
Lecture	6
Sorting	lower	bounds	and	O(n)-time	sorting



Announcements

• HW2	due	Friday

• HW3	posted	Friday

• Please	send	any	OAE	letters	to	Jessica	Su	(jtysu)	
ASAP.



Sorting

• We’ve	seen	a	few	O(n	log(n))-time algorithms.

• MERGESORT	has	worst-case	running	time	O(nlog(n))

• QUICKSORT	has	expected	running	time	O(nlog(n))

Can	we	do	better?

Depends	on	who	

you	ask…



An	O(1)-time	algorithm	for	sorting:

StickSort

• Problem:	sort	these	n	sticks	by	length.

• Algorithm:
• Drop	them	on	a	table.

• Now	they	
are	sorted	
this	way.



That	may	have	been	unsatisfying

• But	StickSort does	raise	some	important	questions:

• What	is	our	model	of	computation?

• Input: array

• Output: sorted	array

• Operations	allowed:	comparisons

-vs-

• Input:	sticks

• Output:	sorted	sticks	in	vertical	order

• Operations	allowed:	dropping	on	tables

• What	are	reasonable	models	of	computation?



Today:	two	(more)	models

• Comparison-based	sorting	model

• This	includes	MergeSort,	QuickSort,	InsertionSort

• We’ll	see	that	any algorithm	in	this	model	must	take	at	
least	Ω(n	log(n)) steps.

• Another	model	(more	reasonable	than	the	stick	model…)

• BucketSort and	RadixSort

• Both	run	in	time	O(n)



Comparison-based	sorting



Comparison-based	sorting	algorithms

There	is	a	genie who	knows	what	

the	right	order	is.

The	genie	can	answer	YES/NO	

questions	of	the	form:

is [this] bigger than [that]?Algorithm

Want	to	sort	these	items.	

There’s	some	ordering	on	them,	but	we	don’t	know	what	it	is.

Is          bigger than          ?  

YES

The	algorithm’s	job	is	to	

output	a	correctly	sorted	

list	of	all	the	objects.

is	shorthand	for

“the	first	thing	in	the	input	list”



All	the	sorting	algorithms	we	
have	seen	work	like	this.

7 6 3 5 1 4 2
eg,	QuickSort:

Is        bigger than        ?  7 5

Is        bigger than        ?  

Is        bigger than        ?  

6

3

5

5

YES

YES

NO

7 6 3

5 etc.

Pivot!



Lower	bound	of	Ω(n	log(n)).

• Theorem:

• Any	deterministic	comparison-based	sorting	algorithm must	
take	Ω(n	log(n))	steps.

• Any	randomized comparison-based	sorting	algorithm must	
take	Ω(n	log(n))	steps	in	expectation.

• How	might	we	prove	this?

1. Consider	all	comparison-based	algorithms,	one-by-one,	
and	analyze	them.

2. Don’t	do	that.

Instead,	argue	that	all	comparison-based	sorting	

algorithms	give	rise	to	a	decision	tree.		

Then	analyze	decision	trees.



Decision	trees

Sort	these	three	things. ?≤

YES
NO

≤

YES

?

NO

≤ ?
YES NO

etc…



All	comparison-based	algorithms	look	like	this

Example:	Sort	these	

three	things	using	

QuickSort.

≤

NO

?

YES

L RRL

≤ ?
NOYES

L RL R
Return ≤

NOYES

?Then	we’re	done	

(after	some	base-

case	stuff)

Now	

recurse

on	R

Pivot!

L R
L R

Pivot!

Return Return
In	either	case,	we’re	done	

(after	some	base	case	stuff	and	

returning	recursive	calls).

etc...



All	comparison-based	algorithms	
have	an	associated	decision	tree.

YES NO

?

??

YES
NOYES

NO

????

The	leaves	of	this	

tree	are	all	possible	

orderings	of	the	

items:	when	we	

reach	a	leaf	we	

return	it.

What	does	the	decision	

tree	for	MERGESORTING	

four	elements	look	like?

Ollie	the	

over-achieving	ostrich

Running	the	algorithm	on	a	given	

input	corresponds	to	taking	a	

particular	path	through	the	tree.



What’s	the	runtime	on	a	particular	input?

YES NO

?

??

YES
NOYES

NO

????

If	we	take	this	path	through	

the	tree,	the	runtime	is	

Ω(length	of	the	path).

At	least	the	number	

of	comparisons	that	

are	made	on	that	

input.



What’s	the	worst-case runtime?

YES NO

?

??

YES
NOYES

NO

????

At	least	Ω(length	of	the	longest	path).



How	long	is	the	longest	path?

YES
NO

?

??
YES

NOYES
NO

????

• This	is	a	binary	tree	with	at	

least	_____	leaves.

• The	shallowest	tree	with	n!	

leaves	is	the	completely	

balanced	one,	which	has	

depth	______.

• So	in	all	such	trees,	the	

longest	path	is	at	least	log(n!).

n!

log(n!)

• n!	is	about	(n/e)n (Stirling’s approx.*).

• log(n!)	is	about	n	log(n/e)	=	Ω(n	log(n)).
Conclusion:	the	longest	path	

has	length	at	least	Ω(n	log(n)).

being	sloppy	about	

floors		and	ceilings!

We	want	a	statement:	in	all	such	trees,	

the	longest	path	is	at	least	_____

*Stirling’s approximation	is	a	bit	more	complicated	than	this,	but	this	is	good	enough	for	the	asymptotic	result	we	want.



Lower	bound	of	Ω(n	log(n)).	
• Theorem:
• Any	deterministic	comparison-based	sorting	algorithm must	
take	Ω(n	log(n)) steps.

• Proof	recap:
• Any	deterministic	comparison-based	algorithm	can	be	
represented	as	a	decision	tree	with	n!	leaves.

• The	worst-case	running	time	is	at	least	the	depth	of	the	decision	
tree.

• All	decision	trees	with	n!	leaves	have	depth	Ω(n	log(n)).

• So	any	comparison-based	sorting	algorithm	must	have	worst-
case	running	time	at	least Ω(n	log(n)).



\end{Aside}

• For	example,	QuickSort?

• Theorem:

• Any	randomized comparison-based	sorting	algorithm
must	take	Ω(n	log(n))	steps	in	expectation.

• Proof:

• see	lecture	notes

• (same	ideas	as	deterministic	case) Try	to	prove	this	

yourself!

Ollie	the	over-achieving	ostrich

Aside:	
What	about	randomized	algorithms?



But	look	on	the	bright	side!

• Theorem:

• Any	deterministic	comparison-based	sorting	algorithm must	
take	Ω(n	log(n)) steps.

• Theorem:

• Any	randomized comparison-based	sorting	algorithm must	take	
Ω(n	log(n))	steps	in	expectation.

So	that’s	bad	news.



But	what	about	StickSort?

• This	is	one	of	the	cool	things	about	lower	bounds	
like	this:	we	know	when	we	can	declare	victory!

MergeSort is	optimal!

• StickSort can’t	be	implemented	as	a	comparison-based	
sorting	algorithm.		So	these	lower	bounds	don’t	apply.

• But	StickSort was	kind	of	dumb.
Especially	if	I	have	

to	spend	time	

cutting	all	those	

sticks	to	be	the	

right	size!
But	might	there	be	another	model	
of	computation	that’s	less	dumb,	
in	which	we	can	sort	faster?



Beyond	comparison-based	
sorting	algorithms



Another	model	of	computation

• The	items	you	are	sorting	have	meaningful	values.

9 6 3 5 2 1 2

instead	of



Pre-lecture	exercise

• Sorting	CS161	students	by	their	month	of	birth.

• [Discussion	on	board]

1 1 4 5



Another	model	of	computation

• The	items	you	are	sorting	have	meaningful	values.

9 6 3 5 2 1 2

instead	of



Why	might	this	help?

BucketSort: 9 6 3 5 2 1 2

1 2 3 4 5 6 7 8 9

963 521

2

SORTED!
In	time	O(n).

Implement	the	buckets as	linked	

lists.		They	are	first-in,	first-out.			

This	will	be	useful	later.

Concatenate	

the	buckets!

Note:	this	is	a	simplification	of	

what	CLRS	calls	“BucketSort”



Issues

• Need	to	be	able	to	know	what	bucket	to	put	something	in.

• Where	does									go?

• That’s	okay	for	now:	it’s	part	of	the	model.

• Need	to	know	what	values	might	show	up	ahead	of	time.

• Space…

2 12345 13 21000 50 100000000 1



One	solution:	RadixSort
Say	we’re	sorting	integers.

• Idea:	BucketSort on	the	least-significant	digit	first,	
then	the	next	least-significant,	and	so	on.

1 2 3 4 5 6 7 8 9

21 345 13 101 50 234 1

0

3
4
5

50 1321

101

1

2
3
4

Step	1:	BucketSort on	LSB:

50 21 101 1 13 234 345



Step	2:	BucketSort on	the	2nd digit

1 2 3 4 5 6 7 8 90

50 21 101 1 13 234 345

502113101

2
3
4

1 3
4
5

101 1 13 21 234 345 50



Step	3:	BucketSort on	the	3rd digit

1 2 3 4 5 6 7 8 90

50

21

13

101

2
3
4

1

3
4
5

1 13 21 50 101 234 345

101 1 13 21 234 345 50

It	worked!!



Why	does	this	work?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original	array:

Next	array	is	sorted	by	the	first	digit.

Next	array	is	sorted	by	the	first	two	digits.

Next	array	is	sorted	by	all	three	digits.

Sorted	array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345



Formally…

• Argue	by	induction.

• Inductive	hypothesis:

Lucky	the	lackadaisical	lemur

Or	at	least	a	

little	formally!



Why	does	this	work?

21 345 13 101 50 234 1

50 21 101 1 13 234 345

1 13 21 50 101 234 345

101 1 13 21 234 345 50

Original	array:

Next	array	is	sorted	by	the	first	digit.

Next	array	is	sorted	by	the	first	two	digits.

Next	array	is	sorted	by	all	three	digits.

Sorted	array

50 21 101 1 13 234 345

101 01 13 21 234 345 50

001 013 021 050 101 234 345



Formally…

• Argue	by	induction.

• Inductive	hypthesis:

• After	the	k’th iteration,	the	array	is	sorted	by	the	first	k	
least-significant	digits.

• Base	case:	

• “Sorted	by	0	least-significant	digits”	means	not	sorted.

• Inductive	step:

• (See	lecture	notes	or	CLRS)

• Conclusion:

• After	the	d’th iteration,	the	array	is	sorted	by	the	d	least-
significant	digits.		Aka,	it’s	sorted.

Lucky	the	lackadaisical	lemur

Or	at	least	a	

little	formally!

Plucky	the	pedantic	penguin

This	needs	to	use:	(1)	bucket	sort	

works,	and	(2)	we	treat	each	bucket	

as	a	FIFO	queue.*

*the	buzzword	here	is	that	

bucketSort is	stable.



Can	we	do	better?
what	if	M	=	n?		

• Say	they	are	d-digit numbers.

• There	are	d	iterations.

• Each	iteration	takes	time	O(n	+	10)	=	O(n)

• Total	time:	O(nd).

• Say	the	biggest	integer	is	M.		What	is	d?

• d	=	 log%& 𝑀 + 1

• so	O(nd)	=	O(	n	log10(M)	).

What	is	the	running	time?
The	“10”	is	because	we	

are	working	base	10.



Trade-offs…

• RadixSort works	with	any	base.

• Before	we	did	it	base	r=10.

• But	we	could	do	it	base	r=2 or	r=20 just	as	easily.

• [On	board]

• Running	time	for	general	r	and	M?

• [On	board]



Trade-offs	ctd…
• There	are	n	numbers,	biggest	one	is	M.

• What	should	we	choose	for	r	(in	terms	of	M,n)?

Running	time:	𝑂 (𝑛 + 𝑟) ⋅ log0 𝑀 	

There’s	some	sweet	spot… (and	maybe	it’s	growing	with	M	and	n?)

IPython Notebook	for	Lecture	6



We	get…

• [Discussion	on	board…]

• If	we	choose	r	=	n,	running	time	is	
𝑻 𝒏 = 𝑶 𝒏 ⋅ 𝐥𝐨𝐠𝐧 𝑴 	

• If	M	=	O(n),	T(n)	=	O(n).		Awesome!

• If	M	=	Ω(nn),	T(n)	=	O(n2)…

Ollie	the	over-achieving	ostrich

Choosing	r	=	n	

is	pretty	good.		

What’s	the	optimal

choice	of	r?



The	story	so	far

• If	we	use	a	comparison-based	sorting	algorithm,	it	
MUST	run	in	time	Ω(nlog(n)).

• If	we	assume	a	bit	of	structure	on	the	values,	we	
have	an	O(n)-time	sorting	algorithm.	

9 6 3 5 2 1 2

Why	would	we	ever	use	a	

comparison-based	sorting	algorithm??



Why	would	we	ever	use	

a	comparison-based	sorting	algorithm?

• Lots	of	precision…

• RadixSort needs	extra	memory	for	the	buckets.
• Not	in-place

• I	want	to	sort	emoji	by	talking	to	a	genie.
• RadixSort makes	more	assumptions	on	the	input.

𝜋
123456

987654 𝑒 140! 2.1234123 nn 42

• We	can	compare	these	pretty	quickly	(just	look	at	the	most-significant	digit):

• 𝜋 =	3.14….

• e	=	2.78….

• But	to	do	RadixSort we’d	have	to	look	at	every	digit.

• This	is	especially	problematic	since	both	of	these	have	infinitely	many	digits...

Even	with	integers,	if	the	

biggest	on	is	really	big,	

RadixSort is	slow.



Recap
• How	difficult	a	problem	is	depends	on	the	model	of	
computation.

• How	reasonable	a	model	of	computation	is	is	up	for	debate.

• Comparison-based	sorting	model

• This	includes	MergeSort,	QuickSort,	InsertionSort

• Any algorithm	in	this	model	must	use	at	least	Ω(n	log(n))	operations.

• But	if	we	are	sorting	small	integers	(or	other	reasonable	data):

• BucketSort and	RadixSort

• Both	run	in	time	O(n)



Next	time

• Binary	search	trees!		

• Balanced	binary	search	trees!

• Special	guest	lecturer:	Sam	Kim!

• Pre-lecture	exercise	for	Lecture	7

• Remember	binary	search	trees?

Before next	time




