Pre-lecture exercises will not be collected for credit. However, you will get more out of each lecture if you do them, and they will be referenced during lecture. We recommend writing out your answers to pre-lecture exercises before class. Pre-lecture exercises usually should not take you more than 20 minutes.

In this pre-lecture exercise, we will remember a little bit of probability!

1. Let X be a random variable which is 1 with probability $1 / 100$ and 0 with probability $99 / 100$.
(a) What is the expected value $\mathbb{E}[X]$?
(b) Suppose you draw n independent random variables, $X_{1}, X_{2}, \ldots, X_{n}$, distributed like X. What is the expected value $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$?
(c) Suppose I draw independent random variables X_{1}, X_{2}, \ldots and I stop when I see the first " 1 ". For example, if I draw

$$
X_{1}=0, X_{2}=0, X_{3}=0, X_{4}=1
$$

then I would stop at X_{4}. Let N be the last index that we draw. (So in the previous example, $N=4$). How big do you expect N to be?
[Note: actually figuring out $\mathbb{E}[N]$ from scratch is a bit tricky, although you may have seen it in CS109. But even if you don't do it rigorously, intuitively how big do you expect N to be?]
2. Consider the following pseudocode, which is an in-place sorting algorithm for an array A.

```
def bogosort(A):
    while A is not sorted:
        A.shuffle() # this randomly permutes A
    return A
```

(a) Let X_{i} be a random variable which is 1 if $\mathrm{A} . \operatorname{shuffle}()$ is sorted after the i 'th call, and 0 otherwise.
(b) What is $\mathbb{E}\left[X_{i}\right]$?
(c) What is the expected number of times that bogosort executes the while loop?

