Lecture 7

Binary Search Trees and Red-Black Trees

Announcements

- HW 3 released! (Due Friday)
- Special guest lecturer: Sam Kim!

Roadmap

Today

- Begin a brief foray into data structures!

- See CS 166 for more!
- Binary search trees
- You may remember these from CS 106B
- They are better when they're balanced.
this will lead us to...
- Self-Balancing Binary Search Trees
- Red-Black trees.

Why are we studying self-balancing BSTs?

1. The punchline is important:

- A data structure with $\mathrm{O}(\log (\mathrm{n}))$ INSERT/DELETE/SEARCH

2. The idea behind Red-Black Trees is clever

- It's good to be exposed to clever ideas.
- Also it's just aesthetically pleasing.

Some data structures

 for storing objects like 5 (aka, nodes with keys)- (Sorted) arrays:

$$
\begin{array}{l|l|l|l|l|l|l}
\hline 1 & 2 & 3 & 4 & 5 & 7 & 8 \\
\hline
\end{array}
$$

- (Sorted) linked lists:

- Some basic operations:
- INSERT, DELETE, SEARCH

\section*{Sorted Arrays | 1 | 2 | 3 | 4 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

- O(n) INSERT/DELETE:

$$
\begin{array}{l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 4.5 \\
\hline
\end{array}
$$

- O(log(n)) SEARCH:

Sorted linked lists

$$
\rightarrow 1 \rightarrow 2 \rightarrow \sqrt{3} \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow-8
$$

- O(1) INSERT/DELETE:
- (assuming we have a pointer to the location of the insert/delete)

Motivation for Binary Search Trees

 TODAY!

For today all keys are distinct.

Bindry treperning

Each node has
two children

2	is a descendant
of	5

The left child
of 3 is 2
This node is the root

This is a node.
It has a key (7).

The right child

Both children of 1 are NIL

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

2

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Q: Is this the only binary search tree I could possibly build with these values?

A: No. I made choices about which nodes to choose when. Any choices would have been fine.

Aside: this should look familiar kinda like QuickSort

Binary Search Trees

- It's a binary tree so that:
- Every LEFT descendant of a node has key less than that node.
- Every RIGHT descendant of a node has key larger than that node.

Remember the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

SEARCH in a Binary Search Tree definition by example

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
- $\mathrm{x}=$ SEARCH(key)
- Insert a new node with desired key at x...

You thought about this on your pre-lecture exercise!
(See hidden slide for pseudocode.)

INSERT in a Binary Search Tree

This slide skipped in class - here for reference

EXAMPLE: Insert 4.5

- INSERT(key):
- $\mathrm{x}=\mathrm{SEARCH}(\mathrm{key})$
- if key > x.key:
- Make a new node with the correct key, and put it as the right child of x.
- if key < x.key:
- Make a new node with the correct key, and put it as the left child of x.
- if x.key == key:
- return

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
- $x=$ SEARCH(key)
- if x.key $==$ key:
-delete x....

You thought about this in your prelecture exercise too!

This is a bit more complicated...see the hidden slides for some pictures of the different cases.

DELETE in a Binary Search Tree several cases (by example) say we want to delete 3

Case 1: if 3 is a leaf, just delete it.

Write pseudocode for all of these! (Or see IPython Notebook for Lecture 7)

Case 2: if 3 has just one child, move that up.

DELETE in a Binary Search Tree ctd.

This slide skipped in class - here for reference!

Case 3: if 3 has two children, replace 3 with it's immediate successor. (aka, next biggest thing after 3)

- Does this maintain the BST property?
- Yes.

- How do we find the immediate successor?
- SEARCH for 3 in the subtree under 3.right
- How do we remove it when we find it?
- If [3.1] has 0 or 1 children, do one of the previous cases.
- What if [3.1] has two children?
- It doesn't.

How long do these operations take?

- SEARCH is the big one.
- Everything else just calls SEARCH and then does some small O(1)-time operation.

Wait...

- This is a valid binary search tree.
- The version with n nodes has depth n, not $O(\log (n))$.

Could such a tree show up? In what order would I have to insert the nodes?

Inserting in the order 2,3,4,5,6,7,8 would do it.

What to do?

- Goal: Fast SEARCH/INSERT/DELETE
- All these things take time O(height)
- And the height might be big!!! : \cdot
- Idea 0:
- Keep track of how deep the tree is getting.
- If it gets too tall, re-do everything from scratch.
- At least $\Omega(n)$ every so often....
- Turns out that's not a great idea. Instead we turn to...

Self-Balancing
 Binary Search Trees

Idea 1: Rotations
No matter what lives underneath A, B, C, this takes time O(1). (Why?)

- Maintain Binary Search Tree (BST) property, while moving stuff around.

This seems helpful

Does this work?

- Whenever something seems unbalanced, do rotations until it's okay again.

Lucky the Lackadaisical Lemur

Idea 2: have some proxy for balance

- Maintaining perfect balance is too hard.
- Instead, come up with some proxy for balance:
- If the tree satisfies [SOME PROPERTY], then it's pretty balanced.
- We can maintain [SOME PROPERTY] using rotations.

There are actually several ways to do this, but today we'll see...

Red-Black Trees

- A Binary Search Tree that balances itself!
- No more time-consuming by-hand balancing!
- Be the envy of your friends and neighbors with the time-saving...

Red-Black Trees

these rules are the proxy for balance

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
- all paths from x to NIL's have the same number of black nodes on them.

I'm not going to draw the NIL children in the future, but they are treated as black nodes.

Examples(?)

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
- all paths from x to NIL's have the same number of black nodes on them.

Why???????

- This is pretty balanced.
- The black nodes are balanced
- The red nodes are "spread out" so they don't mess things up too much.

- We can maintain this property as we insert/delete nodes, by using rotations.

This is the really clever idea!
This Red-Black structure is a proxy for balance.
It's just a smidge weaker than perfect balance, but we can actually maintain it!

This is "pretty balanced"

- To see why, intuitively, let's try to build a Red-Black Tree that's unbalanced.

Conjecture: the height of a red-black tree is at most $2 \log (\mathrm{n})$

One path could be twice as long another if we pad it with

That turns out to be basically right.

 [proof sketch]- Say there are b(x) black nodes in any path from x to NIL.
- (excluding x, including NIL).
- Claim:
- Then there are at least $2^{b(x)}-1$ non-NIL nodes in the subtree underneath x . (Including x).
- [Proof by induction - on board if time]

Then:

$$
\begin{array}{rll}
n & \geq 2^{\text {b(root })}-1 & \text { using the Claim } \\
\geq 2^{\text {height } / 2}-1 & \text { b(root) >= height/2 because of RBTree rules. }
\end{array}
$$

Rearranging:

$$
n+1 \geq 2^{\text {height } / 2} \Rightarrow \text { height } \leq 2 \log (n+1)
$$

Okay, so it's balanced...
...but can we maintain it?
-Yes!

- For the rest of lecture:
- sketch of how we'd do this.
- See CLRS for more details.
- (You are not responsible for the details for this class - but you should understand the main ideas).

Many cases

- Suppose we want to insert here.
- eg, want to insert 0.
- And then there are 9 more cases for all of the various symmetries of these 3 cases...

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

Example: insert 0

Many cases

- Suppose we want to insert here.
- eg, want to insert 0.
- And then there are 9 more cases for all of the various symmetries of these 3 cases...

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: insert 0

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: insert 0

Can't we just insert 0 as a black node?

We need a bit more context

We need a bit more context

\author{

- Add 0 as a red node.
}

We need a bit more context

- Add 0 as a red node.
- Claim: RB-Tree properties still hold.

But what if that was red?

What if it looks like this?
Example: insert 0

More context...

What if it looks like this?
Example: insert 0

More context...

What if it looks like this?

Example: insert 0

Now we're basically inserting 6 into some smaller tree. Recurse!

Many cases

- Suppose we want to insert here.
- eg, want to insert 0.
- And then there are 9 more cases for all of the various symmetries of these 3 cases...

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

- Fix things up if needed.

Example: Insert 0.

- Actually, this can't happen?
- 6-3 path has one black node
- 6-7-... has at least two
- It might happen that we just turned 0 red from the previous step.
- Or it could happen if

7 is actually NIL.

Recall Rotations

- Maintain Binary Search Tree (BST) property, while moving stuff around.

Inserting into a Red-Black Tree

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

What if it looks like this?

Need to argue that if RB-Tree property held before, it still does.

Many cases

- Suppose we want to insert here.
- eg, want to insert 0.
- And then there are 9 more cases for all of the various symmetries of these 3 cases...

Deleting from a Red-Black tree

Fun exercise!

Ollie the over-achieving ostrich

That's a lot of cases

- You are not responsible for the nitty-gritty details of Red-Black Trees. (For this class)
- Though implementing them is a great exercise!
- You should know:
- What are the properties of an RB tree?
- And (more important) why does that guarantee that they are balanced?

What was the point again?

- Red-Black Trees always have height at most $2 \log (\mathrm{n}+1)$.
- As with general Binary Search Trees, all operations are O(height)
- So all operations are $O(\log (n))$.

Conclusion: The best of both worlds

	Sorted Arrays	Linked Lists	Balanced Binary Search Trees
Search	$\mathrm{O}(\log (\mathrm{n}) \mathrm{)}$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log (\mathrm{n}))$
Insert/Delete	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$	$\mathrm{O}(\log (\mathrm{n}) \mathrm{)}$

Today

- Begin a brief foray into data structures!

- See CS 166 for more!
- Binary search trees
- You may remember these from CS 106B
- They are better when they're balanced.
this will lead us to...
- Self-Balancing Binary Search Tr
- Red-Black trees.

Recap

Recap

- Balanced binary trees are the best of both worlds!
- But we need to keep them balanced.
- Red-Black Trees do that for us.
- We get $\mathrm{O}(\log (\mathrm{n}))$-time INSERT/DELETE/SEARCH
- Clever idea: have a proxy for balance

Next time

- Hashing!

Before next time

- Pre-lecture exercise for Lecture 8
- (More) fun with probability!

