
Lecture	5
Randomized	algorithms and	QuickSort

Announcements

• HW1	is	graded!		Thanks	TAs	for	super-fast	turnaround!!

• HW2	is	posted!		Due	Friday.

• Please	send	any	OAE	letters	to	Jessica	Su	
(stysu@stanford.edu) by	Friday.

• Garrick	attempts	to	make	my	cultural	references	more	
up-to-date:

Thanks	

Garrick!

Last	time

• We	saw	a	divide-and-conquer	algorithm	to	solve	the	
Select problem	in	time	O(n)	in	the	worst-case.

• It	all	came	down	to	picking	the	pivot…

We	choose	a	pivot	randomly	

and	then	a	bad	guy	gets	to	

decide	what	the	array	was.

We	choose	a	pivot	cleverly

and	then	a	bad	guy	gets	to	

decide	what	the	array	was.

The	bad	guy	gets	to	decide	

what	the	array	was	and	then	

we	choose	a	pivot	randomly.

Randomized	algorithms

• We	make	some	random	choices	during	the	algorithm.

• We	hope	the	algorithm	works.

• We	hope	the	algorithm	is	fast.

e.g.,	Select with	a	random	pivot	

is	a	randomized	algorithm.

Looks	like	

it’s	probably	

fast	but	not	

always.

It	was	actually	

always	correct

Today

• How	do	we	analyze	randomized	algorithms?

• A	few	randomized	algorithms	for	sorting.

• BogoSort

• QuickSort

• BogoSort is	a	pedagogical	tool.

• QuickSort is	important	to	know.		(in	contrast	with	BogoSort…)

How	do	we	measure	the	runtime	
of	a	randomized	algorithm?

Scenario	1

1. Bad	guy	picks	the	input.

2. You	run	your	randomized	
algorithm.

Scenario	2

1. Bad	guy	picks	the	input.

2. Bad	guy	chooses	the	
randomness	(fixes	the	
dice)

• In	Scenario	1,	the	running	time	is	a	random	variable.

• It	makes	sense	to	talk	about	expected	running	time.

• In	Scenario	2,	the	running	time	is	not	random.
• We	call	this	the	worst-case	running	time of	the	randomized	algorithm.

Today

• How	do	we	analyze	randomized	algorithms?

• A	few	randomized	algorithms	for	sorting.

• BogoSort

• QuickSort

• BogoSort is	a	pedagogical	tool.

• QuickSort is	important	to	know.		(in	contrast	with	BogoSort…)

• BogoSort(A):
• While true:

• Randomly	permute	A.

• Check	if	A	is	sorted.

• If A	is	sorted,	return A.

• What	is	the	expected	running	time?	
• You	analyzed	this	in	your	pre-lecture	exercise	[also	on	board	now]

• What	is	the	worst-case	running	time?
• [on	board]

Example	
Suppose	that	you	can	draw	a	random	

integer	in	{1,…,n}	in	time	O(1).		How	would	

you	randomly	permute	an	array	in-place	in	

time	O(n)?		

Ollie	the	over-achieving	ostrich

Today

• How	do	we	analyze	randomized	algorithms?

• A	few	randomized	algorithms	for	sorting.

• BogoSort

• QuickSort

• BogoSort is	a	pedagogical	tool.

• QuickSort is	important	to	know.		(in	contrast	with	BogoSort…)

a	better	randomized	algorithm:	

QuickSort

• Runs	in	expected	time	O(nlog(n)).

• Worst-case	runtime	O(n2).

• In	practice	often	more	desirable.

• (More	later)

Quicksort

7 6 3 5 1 2 4

We	want	to	sort	

this	array.

First,	pick	a	“pivot.”

Do	it	at	random.

random	pivot!
Next,	partition	the	array	into	

“bigger	than	5”	or	“less	than	5”

7 6 3

This	PARTITION	step	

takes	time	O(n).		

(Notice	that	we	

don’t	sort	each	half).

[same	as	in	SELECT]

5 1 2 4

L	=	array	with	things	

smaller	than	A[pivot]

R	=	array	with	things	

larger	than	A[pivot]

Arrange	

them	like	so:

Recurse on	

L	and	R:
763 51 42

PseudoPseudoCode
for	what	we	just	saw

• QuickSort(A):

• If	len(A)	<=	1:

• return

• Pick	some	x	=	A[i]	at	random.		Call	this	the	pivot.

• PARTITION the	rest	of	A	into:	

• L	(less	than	x)	and	

• R	(greater	than	x)

• Replace	A	with		[L,	x,	R]		(that	is,	rearrange	A	in	this	order)

• QuickSort(L)	

• QuickSort(R)	

IPython Lecture	5	

notebook	for	

actual	code.

How	would	you	do	all	this	in-place?

Without	hurting	the	running	time?

(We’ll	see	later…)

Assume	that	all	elements	

of	A	are	distinct.		How	

would	you	change	this	if	

that’s	not	the	case?

Running	time?

• 𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛
• In	an	ideal	world…

• if	the	pivot	splits	the	array	exactly	in	half…

𝑇 𝑛 = 2 ⋅ 𝑇 𝑛
2 + 𝑂 𝑛

• We’ve	seen	that	a	bunch:𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).

The	expected	running	time	of	
QuickSort is	O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = 345
6 .

• The	expected	number	of	items	on	each	side	of	the	pivot	is	half	of	
the	things.

• If	that	occurs,	

the	running	time	is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Therefore,

the	expected	running	time	is	𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer:	this	proof	is	wrong.

*

Red	flag
• QuickSort(A):

• If	len(A)	<=	1:

• return

• Pick	some	x	=	A[i]	at	random.		Call	this	the	pivot.

• PARTITION the	rest	of	A	into:	

• L	(less	than	x)	and	

• R	(greater	than	x)

• Replace	A	with		[L,	x,	R]		(that	is,	rearrange	A	in	this	order)

• QuickSort(L)	

• QuickSort(R)	 • Same	recurrence	relation:𝑇 𝑛 = 𝑇 |𝐿| + 𝑇 𝑅 + 	𝑂 𝑛
• But	now,	one	of	|L|	or	|R|	is	n-1.

• Running	time	is	O(n2),	with	probability	1.

We	can	use	the	same	argument	

to	prove	something	false.

• Pick	the	pivot	x	to	be	either	max(A)	or	min(A),	randomly
• \\ We	can	find	the	max	and	min	in	O(n)	time

Slow

Slow

Slow

The	expected	running	time	of	
SlowSort is	O(nlog(n)).

• 𝐸 𝐿 = 	𝐸 𝑅 = 345
6 .

• The	expected	number	of	items	on	each	side	of	the	pivot	is	half	of	
the	things.

• If	that	occurs,	

the	running	time	is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Therefore,

the	expected	running	time	is	𝑂(𝑛 log(𝑛)).

Proof:

*Disclaimer:	this	proof	is	wrong.

*

What’s	wrong?

• 𝐸 𝐿 = 	𝐸 𝑅 = 345
6 .

• The	expected	number	of	items	on	each	side	of	the	pivot	is	half	of	
the	things.

• If	that	occurs,	

the	running	time	is 𝑇(𝑛) 	= 	𝑂(𝑛 log(𝑛)).
• Therefore,

the	expected	running	time	is	𝑂(𝑛 log(𝑛)).

Plucky	the	Pedantic	Penguin

That’s	not	how	

expectations	work! 				𝑇 𝑛 		= 					some	function	of	 𝐿 	and	|𝑅|
𝔼 𝑇 𝑛 = 𝔼 some	function	of	 𝐿 	and	|𝑅|	
𝔼 𝑇 𝑛 = some	function	of	𝔼 𝐿 	and	𝔼|𝑅|

This	argument	says:

Instead

• We’ll	have	to	think	a	little	harder	about	how	the	
algorithm	works.

Next	goal:

• Get	the	same	
conclusion,	correctly!

Tempting	but	

incorrect	

argument

Rigorous	

analysis

us

Example	of	recursive	calls

7 6 3 5 1 2 4

7 63 51 2 4

3 1 2 4 7 6

31 42

5

5 76

1 2 3 4 5 76

Pick	5	as	a	pivot

Partition	on	either	side	of	5

Recurse on	[76]	and	

pick	6	as	a	pivot.

Partition	on	

either	side	of	6

Recurse on	[3142]	

and	pick	3	as	a	pivot.

Recurse on	[7],	it	has	

size	1	so	we’re	done.

Partition	

around	3.

Recurse on	

[4]	(done).

Recurse on	

[12]	and	

pick	2	as	a	

pivot.

partition	

around	2.
1 2

Recurse on	

[1]	(done). 1

3 4 5 76

2 3 4 5 76

How	long	does	this	take	to	run?

• We	will	count	the	number	of	comparisons that	the	
algorithm	does.
• This	turns	out	to	give	us	a	good	idea	of	the	runtime.	(Not	obvious).

• How	many	times	are	any	two	items	compared?

7 6 3 5 1 2 4

7 63 51 4 2

In	the	example	before,	

everything	was	compared	

to	5	once	in	the	first	

step….and	never	again.

3 1 2 4 7 6

31 42

5

5 76

But	not	everything	was	

compared	to	3.		

5 was,	and	so	were	1,2	and	4.		

But	not	6	or	7.

Each	pair	of	items	is	compared	
either	0	or	1	times.		Which	is	it?

7 6 3 5 1 2 4
Let’s	assume	that	the	numbers	

in	the	array	are	actually	the	

numbers	1,…,n

• Whether	or	not	a,b are	compared	is	a	random	variable,	that	depends	on	the	

choice	of	pivots.		Let’s	say	

𝑋D,F = G 1												𝑖𝑓	𝑎	𝑎𝑛𝑑	𝑏	𝑎𝑟𝑒	𝑒𝑣𝑒𝑟	𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑		0										𝑖𝑓	𝑎	𝑎𝑛𝑑	𝑏	𝑎𝑟𝑒	𝑛𝑒𝑣𝑒𝑟	𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑	
• In	the	previous	example	X1,5 =	1,	because	item	1 and	item	5	were	compared.

• But	X3,6 =	0,	because	item	3 and	item	6	were	NOT	compared.

• Both	of	these	depended	on	our	random	choice	of	pivot!

Of	course	this	doesn’t	have	to	be	the	case!		It’s	a	good	

exercise	to	convince	yourself	that	the	analysis	will	still	go	

through	without	this	assumption.	(Or	see	CLRS)

Counting	comparisons

• The	number	of	comparisons	total	during	the	algorithm	is

V V 𝑋D,F
3

FWDX5

3

DW5

• The	expected	number	of	comparisons	is

𝐸 V V 𝑋D,F
3

FWDX5

3

DW5
=	V V 𝐸[𝑋D,F]	

3

FWDX5

3

DW5

using	linearity	of	expectations.

Counting	comparisons

• So	we	just	need	to	figure	out	E[Xa,b]

• E[Xa,b]	=	P(Xa,b =	1)⋅1	+	P(Xa,b =	0) ⋅	0	=	P(Xa,b =	1)
• (using	definition	of	expectation)

• So	we	need	to	figure	out

P(Xa,b =	1)	=	the	probability	that	a	and	b	are	ever	compared.

7 6 3 5 1 42
Say	that	a	=	2	and	b	=	6.		What	is	the	probability	

that	2	and	6	are	ever	compared?

7 6 3 5 1 42
This	is	exactly	the	probability	that	either	2	or	6	is	first	

picked	to	be	a	pivot	out	of	the	highlighted	entries.

If,	say,	5	were	picked	first,	then	2	and	6	would	be	

separated	and	never	see	each	other	again.7 63 51 2 4

expected	number	of	comparisons:
V V 𝐸[𝑋D,F]	

3

FWDX5

3

DW5

Counting	comparisons

𝑃 	𝑋D,F = 1	
=	probability	a,b are	ever	compared

=	probability	that	one	of	a,b are	picked	first	out	of	

all	of	the	b	– a	+1	numbers	between	them.

=	
6

F	4DX5

7 6 3 5 1 42

2	choices	out	of	b-a+1…

All	together	now…

Expected	number	of	comparisons

• 𝐸 ∑ ∑ 𝑋D,F3FWDX53DW5
• =	∑ ∑ 𝐸[𝑋D,F]	3FWDX53DW5
• =	∑ ∑ 𝑃(𝑋D,F = 1)	3FWDX53DW5
• =	∑ ∑ 6

F	4DX53FWDX53DW5

• This	is	a	big	nasty	sum,	but	we	can	do	it.

• We	get	that	this	is	less	than	2n	ln(n).

linearity	of	expectation

definition	of	expectation

the	reasoning	we	just	did

This	is	the	expected	number	of	

comparisons	throughout	the	algorithm

Do	this	sum!

Ollie	the	over-achieving	ostrich

Almost	done

• We	saw	that	E[number	of	comparisons]	=	O(n	log(n))

• Is	that	the	same	as	E[running	time]?

• QuickSort(A):
• If	len(A)	<=	1:

• return

• Pick	some	x	=	A[i]	at	random.		Call	this	the	pivot.

• PARTITION the	rest	of	A	into:	

• L	(less	than	x)	and	

• R	(greater	than	x)

• Replace	A	with		[L,	x,	R]		(that	is,	rearrange	A	in	
this	order)

• QuickSort(L)	

• QuickSort(R)	

• In	this	case,	yes.

• We	need	to	argue	that	

the	running	time	is	

dominated	by	the	time	

to	do	comparisons.

• (See	CLRS	for	details).

Conclusion

• Expected	running	time	of	QuickSort is	O(nlog(n))

Rigorous	

analysis

us

Bonus	material	in	the	lecture	

notes:	a	second	way	to	show	this!			

Worst-case	running	time	

• Suppose	that	an	adversary	is	choosing	the	
“random”	pivots	for	you.

• Then	the	running	time	might	be	O(n2)

• Eg,	they’d	choose	to	implement	SlowSort

• In	practice,	this	doesn’t	usually	happen.

A	note	on	implementation

• This	pseudocode	is	easy	to	understand	and	analyze,	but	

is	not	a	good	way	to	implement	this	algorithm.

• Instead,	implement	it	in-place (without	separate	L	and	R)

• You	may	have	seen	this	in	106b.

• Here	are	some	Hungarian	Folk	Dancers	showing	you	how	it’s	done:	

https://www.youtube.com/watch?v=ywWBy6J5gz8

• Check	out	IPython notebook	for	Lecture	5	for	two	different	ways.

• QuickSort(A):
• If	len(A)	<=	1:

• return

• Pick	some	x	=	A[i]	at	random.		Call	this	the	pivot.

• PARTITION the	rest	of	A	into:	

• L	(less	than	x)	and	

• R	(greater	than	x)

• Replace	A	with		[L,	x,	R]		(that	is,	rearrange	A	in	this	order)

• QuickSort(L)	

• QuickSort(R)	

A
	b
e
tt
e
r	
w
a
y
	t
o
	d
o
	P
a
rt
it
io
n 8 7 1 3 5 6 4

8 7 1 3 5 6 4

1 7 8 3 5 6 4

1 3 8 7 5 6 4

1 3 8 7 5 6 4

1 3 4 7 5 6 8

Pivot

Swap!

Initialize							and	

Step				forward.

When				sees	something	

smaller	than	the	pivot,	

swap the	things	ahead	

of	the	bars	and	

increment	both	bars.

Repeat	till	the	end,	then	

put	the	pivot	in	the	right	

place.

See	CLRS	or	Lecture	5	IPython

notebook	for	pseudocode/real	code.

Choose	it	randomly,	then	swap	it	

with	the	last	one,	so	it’s	at	the	end.

QuickSort vs.	
smarter	QuickSort vs.
Mergesort?

• All	seem	pretty	comparable…
See	IPython notebook	for	Lecture	5

The	slicker	in-place	

ones	use	less	space,	

and	also	are	a	smidge	

faster	on	my	system.

Hoare	Partition	is	a	

different	way	of	doing	it	

(c.f.	CLRS	Problem	7-1),	

which	you	might	have	

seen	elsewhere.		You	are	

not	responsible	for	

knowing	it	for	this	class.

QuickSort vs	MergeSort

QuickSort (random	pivot) MergeSort (deterministic)

Running time
• Worst-case:	O(n2)

• Expected:	O(n	log(n))
Worst-case: O(n	log(n))

Used	by

• Java for	primitive	types

• C	qsort

• Unix

• g++

• Java	for	objects

• Perl

In-Place?

(With O(log(n))	

extra	memory)

Yes,	pretty	easily

Not	easily*	if	you	want	to	

maintain both	stability	and	

runtime.
(But	pretty	easily	if	you	can	

sacrifice	runtime).

Stable? No Yes

Other	Pros
Good	cache	locality	if	

implemented	for	arrays

Merge	step	is	really

efficient	with	linked	lists

U
n
d
e
rsta

n
d
	th

is

T
h
e
se
	a
re
	ju
st	fo

r	fu
n
.	

(N
o
t	o

n
	e
xa
m
).

*In	fact,	I	don’t	know	how	to	do	this	if	

you	want	O(nlog(n))	worst-case	

runtime	and	stability.

Today

• How	do	we	analyze	randomized	algorithms?

• A	few	randomized	algorithms	for	sorting.

• BogoSort

• QuickSort

• BogoSort is	a	pedagogical	tool.

• QuickSort is	important	to	know.		(in	contrast	with	BogoSort…)

Recap

Recap

• How	do	we	measure	the	runtime	of	a	randomized	
algorithm?

• Expected	runtime

• Worst-case	runtime

• QuickSort (with	a	random	pivot)	is	a	randomized	
sorting	algorithm.

• In	many	situations,	QuickSort is	nicer	than	MergeSort.

• In	many	situations,	MergeSort is	nicer	than	QuickSort.

Code	up	QuickSort and	MergeSort in	a	few	different	languages,	with	a	few	

different	implementations	of	lists	A	(array	vs	linked	list,	etc).		What’s	faster?	
(This	is	an	exercise	best	done	in	C	where	you	have	a	bit	more	control	than	in	Python).

Ollie	the	over-achieving	ostrich

Next	time

• Can	we	sort	faster than	Θ(nlog(n))??

• Pre-lecture exercise for	Lecture	6.

• Can	we	sort	even	faster	than	QuickSort/MergeSort?

Before next	time

https://xkcd.com/1185/

(h/t	Dana)

