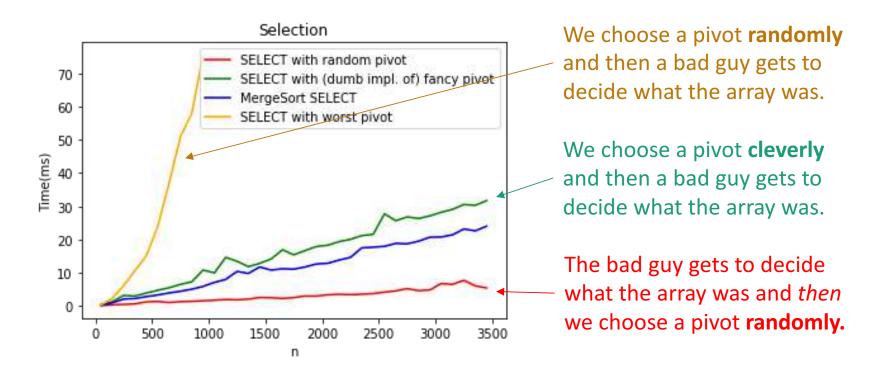


Thanks

Garrick!

#### Last time

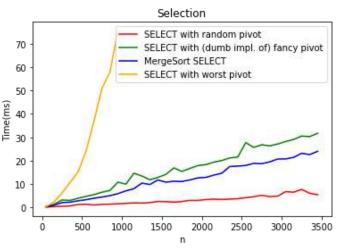
- We saw a divide-and-conquer algorithm to solve the Select problem in time O(n) in the worst-case.
- It all came down to picking the pivot...



#### Randomized algorithms

- We make some random choices during the algorithm.
- We hope the algorithm works.
- We hope the algorithm is fast.

# e.g., **Select** with a random pivot is a randomized algorithm.



It was actually always correct

Looks like it's probably fast but not always.



## Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
  - BogoSort
  - QuickSort



- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

How do we measure the runtime of a randomized algorithm?

#### Scenario 1

- Bad guy picks the input.
- 2. You run your randomized algorithm.

#### Scenario 2

1. Bad guy picks the input.

2. Bad guy chooses the randomness (fixes the dice)

- In Scenario 1, the running time is a random variable.
  - It makes sense to talk about expected running time.
- In Scenario 2, the running time is not random.
  - We call this the **worst-case running time** of the randomized algorithm.

## Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
  - BogoSort
  - QuickSort



- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

- BogoSort(A):
  - While true:
    - Randomly permute A.
    - Check if A is sorted.
    - If A is sorted, return A.



Ollie the over-achieving ostrich

- What is the expected running time?
  - You analyzed this in your pre-lecture exercise [also on board now]

- What is the worst-case running time?
  - [on board]

## Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.

  - BogoSortQuickSort



- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)

#### a better randomized algorithm: QuickSort

- Runs in expected time O(nlog(n)).
- Worst-case runtime O(n<sup>2</sup>).
- In practice often more desirable.
  - (More later)

### Quicksort

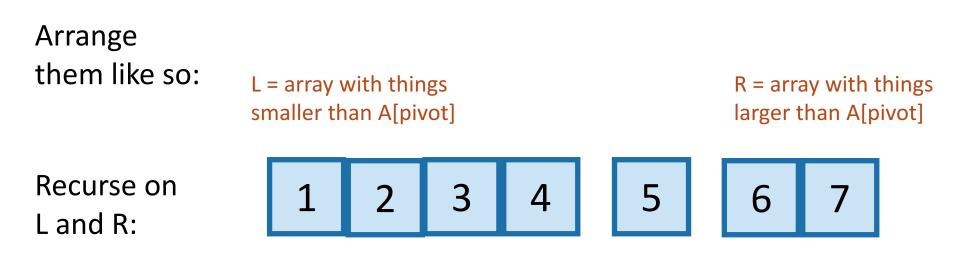
We want to sort this array.

First, pick a "pivot." Do it at random.

Next, partition the array into "bigger than 5" or "less than 5"



This PARTITION step takes time O(n). (Notice that we don't sort each half). [same as in SELECT]



#### PseudoPseudoCode for what we just saw

IPython Lecture 5 notebook for actual code.

- QuickSort(A):
  - If len(A) <= 1:
    - return
  - Pick some x = A[i] at random. Call this the pivot.
  - PARTITION the rest of A into:
    - L (less than x) and
    - R (greater than x)

Assume that all elements of A are distinct. How would you change this if that's not the case?



- Replace A with [L, x, R] (that is, rearrange A in this order)
- QuickSort(L)
- QuickSort(R)

How would you do all this in-place? Without hurting the running time? (We'll see later...)



#### Running time?

- T(n) = T(|L|) + T(|R|) + O(n)
- In an ideal world...
  - if the pivot splits the array exactly in half...

 $T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$ 



• We've seen that a bunch:

 $T(n) = O(n \log(n)).$ 

The expected running time of QuickSort is O(nlog(n)).

#### **Proof:**\*

• 
$$E[|L|] = E[|R|] = \frac{n-1}{2}$$
.

- The expected number of items on each side of the pivot is half of the things.
- If that occurs,

the running time is  $T(n) = O(n \log(n))$ .

• Therefore,

the expected running time is  $O(n \log(n))$ .

\*Disclaimer: this proof is wrong.





• **If** len(A) <= 1:

We can use the same argument to prove something false.

- return
- Pick the pivot x to be either max(A) or min(A), randomly
  - \\ We can find the max and min in O(n) time
- PARTITION the rest of A into:
  - L (less than x) and
  - R (greater than x)
- Replace A with [L, x, R] (that is, rearrange A in this order)
- Slow Sort(L)
- Slow Sort(R)

- Same recurrence relation: T(n) = T(|L|) + T(|R|) + O(n)
- But now, one of |L| or |R| is n-1.
- Running time is O(n<sup>2</sup>), with probability 1.

# The expected running time of SlowSort is O(nlog(n)).

#### **Proof:**\*

• 
$$E[|L|] = E[|R|] = \frac{n-1}{2}$$
.

- The expected number of items on each side of the pivot is half of the things.
- If that occurs,

the running time is  $T(n) = O(n \log(n))$ .

• Therefore,

the expected running time is  $O(n \log(n))$ .

#### \*Disclaimer: this proof is wrong.

# What's wrong?

• 
$$E[|L|] = E[|R|] = \frac{n-1}{2}$$
.

- The expected number of items on each side of the pivot is half of the things.
- If that occurs,

the running time is  $T(n) = O(n \log(n))$ .

• Therefore,

the expected running time is  $O(n \log(n))$ .

This argument says:

That's not how expectations work!

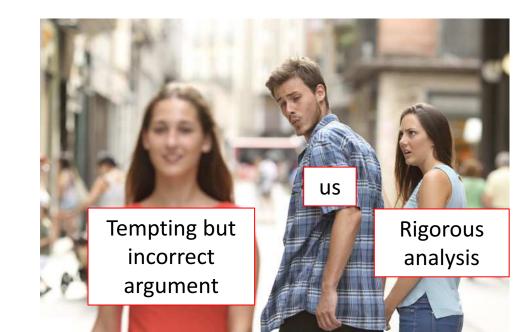


Plucky the Pedantic Penguin

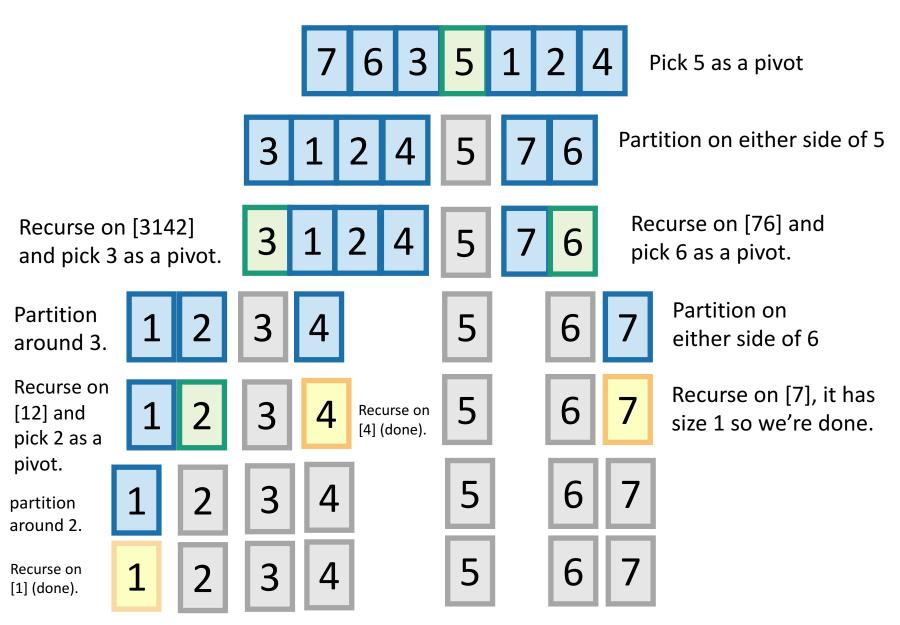
$$T(n) = \text{ some function of } |L| \text{ and } |R|$$
$$\mathbb{E}[T(n)] = \mathbb{E}[\text{some function of } |L| \text{ and } |R|]$$
$$\mathbb{E}[T(n)] = \text{some function of } \mathbb{E}|L| \text{ and } \mathbb{E}|R|$$

#### Instead

- We'll have to think a little harder about how the algorithm works.
- Next goal:
- Get the same conclusion, correctly!

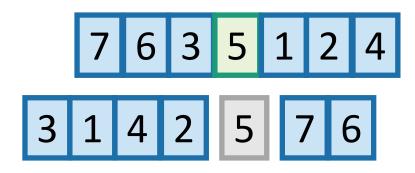


#### Example of recursive calls



#### How long does this take to run?

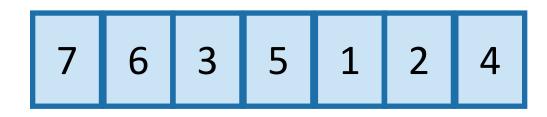
- We will count the number of comparisons that the algorithm does.
  - This turns out to give us a good idea of the runtime. (Not obvious).
- How many times are any two items compared?



In the example before, everything was compared to 5 once in the first step....and never again.

But not everything was compared to 3. 5 was, and so were 1,2 and 4. But not 6 or 7.

# Each pair of items is compared either 0 or 1 times. Which is it?



Let's assume that the numbers in the array are actually the numbers 1,...,n

Of course this doesn't have to be the case! It's a good exercise to convince yourself that the analysis will still go through without this assumption. (Or see CLRS)



 Whether or not a,b are compared is a random variable, that depends on the choice of pivots. Let's say

 $X_{a,b} = \begin{cases} 1 & if a and b are ever compared \\ 0 & if a and b are never compared \end{cases}$ 

- In the previous example  $X_{1,5} = 1$ , because item 1 and item 5 were compared.
- But  $X_{3,6} = 0$ , because item 3 and item 6 were NOT compared.
- Both of these depended on our random choice of pivot!

#### Counting comparisons

• The number of comparisons total during the algorithm is

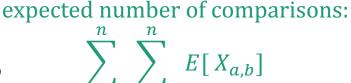
$$\sum_{a=1}^{n} \sum_{b=a+1}^{n} X_{a,b}$$

• The expected number of comparisons is

$$E\left[\sum_{a=1}^{n}\sum_{b=a+1}^{n}X_{a,b}\right] = \sum_{a=1}^{n}\sum_{b=a+1}^{n}E[X_{a,b}]$$

using linearity of expectations.

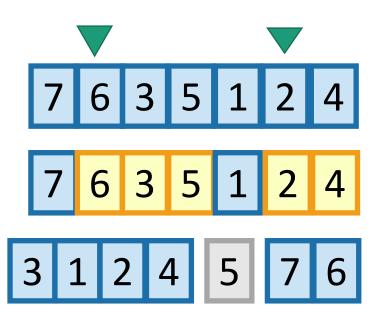
# Counting comparisons



 $=1 \ b = a + 1$ 

- So we just need to figure out E[ X<sub>a,b</sub> ]
- $E[X_{a,b}] = P(X_{a,b} = 1) \cdot 1 + P(X_{a,b} = 0) \cdot 0 = P(X_{a,b} = 1)$ 
  - (using definition of expectation)
- So we need to figure out

 $P(X_{a,b} = 1)$  = the probability that a and b are ever compared.



Say that a = 2 and b = 6. What is the probability that 2 and 6 are ever compared?

This is exactly the probability that either 2 or 6 is first picked to be a pivot out of the highlighted entries.

If, say, 5 were picked first, then 2 and 6 would be separated and never see each other again.

#### Counting comparisons

$$P(X_{a,b}=1)$$

= probability a,b are ever compared

= probability that one of a,b are picked first out of all of the b - a + 1 numbers between them.

2 choices out of b-a+1...

$$=\frac{2}{b-a+1}$$

#### All together now... Expected number of comparisons

• 
$$E\left[\sum_{a=1}^{n}\sum_{b=a+1}^{n}X_{a,b}\right]$$

• =  $\sum_{a=1}^{n} \sum_{b=a+1}^{n} E[X_{a,b}]$ 

• =  $\sum_{a=1}^{n} \sum_{b=a+1}^{n} \frac{2}{b-a+1}$ 

- =  $\sum_{a=1}^{n} \sum_{b=a+1}^{n} P(X_{a,b} = 1)$
- This is the expected number of comparisons throughout the algorithm

linearity of expectation

definition of expectation

the reasoning we just did

- This is a big nasty sum, but we can do it.
- We get that this is less than 2n ln(n).

Do this sum!



#### Almost done

- We saw that E[ number of comparisons ] = O(n log(n))
- Is that the same as E[ running time ]?
- In this case, yes.
- We need to argue that the running time is dominated by the time to do comparisons.
- (See CLRS for details).

- QuickSort(A):
  - If len(A) <= 1:
    - return
  - Pick some x = A[i] at random. Call this the pivot.
  - PARTITION the rest of A into:
    - L (less than x) and
    - R (greater than x)
  - Replace A with [L, x, R] (that is, rearrange A in this order)
  - QuickSort(L)
  - QuickSort(R)

#### Conclusion

Expected running time of QuickSort is O(nlog(n))



Bonus material in the lecture notes: a second way to show this!

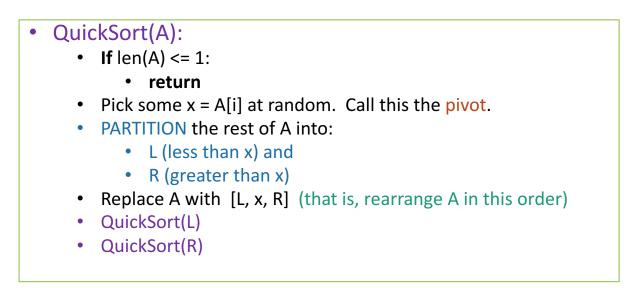
#### Worst-case running time

- Suppose that an adversary is choosing the "random" pivots for you.
- Then the running time might be  $O(n^2)$ 
  - Eg, they'd choose to implement SlowSort
  - In practice, this doesn't usually happen.

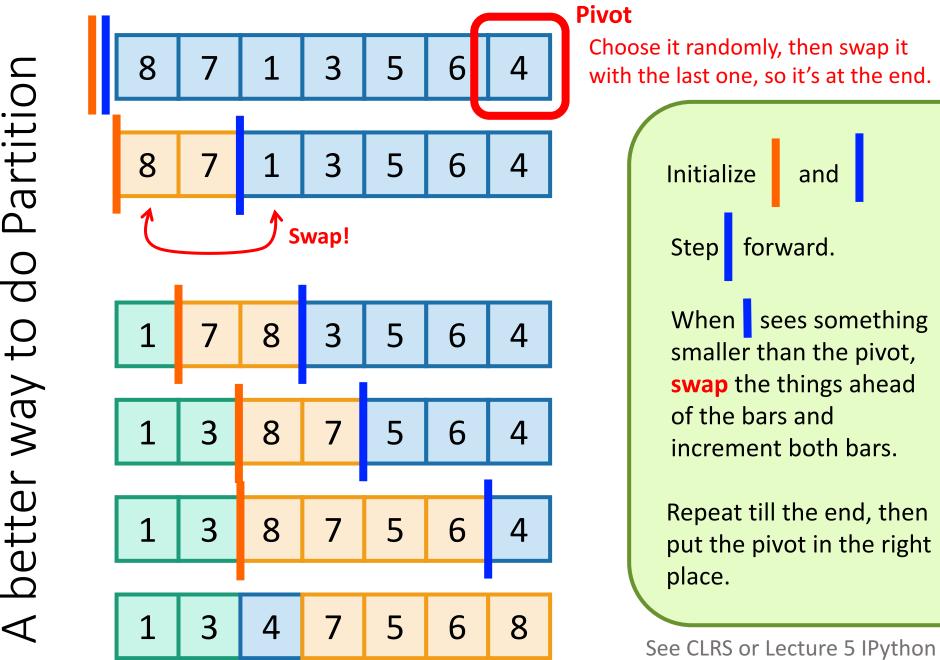


#### A note on implementation

• This pseudocode is easy to understand and analyze, but is not a good way to implement this algorithm.



- Instead, implement it in-place (without separate L and R)
  - You may have seen this in 106b.
  - Here are some Hungarian Folk Dancers showing you how it's done: <u>https://www.youtube.com/watch?v=ywWBy6J5gz8</u>
  - Check out IPython notebook for Lecture 5 for two different ways.



notebook for pseudocode/real code.

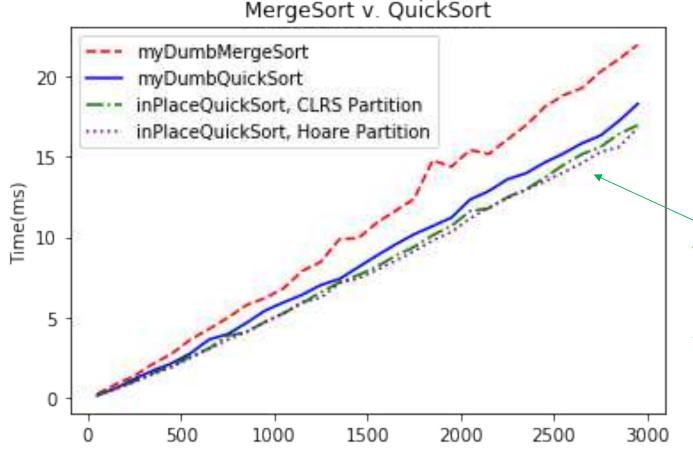
#### QuickSort vs. smarter QuickSort vs. Mergesort?





#### See IPython notebook for Lecture 5

• All seem pretty comparable...



Hoare Partition is a different way of doing it (c.f. CLRS Problem 7-1), which you might have seen elsewhere. You are not responsible for knowing it for this class.

The slicker in-place ones use less space, and also are a smidge faster on my system.

## QuickSort vs MergeSort

\*In fact, I don't know how to do this if you want O(nlog(n)) worst-case runtime and stability.

|                                               | QuickSort (random pivot)                                                                 | MergeSort (deterministic)                                                                                                     | Under           |         |
|-----------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|
| Running time                                  | <ul> <li>Worst-case: O(n<sup>2</sup>)</li> <li>Expected: O(n log(n))</li> </ul>          | Worst-case: O(n log(n))                                                                                                       | Inderstand this |         |
| Used by                                       | <ul> <li>Java for primitive types</li> <li>C qsort</li> <li>Unix</li> <li>g++</li> </ul> | <ul><li>Java for objects</li><li>Perl</li></ul>                                                                               |                 | -1      |
| In-Place?<br>(With O(log(n))<br>extra memory) | Yes, pretty easily                                                                       | Not easily* if you want to<br>maintain both stability and<br>runtime.<br>(But pretty easily if you can<br>sacrifice runtime). | (Not on exam).  |         |
| Stable?                                       | No                                                                                       | Yes                                                                                                                           | m).             | or fiin |
| Other Pros                                    | Good cache locality if implemented for arrays                                            | Merge step is really<br>efficient with linked lists                                                                           |                 |         |

## Today

- How do we analyze randomized algorithms?
- A few randomized algorithms for sorting.
  - BogoSort
  - QuickSort



- BogoSort is a pedagogical tool.
- QuickSort is important to know. (in contrast with BogoSort...)



#### Recap

- How do we measure the runtime of a randomized algorithm?
  - Expected runtime
  - Worst-case runtime



- QuickSort (with a random pivot) is a randomized sorting algorithm.
  - In many situations, QuickSort is nicer than MergeSort.
  - In many situations, MergeSort is nicer than QuickSort.

Code up QuickSort and MergeSort in a few different languages, with a few different implementations of lists A (array vs linked list, etc). What's faster? (This is an exercise best done in C where you have a bit more control than in Python).



#### Next time

• Can we sort faster than Θ(nlog(n))??

#### Before next time

- **Pre-lecture exercise** for Lecture 6.
  - Can we sort even faster than QuickSort/MergeSort?

#### https://xkcd.com/1185/

#### INEFFECTIVE SORTS

| (h/t Dana) | DEFINE HALFHEARTED MERGESORT (LIST):<br>IF LENGTH (LIST) < 2:<br>RETURN LIST<br>PIVOT = INT (LENGTH (LIST) / 2)<br>A = HALFHEARTED MERGESORT (LIST[:PIVOT])<br>B = HALFHEARTED MERGESORT (LIST[PIVOT:])<br>// UMMMMM<br>RETURN [A, B] // HERE. SORRY.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEFINE FASTBOGOSORT(LIST):<br>// AN OPTIMIZED BOGOSORT<br>// RUNS IN O(NLOGN)<br>FOR N FROM 1 TO LOG(LENGTH(LIST)):<br>SHUFFLE(LIST):<br>IF ISSORTED(LIST):<br>RETURN LIST<br>RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | DEFINE JOBINITERNEWQUICKSORT (LIST):<br>OK SO YOU CHOOSE A PIVOT<br>THEN DIVIDE THE LIST IN HALF<br>FOR EACH HALF:<br>CHECK TO SEE IF IT'S SORTED<br>NO, WAIT, IT DOESN'T MAITTER<br>COMPARE EACH ELEMENT TO THE PIVOT<br>THE BIGGER ONES GO IN A NEW LIST<br>THE BIGGER ONES GO IN TO, UH<br>THE SECOND LIST FROM BEFORE<br>HANG ON, LET ME NAME THE LISTS<br>THIS IS UST A<br>THE NEW ONE IS LIST B<br>PUT THE BIG ONES INTO LIST B<br>NOW TAKE THE SECOND LIST<br>CALL IT LIST, UH, A2<br>WHICH ONE WAS THE PIVOT IN?<br>SCRATCH ALL THAT<br>IT JUST RECURSIVELY CAUS ITSELF<br>UNTIL BOTH LISTS ARE EMPTY<br>RIGHT?<br>NOT EMPTY, BUT YOU KNOW WHAT I MEAN<br>AM I ALLOWED TO USE THE STANDARD LIBRARIES? | DEFINE PANICSORT(UST):<br>IF ISSORTED (LIST):<br>RETURN LIST<br>FOR N FROM 1 TO 10000:<br>PIVOT = RANDOM(0, LENGTH(LIST))<br>LIST = LIST [PIVOT:] + LIST [:PIVOT]<br>IF ISSORTED(UST):<br>RETURN LIST<br>IF ISSORTED(LIST):<br>RETURN UST:<br>IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING<br>RETURN LIST<br>IF ISSORTED(LIST): //COME ON COME ON<br>RETURN LIST<br>// OH JEEZ<br>// I'M GONNA BE IN SO MUCH TROUBLE<br>LIST = []<br>SYSTEM("SHUTDOWN -H +5")<br>SYSTEM("RM -RF -/")<br>SYSTEM("RM -RF -/")<br>SYSTEM("RM -RF /")<br>SYSTEM("RM -RF /")<br>SYSTEM("RM -RF /")<br>SYSTEM("RD /S /Q C:\*") //PORTABILITY<br>RETURN [1, 2, 3, 4, 5] |