
Lecture	7
Binary	Search	Trees	and	Red-Black	Trees



Announcements

• HW	3	released!		(Due	Friday)

• Special	guest	lecturer:	Sam	Kim!



Roadmap

Graphs!

Asymptotic	

Analysis

Dynamic	

ProgrammingGreedy	Algs

MIDTERM

The

Future!

More	detailed	schedule	on	the	website!

We	are	here



Today

• Begin	a	brief	foray	into	data	structures!

• See	CS	166	for	more!

• Binary	search	trees

• You	may	remember	these	from	CS	106B

• They	are	better	when	they’re	balanced.

this	will	lead	us	to…

• Self-Balancing	Binary	Search	Trees	

• Red-Black trees.



Why	are	we	studying	self-balancing	BSTs?

1. The	punchline	is	important:

• A	data	structure	with	O(log(n))	
INSERT/DELETE/SEARCH

2. The	idea	behind	Red-Black Trees	is	clever

• It’s	good	to	be	exposed	to	clever	ideas.

• Also	it’s	just	aesthetically	pleasing.



Some	data	structures	
for	storing	objects	like										(aka,	nodes with	keys)		

• (Sorted)	arrays:

• (Sorted)	linked	lists:

• Some	basic	operations:

• INSERT,	DELETE,	SEARCH

42 871 3 5HEAD

42 871 3 5

5



Sorted	Arrays

• O(n)	INSERT/DELETE:

• O(log(n))	SEARCH:

42 871 3 5

421 3

42 871 3 5

eg,	Binary	search	to	see	if	3	is	in	A.

8754.5



Sorted	linked	lists

• O(1)	INSERT/DELETE:
• (assuming	we	have	a	pointer	to	the	location	of	the	insert/delete)

• O(n)	SEARCH:

42 871 3 5

42 871 3 5HEAD

6

42 871 3 5HEAD



Motivation	for	Binary	Search	Trees

Sorted Arrays Linked	Lists
Binary	Search	

Trees*

Search O(log(n))								 O(n) O(log(n))

Insert/Delete O(n) O(1) O(log(n))



Binary	tree	terminology

42 8

7

1

3

5

This	node	is	

the	root

This	is	a	node.		

It	has	a	key (7).

These	nodes	

are	leaves.

The	left child

of	 is3 2

The	right	child	

of	 is3 4

Both	children	

of	 are	NIL1

For	today	all	keys	are	distinct.

Each	node	has	

two	children

is	a	descendant	

of	

2

5
Each	node	has	a	

pointer	to	its	left	

child,	right	child,	

and	parent.



Binary	Search	Trees

4

2

8 7

1

3
5

• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant	of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

• Example	of	building	a	binary	search	tree:



Binary	Search	Trees

4

2

8 7

1

3
5

• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant	of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

• Example	of	building	a	binary	search	tree:



Binary	Search	Trees

4
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• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant	of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

• Example	of	building	a	binary	search	tree:



Binary	Search	Trees

42 8

7
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3
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• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant	of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

• Example	of	building	a	binary	search	tree:



Binary	Search	Trees

42 8
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• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant	of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

• Example	of	building	a	binary	search	tree:

Q:	Is	this	the	only	

binary	search	tree	I	

could	possibly	build	

with	these	values?

A:	No. I	made	

choices	about	

which	nodes	to	

choose	when.		Any	

choices	would	

have	been	fine.



Aside:	this	should	look	familiar

4

2

8 7

1

3
5

kinda like	QuickSort



Binary	Search	Trees

42 8
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• It’s	a	binary	tree	so	that:
• Every	LEFT	descendant of	a	node	has	key	less	than	that	node.

• Every	RIGHT	descendant	of	a	node	has	key	larger	than	that	node.

42 8

7

1

3

5

Binary	Search	Tree
NOT a	Binary	

Search	Tree

Which	of	

these	is	a	

BST?



Remember	the	goal

Fast	SEARCH/INSERT/DELETE
Can	we	do	these?



SEARCH	in	a	Binary	Search	Tree
definition	by	example

42 8

7

1

3

5
EXAMPLE:	Search	for	4.

EXAMPLE:	Search	for	4.5
• It	turns	out	it	will	be	convenient	

to	return	4	in	this	case

• (that	is,	return the	last	node	

before	we	went	off	the	tree)

Ollie	the	over-achieving	ostrich

Write	pseudocode	

(or	actual	code)	to	

implement	this!
How	long	does	this	take?

O(length	of	longest	path)	= O(height)



INSERT	in	a	Binary	Search	Tree

42 8
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EXAMPLE:	Insert	4.5

4.5

• INSERT(key):
• x	=	SEARCH(key)

• Insert	a	new	node	with	

desired	key	at	x…

x	=	 4

You	thought	about	this	on	

your	pre-lecture	exercise!

(See	hidden	slide	for	

pseudocode.)



INSERT	in	a	Binary	Search	Tree

42 8

7
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EXAMPLE:	Insert	4.5

4.5

• INSERT(key):
• x	=	SEARCH(key)

• if	key	>	x.key:

• Make	a	new	node	with	the	

correct	key,	and	put	it	as	the	

right	child	of	x.

• if	key	<	x.key:

• Make	a	new	node	with	the	

correct	key,	and	put	it	as	the	

left	child	of	x.

• if x.key ==	key:

• return

x	=	 4

This	slide	

skipped	in	

class	– here	

for	reference



DELETE	in	a	Binary	Search	Tree

42 8

7
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EXAMPLE:	Delete	2

• DELETE(key):
• x	=	SEARCH(key)

• if x.key ==	key:

• ….delete	x….

You	thought	about	this	in	your	pre-

lecture	exercise	too!

This	is	a	bit	more	complicated…see	

the	hidden	slides	for	some	pictures	

of	the	different	cases.

x	=	 2



DELETE	in	a	Binary	Search	Tree
several	cases	(by	example)	
say	we	want	to	delete	3

This	triangle	

is	a	cartoon	

for	a	subtree

3

Case	1:		if	3	is	a	leaf,

just	delete	it.
2

3

Case	2:		if	3	has	just	one	child,	

move	that	up.

5 5

2

55

Siggi the	Studious	Stork

Write	pseudocode	for	all	of	

these!	(Or	see	IPython

Notebook	for	Lecture	7)

This	slide	skipped	

in	class	– here	for	

reference!



DELETE	in	a	Binary	Search	Tree	
ctd.

42

3

5

3.1

2

5

Case	3:		if	3	has	two	children,	

replace	3	with	it’s	immediate	successor.
(aka,	next	biggest	thing	after	3)

• Does	this	maintain	the	BST	

property?
• Yes.

• How	do	we	find	the	

immediate	successor?
• SEARCH	for	3	in	the	subtree	

under	3.right

• How	do	we	remove	it	when	

we	find	it?
• If	[3.1]	has	0	or	1	children,	

do	one	of	the	previous	cases.

• What	if	[3.1]	has	two	

children?
• It	doesn’t.

4

3.1

This	slide	skipped	

in	class	– here	for	

reference!



How	long	do	these	operations	take?

• SEARCH is	the	big	one.		

• Everything	else	just	calls	SEARCH and	then	does	some	
small	O(1)-time	operation.

42 8

73

5

6

Time	=	

O(height	of	tree)

Trees	have	depth	

O(log(n)).		Done!

Lucky	the	lackadaisical	lemur.

How	long	does	search	take?



Wait...
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• This	is	a	valid	binary	search	tree.

• The	version	with	n	nodes	has	

depth	n,	not O(log(n)).

Could	such	a	tree	show	up?		

In	what	order	would	I	have	to	

insert	the	nodes?

Inserting	in	the	order	

2,3,4,5,6,7,8	would	do	it.

So	this	could happen.



What	to	do?

• Goal:	Fast	SEARCH/INSERT/DELETE

• All	these	things	take	time	O(height)

• And	the	height	might	be	big!!!	L

• Idea	0:

• Keep	track	of	how	deep	the	tree	is	getting.

• If	it	gets	too	tall,	re-do	everything	from	scratch.

• At	least	Ω(n)	every	so	often….

• Turns	out	that’s	not	a	great	idea.		Instead	we	turn	to…

Ollie	the	over-achieving	ostrich

How	often	is	“every	so	

often”	in	the	worst	case?		

It’s	actually	pretty	often!



Self-Balancing	
Binary	Search	Trees



Idea	1:	Rotations

• Maintain	Binary	Search	Tree	(BST)	property,	while	
moving	stuff	around.

BA

CY

XYOINK!

CLAIM:	

this	still	has	BST	property.

No	matter	what	lives	underneath	A,B,C,	

this	takes	time	O(1).		(Why?)

BA

C

Y

X

B

A

C

Y

X

B	fell	

down.

N
o
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This	seems	helpful
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5

YOINK!

42 8

73

6

5



Does	this	work?

• Whenever	something	seems	unbalanced,	do	
rotations	until	it’s	okay	again.

Lucky	the	Lackadaisical	Lemur

Even	for	me	this	is	

pretty	vague.		What	do	

we	mean	by	“seems	

unbalanced”?		What’s	

“okay”?



Idea	2:	have	some	proxy	for	balance

• Maintaining	perfect	balance	is	too	hard.

• Instead,	come	up	with	some	proxy	for	balance:

• If	the	tree	satisfies	[SOME	PROPERTY],	then	it’s	pretty	
balanced.

• We	can	maintain	[SOME	PROPERTY] using	rotations.

There	are	actually	several	

ways	to	do	this,	but	today	

we’ll	see…



• A Binary Search Tree that balances itself!

• No more time-consuming by-hand balancing!

• Be the envy of your friends and neighbors 
with the time-saving…

42 8

73

5

6
Maintain balance by stipulating that 

black nodes are balanced, and that 
there aren’t too many red nodes.

It’s just good sense!

Red-Black	Trees



Red-Black	Trees	
these	rules	are	the	proxy	for	balance

• Every	node	is	colored	red or	black.

• The	root	node	is	a	black	node.

• NIL children	count	as	black	nodes.

• Children	of	a	red	node	are	black	nodes.

• For	all	nodes	x:

• all	paths	from	x	to	NIL’s	have	the	same	
number	of	black	nodes	on	them.

42 8

73

5

6

NIL NIL NIL NIL NIL NIL NIL NIL

I’m	not	going	to	draw	the	NIL	

children	in	the	future,	but	they	

are	treated	as	black	nodes.



Examples(?)
• Every	node	is	colored	red or	black.

• The	root	node	is	a	black	node.

• NIL children	count	as	black	nodes.

• Children	of	a	red	node	are	black	nodes.

• For	all	nodes	x:	

• all	paths	from	x	to	NIL’s	have	the	same	
number	of	black	nodes	on	them.

Yes!

No! No! No!



Why???????

• This	is	pretty	balanced.

• The	black	nodes are	balanced

• The	red	nodes	are	“spread	out”	
so	they	don’t	mess	things	up	
too	much.

• We	can	maintain	this	property	
as	we	insert/delete	nodes,	by	
using	rotations.

42 8

73

5

6

9

This	is	the	really	clever	idea!		

This Red-Black	structure	is	a	proxy	for	balance.		
It’s	just	a	smidge	weaker	than	perfect	balance,	but	we	can	actually	maintain	it!



This	is	“pretty	balanced”

• To	see	why,	intuitively,	let’s	try	to	build	a	
Red-Black	Tree	that’s	unbalanced.

Lucky	the	

lackadaisical	

lemur

Let’s	build	some	intuition!

One	path	could	be	twice	as	

long	another	if	we	pad	it	with	

red	nodes.

Conjecture:	the	height	of	a

red-black	tree	is	at	most	2	log(n)



That	turns	out	to	be	basically	right.
[proof	sketch]

• Say	there	are	b(x)	black	nodes	in	
any	path	from	x	to	NIL.	

• (excluding	x,	including	NIL).

• Claim:

• Then	there	are	at	least	2b(x) – 1	
non-NIL	nodes	in	the	subtree	
underneath	x.		(Including	x).

• [Proof	by	induction	– on	board	if	time]

Then:

𝑛 ≥ 2$ %&&' 	− 1

≥ 2
+,-.+/

01 	 	− 1
Rearranging:

𝑛 + 1 ≥ 2
34563'

71 	 	⇒ ℎ𝑒𝑖𝑔ℎ𝑡 ≤ 2log	(𝑛 + 1)

x

y

using	the	Claim

b(root)	>=	height/2	because	of	RBTree rules.

z

NIL



Okay,	so	it’s	balanced…
…but	can	we	maintain	it?

•Yes!		

• For	the	rest	of	lecture:
• sketch	of	how	we’d	do	this.

• See	CLRS	for	more	details.

• (You	are	not	responsible	for	the	details	for	
this	class	– but	you	should	understand	the	
main	ideas).



Many	cases

73

6

73

6

73

6

• Suppose	we	want	to	insert	here.
• eg,	want	to	insert	0.

• And	then	there	are	9	more	cases	for	all	of	the	various	

symmetries	of	these	3	cases…



Inserting	into	a	Red-Black	Tree

• Make	a	new	red	node.

• Insert	it	as	you	would	normally.

73

6
Example:	insert	0

0

What	if	it	looks	like	this?

73

6



Many	cases
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• Suppose	we	want	to	insert	here.
• eg,	want	to	insert	0.

• And	then	there	are	9	more	cases	for	all	of	the	various	

symmetries	of	these	3	cases…



Inserting	into	a	Red-Black	Tree

• Make	a	new	red	node.

• Insert	it	as	you	would	normally.

• Fix	things	up	if	needed.

73

6
Example:	insert	0

0

No!

What	if	it	looks	like	this?

73

6



Inserting	into	a	Red-Black	Tree

• Make	a	new	red	node.

• Insert	it	as	you	would	normally.

• Fix	things	up	if	needed.

73

6
Example:	insert	0

Can’t	we	just	insert	0	as	

a	black	node?

0
No!

What	if	it	looks	like	this?

73

6



We	need	a	bit	more	context

73

6

Example:	insert	0

What	if	it	looks	like	this?

73

6

-1



We	need	a	bit	more	context

73

6

Example:	insert	0

0

What	if	it	looks	like	this?

73

6

• Add	0	as	a	red	node.

-1



We	need	a	bit	more	context

73

6

Example:	insert	0

0

What	if	it	looks	like	this?

73

6

Flip	

colors!

• Add	0	as	a	red	node.

• Claim: RB-Tree	
properties	still	hold.

-1



But	what	if	that was	red?

73

6

Example:	insert	0

0

What	if	it	looks	like	this?

73

6

-1



More	context…

73

6

Example:	insert	0

0

What	if	it	looks	like	this?

73

6

-1

-3



More	context…

6

Example:	insert	0

What	if	it	looks	like	this?

73

6

-1

-3

Now	we’re	

basically	inserting	

6	into	some	

smaller	tree.		

Recurse!



Many	cases
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• Suppose	we	want	to	insert	here.
• eg,	want	to	insert	0.

• And	then	there	are	9	more	cases	for	all	of	the	various	

symmetries	of	these	3	cases…



Inserting	into	a	Red-Black	Tree

• Make	a	new	red	node.

• Insert	it	as	you	would	normally.

• Fix	things	up	if	needed.

73

6

Example:	Insert	0.

• Actually,	this	can’t	

happen?		
• 6-3 path	has	one	black	node

• 6-7-… has	at	least	two

• It	might	happen	that	we	

just	turned	0	red	from	

the	previous	step.

• Or	it	could	happen	if													

is	actually	NIL.

0

What	if	it	looks	like	this?

73

6

7



Recall	Rotations

• Maintain	Binary	Search	Tree	(BST)	property,	while	
moving	stuff	around.

BA

CY

XYOINK!

CLAIM:	

this	still	has	BST	property.

BA

C

Y

X

B

A

C

Y

X



Inserting	into	a	Red-Black	Tree

• Make	a	new	red	node.

• Insert	it	as	you	would	normally.

• Fix	things	up	if	needed.

73

6

0

What	if	it	looks	like	this?

73

6

YOINK!

3

60

7

Need	to	argue	that	

if	RB-Tree	property	

held	before,	it	still	

does.



Many	cases
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• Suppose	we	want	to	insert	here.
• eg,	want	to	insert	0.

• And	then	there	are	9	more	cases	for	all	of	the	various	

symmetries	of	these	3	cases…



Deleting	from	a	Red-Black	tree

Fun	exercise!

Ollie	the	over-achieving	ostrich



That’s	a	lot	of	cases

• You	are	not	responsible for	the	nitty-gritty	details	
of	Red-Black	Trees.		(For	this	class)

• Though	implementing	them	is	a	great	exercise!

• You	should	know:

• What	are	the	properties	of	an	RB	tree?

• And	(more	important)	why	does	that	guarantee	that	
they	are	balanced?



What	was	the	point	again?

• Red-Black	Trees	always	have	height	at	most	2log(n+1).

• As	with	general	Binary	Search	Trees,	all	operations	are	
O(height)

• So	all	operations	are	O(log(n)).



Conclusion:	The	best	of	both	worlds

Sorted Arrays Linked	Lists

Balanced

Binary	Search	

Trees

Search O(log(n)) O(n) O(log(n))

Insert/Delete O(n) O(1) O(log(n))



Today

• Begin	a	brief	foray	into	data	structures!

• See	CS	166	for	more!

• Binary	search	trees

• You	may	remember	these	from	CS	106B

• They	are	better	when	they’re	balanced.

this	will	lead	us	to…

• Self-Balancing	Binary	Search	Trees	

• Red-Black trees.

Recap



Recap

• Balanced	binary	trees	are	the	best	of	both	worlds!

• But	we	need	to	keep	them	balanced.

• Red-Black	Trees do	that	for	us.

• We	get	O(log(n))-time	INSERT/DELETE/SEARCH

• Clever	idea:	have	a	proxy	for	balance

42 8

73

5

6



Before next	time

• Pre-lecture	exercise	for	Lecture	8

• (More)	fun	with	probability!

Next	time

• Hashing!


