
Lecture	8
HASHING!!!!!



Announcements

• HW3	due	Friday!

• HW4	posted	Friday!

• Q:	Where	can	I	see	examples	of	proofs?
• Lecture	Notes
• CLRS
• HW	Solutions

• Office	hours:	lines	are	long	L

• Solutions:
• We	will	be	(more)	mindful	of	throughput.
• Get	more	TAs
• Stop	assigning	homework
• Use	Piazza!
• Start	early.	 (There	are	no	lines	on	Monday!)



Today:	hashing
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Outline

• Hash	tables	are	another	sort	of	data	structure	that	
allows	fast	INSERT/DELETE/SEARCH.

• like	self-balancing	binary	trees

• The	difference	is	we	can	get	better	performance	in	
expectation	by	using	randomness.	

• Hash	families	are	the	magic	behind	hash	tables.

• Universal	hash	families	are	even	more	magic.



Goal:	
Just	like	on	Monday

• We	are	interesting	in	putting	nodes	with	keys	into	a	
data	structure	that	supports	fast	
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data	structure

5

4

52

HERE	IT	IS

node	with	key	“2”



Today:

• Hash	tables:

• O(1)	expected	time	INSERT/DELETE/SEARCH

• Worse	worst-case	performance,	but	often	great	in	practice.

On	Monday:

• Self	balancing	trees:

• O(log(n))	deterministic	INSERT/DELETE/SEARCH

#prettysweet

#evensweeterinpractice

eg,	Python’s	dict,	Java’s	HashSet/HashMap,	C++’s	unordered_map

Hash	tables	are	used	for	databases,	caching,	object	representation,	…



One	way	to	get	O(1)	time

• Say	all	keys	are	in	the	set	{1,2,3,4,5,6,7,8,9}.	

• INSERT:

• DELETE:

• SEARCH:

9 6 3 5

4 5 6 7 8 9

963 5

1 2 3

6

3 2

3	is	here.

This	is	called	

“direct	addressing”



That	should	look	familiar

• Kind	of	like	BUCKETSORT from	Lecture	6.

• Same	problem:	if	the	keys	may	come	from	a	
universe U	=	{1,2,	….,	10000000000}….



The	solution	then	was…
• Put	things	in	buckets	based	on	one	digit.

1 2 3 4 5 6 7 8 90

3
4
5

50 1321

101

1

2
3
4

21 345 13 101 50 234 1

INSERT:

Now	SEARCH 21

It’s	in	this	bucket	somewhere…

go	through	until	we	find	it.



22 342 12 102 52 232 2

INSERT:

Problem…

1 2 3 4 5 6 7 8 90

3
4
2

52

12

22

102

2

232

Now	SEARCH 22
….this	hasn’t	made	

our	lives	easier…



Hash	tables

• That	was	an	example	of	a	hash	table.

• not	a	very	good	one,	though.

• We	will	be	more	clever	(and	less	deterministic) about	
our	bucketing.

• This	will	result	in	fast	(expected	time)	
INSERT/DELETE/SEARCH.



But	first!		Terminology.
• We	have	a	universe	U,	of	size	M.

• M	is	really	big.

• But	only	a	few	(say	at	most	n	for	today’s	lecture)
elements	of	M	are	ever	going	to	show	up.

• M	is	waaaayyyyyyy bigger	than	n.

• But	we	don’t	know	which	ones	will	show	up	in	advance.

All	of	the	keys	in	the	

universe	live	in	this	

blob.

Universe	U

A	few	elements	are	special	

and	will	actually	show	up.

Example:	U	is	the	set	of	all	strings	of	at	most	

140	ascii characters.		(128140 of	them).

The	only	ones	which	I	care	about	are	those	

which	appear	as	trending	hashtags	on	

twitter.		#hashinghashtags

There	are	way	fewer	than	128140 of	these.

Examples	aside,	I’m	going	to	draw	elements	like	I	

always	do,	as	blue	boxes	with	integers	in	them…



The	previous	example	
with	this	terminology

• We	have	a	universe	U,	of	size	M.	
• at	most	n	of	which	will	show	up.

• M	is waaaayyyyyy bigger	than	n.

• We	will	put	items	of	U	into	n	buckets.

• There	is	a	hash	function h:U →	{1,…,n}	which	says	what	
element	goes	in	what	bucket.

All	of	the	keys	in	the	

universe	live	in	this	

blob.

Universe	U

n	buckets1

2

3

h(x)	=	least	

significant	digit	of	x.

For	this	lecture,	I’m	assuming	that	the	

number	of	things	is	the	same	as	the	

number	of	buckets,	both	are	n.		

This	doesn’t	have	to	be	the	case,	

although	we	do	want:

#buckets	=	O(	#things	which	show	up	)



This	is	a	hash	table	(with	chaining)

• Array	of	n	buckets.

• Each	bucket	stores	a	linked	list.
• We	can	insert	into	a	linked	list	in	time	O(1)	

• To	find	something	in	the	linked	list	takes	time	O(length(list)).

• h:U → {1,…,n}	can	be	any	function:	
• but	for	concreteness	let’s	stick	with	h(x)	=	least	significant	digit	of	x.

n	buckets	(say	n=9)

1

2

3

9

13 22 43

For	demonstration	

purposes	only!

This	is	a	terrible	hash	

function!		Don’t	use	this!

9

INSERT:

13

22

43

9

…

SEARCH	43:

Scan	through	all	the	elements	in	

bucket	h(43)	=	3.



Aside:	Hash	tables	with	open	addressing

• The	previous	slide	is	about	hash	tables	with	chaining.

• There’s	also	something	called	“open	addressing”

• Read	in	CLRS	if	you	are	interested!

n=9	buckets

1

2

3

9

13 43

…

This	is	a	“chain”

n=9	buckets

1

2

3

9

…

13

43

\end{Aside}



This	is	a	hash	table	(with	chaining)

• Array	of	n	buckets.

• Each	bucket	stores	a	linked	list.
• We	can	insert	into	a	linked	list	in	time	O(1)	

• To	find	something	in	the	linked	list	takes	time	O(length(list)).

• h:U → {1,…,n}	can	be	any	function:	
• but	for	concreteness	let’s	stick	with	h(x)	=	least	significant	digit	of	x.

n	buckets	(say	n=9)

1

2

3

9

13 22 43

For	demonstration	

purposes	only!

This	is	a	terrible	hash	

function!		Don’t	use	this!

9

INSERT:

13

22

43

9

…

SEARCH	43:

Scan	through	all	the	elements	in	

bucket	h(43)	=	3.



IPython notebook	time

• (Seems	to	work!)

• (Will	this	example	be	a	good	idea?)



Sometimes	this	a	good	idea
Sometimes	this	is	a	bad	idea

• How	do	we	pick	that	function	so	that	this	is	a	good	idea?

1. We	want	there	to	be	not	many	buckets	(say,	n).

• This	means	we	don’t	use	too	much	space

2. We	want	the	items	to	be	pretty	spread-out	in	the	buckets.		

• This	means	it	will	be	fast	to	SEARCH/INSERT/DELETE

n=9	buckets

1

2

3

9

13

22

43

9

…

n=9	buckets

1

2

3

9

13 43

…

21

9
3

vs.



Worst-case	analysis

• Design	a	function	h:	U	->	{1,…,n} so	that:

• No	matter	what	input	(fewer	than	n	items	of	U)							
a	bad	guy	chooses,	the	buckets	will	be	balanced.

• Here,	balanced	means	O(1)	entries	per	bucket.

• If	we	had	this,	then	we’d	achieve	our	dream	of	
O(1)	INSERT/DELETE/SEARCH

Can	you	come	up	with	

such	a	function?





We	really	can’t	beat	the	bad	guy	here.

.

Universe	U

h(x)
n	buckets

These	are	all	the	things	that	

hash	to	the	first	bucket.

• The	universe	U	has	M items

• They	get	hashed	into	n	buckets

• At	least	one	bucket	has	at	least	M/n	items	hashed	to	it.

• M	is	WAAYYYYY	bigger then	n,	so	M/n	is	bigger	than	n.

• Bad	guy	chooses	n	of	the	items	that	landed	in	this	

very	full	bucket.



Solution:

Randomness



The	game

13 22 43 92

1. An	adversary	chooses	any	n	items	

𝑢", 𝑢$, … , 𝑢& ∈ 𝑈,	and	any	sequence	

of	INSERT/DELETE/SEARCH	

operations	on	those	items.

2. You,	the	algorithm,	

chooses	a	random hash	

function	ℎ: 𝑈 → {1,… , 𝑛}.

3. HASH	IT	OUT

1

2

3

n

13

22

92

…

43
7

7

What	does	

randommean	

here?		Uniformly	

random?

Plucky	the	pedantic	penguin

INSERT	13,	INSERT	22,	INSERT	43,	

INSERT	92,	INSERT	7,	SEARCH	43,	

DELETE	92,	SEARCH	7,	INSERT	92

#hashpuns



Example

• Say	that	h	is uniformly	random.

• That	means	that	h(1)	is	a	uniformly	random number	
between	1	and	n.

• h(2)	is	also	a	uniformly	random	number	between	1	and	n,	
independent	of	h(1).

• h(3)	is	also	a	uniformly	random number	between	1	and	n,	
independent	of	h(1),	h(2).

• …

• h(n)	is	also	a	uniformly	random number	between	1	and	n,	
independent	of	h(1),	h(2),	…,	h(n-1).

Universe	

U

n
	b
u
cke

ts

h



Why	should	that	help?

Intuitively:	The	bad	guy	can’t	foil	a	hash	

function	that	he	doesn’t	yet	know.

Why	not?		What	if	there’s	some	strategy	

that	foils	a	random	function	with	high	

probability?

We’ll	need	to	do	some	analysis…



What	do	we	want?

1

2

3

n

14

22

92

…

43

8

7 ui 32 5 15

It’s	bad if	lots	of	items	land	in	ui’s bucket.

So	we	want	not	that.	



More	precisely

1

2

3

n

14

22

92

…

43

8

ui

• We	want:
• For	all	ui that	the	bad	guy	chose

• E[	number	of	items	in	ui ‘s	bucket	]	≤ 2.

• If	that	were	the	case,	
• For	each	operation	involving	ui
• E[	time	of	operation	]	=	O(1)

So,	in	expectation,	

it	would	takes	O(1)	time	per	

INSERT/DELETE/SEARCH	

operation.		



So	we	want:

• For	all	i=1,	…,	n,	

E[	number	of	items	in	ui ‘s	bucket	]	≤ 2.



Aside:	why	not:

• For	all	i=1,…,n:

E[	number	of	items	in	bucket	i ]	≤ ___?

1

2

3

n

14 22 92

…

43 8

this	happens	with	

probability	1/n

Suppose	that:

1

2

3

n

14 22 92

…

43 8

and	this	happens	

with	probability	1/n
etc.

Then	E[	number	of	items	in	bucket	i ]	=	1	for	all	i.

But	P{	the	buckets	get	big	}	=	1.

This	slide	

skipped	in	class



Expected	number	of	items	in	ui’s bucket?

Universe	U

n
	b
u
cke

ts

h

ujui

• 𝐸 			 = 	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
&
78"

• = 1 +	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
�
7;6	

• 												= 1 +	∑ 1/𝑛�
7;6	

• 													= 1 +
&="

&
	≤ 2.

That’s	what	

we	wanted.you	will	verify	

this	on	HW

COLLISION!

h	is	uniformly	random



That’s	great!

• For	all	i=1,	…,	n,	

• E[	number	of	items	in	ui ‘s	bucket	]	≤ 2

• This	implies	(as	we	saw	before):

• For	any	sequence of	INSERT/DELETE/SEARCH	operations	on	
any	n	elements	of	U,	the	expected	runtime	(over	the	
random	choice	of	h)	is	O(1)	per	operation.

So,	the	solution	is:	

pick	a	uniformly	random	hash	function.



The	elephant	in	the	room



The	elephant	in	the	room

How do we do that?



Let’s	implement	this!

• IPython Notebook	for	Lecture	8	



Let’s NOT implement	this!

• Suppose	U	=	{	all	of	the	possible	hashtags	}

• If	we	completely	choose	the	random	function	
up	front,	we	have	to	iterate	through	all	of	U.

• 128140	possible	ASCII	strings	of	length	140.

• (More	than	the	number	of	particles	in	the	universe)

• And	even	ignoring	the	time	considerations

• We	have	to	store	h(x)	for	every	x.

Issues:



Another	thought…

• Just	remember	h	on	the	relevant	values

Algorithm	now Algorithm	later

13
22

43
92

7

h(13)	=	6

h(13)	=	6

h(22)	=	3

h(92)	=	3



How	much	space	does	it	take	

to	store	h?

• For	each	element	x	of	U:

• store	h(x)

• (which	is	a	random	number	in	{1,…,n}).

• Storing	a	number	in	{1,..,n}	takes	log(n)	bits.

• So	storing	M	of	them	takes	Mlog(n)	bits.

• In	contrast,	direct	addressing	would	require	M	bits.		



Hang	on	now

• Sure,	that way	of	storing	the	function	h	won’t	work.

• But	maybe	there’s	another	way?



Aside:	description	length

• Say	I	have	a	set	S	with	s	things	in	it.

• I	get	to	write	down	the	elements	of	S	however	I	like.

• (in	binary)

• How	many	bits	do	I	need?

S

I’ll	call	this	one	“Fido”
This	one	is	named	“Hercules”

Or,	01101011
Or,	101

On	board:	the	answer	is	log(s)



Space	needed	to	store	a	random	fn h?

• Say	that	this	elephant-shaped	blob	represents	the	set	

of	all	hash	functions.

• It	has	size	nM.	(Really	big!)

• To	write	down	a	random	hash	function,	we	need	

log(nM)	=	Mlog(n)	bits.	L



Solution

• Pick	from	a	smaller	set	of	functions.

A	cleverly	chosen subset	

of	functions.		We	call	such	

a	subset	a	hash	family.

We	need	only	log|H|	bits	

to	store	an	element	of	H.	
H



Outline

• Hash	tables	are	another	sort	of	data	structure	that	
allows	fast	INSERT/DELETE/SEARCH.

• like	self-balancing	binary	trees

• The	difference	is	we	can	get	better	performance	in	
expectation	by	using	randomness.	

• Hash	families	are	the	magic	behind	hash	tables.

• Universal	hash	families	are	even	more	magic.



Hash	families

• A	hash	family	is	a	collection	of	hash	functions.

”All	of	the	hash	functions”	is	

an	example	of	a	hash	family.



Example:	
a	smaller	hash	family

• H =	{	function	which	returns	the	least	sig.	digit,

function	which	returns	the	most	sig.	digit	}

• Pick	h	in	H	at	random.

• Store	just	one	bit	
to	remember	
which	we	picked.

This	is	still	a	terrible	idea!		

Don’t	use	this	example!

For	pedagogical	purposes	only!

H



The	game

19 22 42 92

1. An	adversary	(who	knows	H)	chooses	any	n	

items	𝑢", 𝑢$, … , 𝑢& ∈ 𝑈,	and	any	sequence	

of	INSERT/DELETE/SEARCH	operations	on	

those	items.

2. You,	the	algorithm,	chooses	a	random hash	

function	ℎ: 𝑈 → {0,… , 9}.		Choose	it	

randomly	from	H.

3. HASH	IT	OUT

0

1

2

9 19

22 92

…

42

0
0

INSERT	19,	INSERT	22,	INSERT	42,	

INSERT	92,	INSERT	0,	SEARCH	42,	

DELETE	92,	SEARCH	0,	INSERT	92

#hashpuns

h0 =		Most_significant_digit

h1 = Least_significant_digit

H	=	{h0,	h1}

I	picked	h1



The	game

1. An	adversary	(who	knows	H)	chooses	any	n	

items	𝑢", 𝑢$, … , 𝑢& ∈ 𝑈,	and	any	sequence	

of	INSERT/DELETE/SEARCH	operations	on	

those	items.

2. You,	the	algorithm,	chooses	a	random hash	

function	ℎ: 𝑈 → {0,… , 9}.		Choose	it	

randomly	from	H.

3. HASH	IT	OUT

0

1

2

9

11

…

101

#hashpuns

h0 =		Most_significant_digit

h1 = Least_significant_digit

H	=	{h0,	h1}

I	picked	h1

11
101

111

121

131

141

111

121

131141

This	adversary	

could	have	been	

more	adversarial!



Outline

• Hash	tables	are	another	sort	of	data	structure	that	
allows	fast	INSERT/DELETE/SEARCH.

• like	self-balancing	binary	trees

• The	difference	is	we	can	get	better	performance	in	
expectation	by	using	randomness.	

• Hash	families	are	the	magic	behind	hash	tables.

• Universal	hash	families	are	even	more	magic.



How	to	pick	the	hash	family?

• Definitely	not	like	in	that	example.

• Let’s	go	back	to	that	computation	from	earlier….

H



Expected	number	of	items	in	ui’s bucket?

Universe	U

n
	b
u
cke

ts

h

ujui

• 𝐸 			 = 	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
&
78"

• = 1 +	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
�
7;6	

• 												= 1 +	∑ 1/𝑛�
7;6	

• 													= 1 +
&="

&
	≤ 2.

So	the	number	

of	items	in	ui’s

bucket	is	O(1).

you	will	verify	

this	on	HW

COLLISION!



How	to	pick	the	hash	family?

• Let’s	go	back	to	that	computation	from	earlier….

• 				𝐸 	number	of	things	in	bucket	ℎ 𝑢6 	 	

• =	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
&
78"

• = 	1 +	∑ 𝑃 	ℎ 𝑢6 = ℎ 𝑢7
�
7;6	

• 											≤ 1 +	∑ 1/𝑛�
7;6	

• 													= 1 +
&="

&
	≤ 2.

• All	we	needed	was	that	this ≤ 1/n.



Strategy

• Pick	a	small	hash	family	H,	so	that	when	I	choose	h	
randomly	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

H

h

• A	hash	family	H	that	satisfies	this	is	

called	a	universal	hash	family.

• Then	we	still	get	O(1)-sized	buckets	in	

expectation.

• But	now	the	space	we	need	is	

log(|H|)	bits.
• Hopefully	pretty	small!

In	English:	fix	any	

two	elements	of	U.		

The	probability	

that	they	collide	

under	a	random	h	

in	H	is	small.



So	the	whole	scheme	will	be

n
	b
u
cke

ts

h

ui

Universe	U

Choose	h	randomly	

from	a	universal	hash	

family	H

We	can	store	h	in	small	space	

since	H	is	so	small.

Probably	

these	

buckets	will	

be	pretty	

balanced.



Universal	hash	family
Let’s	stare	at	this	definition

• H	is	a	universal	hash	family	if:

• When	h	is	chosen	uniformly	at	random	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

You	actually	saw	this	in	your	pre-lecture	exercise!

Toads	=	hash	fns

Ice	cream	=	items

”Like”	and	“Dislike”	=	buckets	



Check	our	understanding…

• H	is	a	universal	hash	family	if:

• When	h	is	chosen	uniformly	at	random	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

• H	is	[something	else]	if:

• When	h	is	chosen	uniformly	at	random	from	H,

for	all	𝑢	 ∈ 𝑈, for	all	𝑥 ∈ {0, … , 𝑛 − 1},		

𝑃U∈V 	ℎ 𝑢6 = 𝑥 ≤
1

𝑛 Are	these	

different?

Slide	

(probably)	

skipped	in	

class



Pre-lecture	exercise

Universe	=	{	vanilla,	chocolate	}

Buckets	=	{	like,	dislike	}

Toads	=	different	possible	ways	of	distributing	items

Statement	1:	P[	random	toad	likes	vanilla	]	=	½,	P[	random	toad	likes	chocolate	]	=	½	

P[	“vanilla”	lands	in	the	bucket	“like”	]	=	½	

Statement	2:	P[	random	toad	feels	the	same	about	chocolate	and	vanilla	]	=	½	

P [	vanilla	and	chocolate	land	in	the	same	bucket	]	=	½	

Slide	skipped	in	class



Pre-lecture	exercise

Universe	=	{	vanilla,	chocolate	}

Buckets	=	{	like,	dislike	}

Toads	=	different	possible	ways	of	distributing	itemsSeem	like	they	might	be	the	same…?

Statement	1:	P[	random	toad	likes	vanilla	]	=	½,	P[	random	toad	likes	chocolate	]	=	½	

P[	“vanilla”	lands	in	the	bucket	“like”	]	=	½	

Statement	2:	P[	random	toad	feels	the	same	about	chocolate	and	vanilla	]	=	½	

P [	vanilla	and	chocolate	land	in	the	same	bucket	]	=	½	

Slide	skipped	in	class



Pre-lecture	exercise

Universe	=	{	vanilla,	chocolate	}

Buckets	=	{	like,	dislike	}

Toads	=	different	possible	ways	of	distributing	itemsBut	no!		1	is	true	but	2	is	not.

Statement	1:	P[	random	toad	likes	vanilla	]	=	½,	P[	random	toad	likes	chocolate	]	=	½	

P[	“vanilla”	lands	in	the	bucket	“like”	]	=	½	

Statement	2:	P[	random	toad	feels	the	same	about	chocolate	and	vanilla	]	=	½	

P [	vanilla	and	chocolate	land	in	the	same	bucket	]	=	½	

Slide	skipped	in	class



Check	our	understanding…

• H	is	a	universal	hash	family	if:

• When	h	is	chosen	uniformly	at	random	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

• H	is	[something	else]	if:

• When	h	is	chosen	uniformly	at	random	from	H,

for	all	𝑢	 ∈ 𝑈, for	all	𝑥 ∈ {0, … , 𝑛 − 1},		

𝑃U∈V 	ℎ 𝑢6 = 𝑥 ≤
1

𝑛 These	are	

different!

Slide	skipped	in	class



Example

• Uniformly	random	hash	function	h

• [We	just	saw	this]

• [Of	course,	this	one	has	other	downsides…]

• Pick	a	small	hash	family	H,	so	that	when	I	
choose	h	randomly	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛



Non-example

• h0 =		Most_significant_digit

• h1 =	Least_significant_digit

• H	=	{h0,	h1}

• [discussion	on	board]

• Pick	a	small	hash	family	H,	so	that	when	I	
choose	h	randomly	from	H,

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛



A	small	universal	hash	family??

• Here’s	one:

• Pick	a	prime	𝑝 ≥ 𝑀.

• Define
𝑓],^ 𝑥 = 𝑎𝑥 + 𝑏						𝑚𝑜𝑑	𝑝

ℎ],^ 𝑥 = 𝑓],^ 𝑥 						𝑚𝑜𝑑	𝑛

• Claim:

𝐻 = {	ℎ],^ 𝑥 	 ∶ 	𝑎 ∈ {1,… , 𝑝 − 1}, 𝑏 ∈ {0,… , 𝑝 − 1}	}

is	a	universal	hash	family.



Say	what?

• Example:		M	=	p	=	5,	n	=	3

• To	draw	h	from	H:	

• Pick	a	random	a	in	{1,…,4},	b	in	{0,…,4}

• As	per	the	definition:

• 𝑓$," 𝑥 = 2𝑥 + 1						𝑚𝑜𝑑	5

• ℎ$," 𝑥 = 𝑓$," 𝑥 						𝑚𝑜𝑑	3

1,2,3,4,5
a	=	2,	b	=	1

1

23

4
0

𝑓$," 𝑥

1

23

4 0

𝑓$," 1

𝑓$," 0

𝑓$," 3

𝑓$," 4
𝑓$," 2U	=

1

2

3

mod	3

This	step	just	

scrambles	stuff	up.		

No	collisions	here!

This	step	is	the	one	

where	two	different	

elements	might	collide.



Ignoring	why	this	is	a	good	idea

• Can	we	store	h	with	small	space?

• Just	need	to	store	two	numbers:	

• a	is	in	{1,…,p-1}

• b	is	in	{0,…,p-1}

• So	about	2log(p)	bits

• By	our	choice	of	p,	that’s	O(log(M))	bits.

1,2,3,4,5
a	=	2,	b	=	1

Compare:	direct	addressing	was	M	bits!

Twitter	example:	log(M)	=	140	log(128)	=	980 vs	M	=	128140



Another	way	to	see	this
using	only	the	size	of	H

• We	have	p-1	choices	for	a,	and	p	choices	for	b.

• So	|H|	=	p(p-1)	=	O(M2)

• Space	needed	to	store	an	element	h:	

• log(M2)	=	O(log(M)).		

O(M	log(n))	bits

per	function

O(log(M))	bits

per	function



Why	does	this	work?

• This	is	actually	a	little	complicated.

• There	are	some	hidden	slides	here	about	why.

• Also	see	the	lecture	notes.

• The	thing	we	have	to	show	is	that	the	collision	
probability	is	not	very	large.		

• Intuitively,	this	is	because:

• for	any	(fixed,	not	random)	pair	𝑥 ≠ 𝑦	 in	{0,….,p-1},	

• If	a	and	b	are	random,

• ax	+	b	and	ay	+	b	are	independent	random	variables.	(why?)



Why	does	this	work?

• Want	to	show:

• for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 , 		 𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
"

&

• aka,	the	probability	of	any	two	elements	colliding	is	small.

• Let’s	just	fix	two	elements	and	see	an	example.		

• Let’s	consider	𝑢6 , = 0, 	 𝑢7 = 1.	

1

23

4
0

𝑓],^ 𝑥

1

23

4 0
U	=

1

2

3

mod	3

𝑎𝑥 + 𝑏	𝑚𝑜𝑑	𝑝

Convince	

yourself	that	it	

will	be	the	same	

for	any	pair!

This	slide	skipped	in	class	– here	for	reference!



The	probability	that	0	and	1	collide	is	small

• Want	to	show:

• 𝑃U∈V 	ℎ 0 = ℎ 1 ≤
"

&

• For	any	𝑦j ≠ 𝑦" ∈ {0,1,2,3,4},	how	many	a,b are	there	
so	that	𝑓],^ 0 = 𝑦j	and	𝑓],^ 1 = 𝑦"	?

• Claim:	it’s	exactly	one.

• Proof:	solve	the	system	of	eqs.																																				for	a	and	b.

1

23

4
0

𝑓],^ 𝑥

1

23

4 0
U	=

1

2

3

mod	3

𝑎𝑥 + 𝑏	𝑚𝑜𝑑	𝑝

eg,	y0 =	3,	y1 =	1.

𝑎 ⋅ 1 + 𝑏 = 𝑦"		𝑚𝑜𝑑	𝑝

𝑎 ⋅ 0 + 𝑏 = 𝑦j		𝑚𝑜𝑑	𝑝

This	slide	skipped	in	class	– here	for	reference!



The	probability	that	0	and	1	collide	is	small

• Want	to	show:

• 𝑃U∈V 	ℎ 0 = ℎ 1 ≤
"

&

• For	any	𝑦j ≠ 𝑦" ∈ {0,1,2,3,4}, exactly	one	pair	a,b have	
𝑓],^ 0 = 𝑦j	and	𝑓],^ 1 = 𝑦".

• If	0	and	1	collide	it’s	b/c	there’s	some	𝑦j ≠ 𝑦"	so	that:

• 𝑓],^ 0 = 𝑦j	and	𝑓],^ 1 = 𝑦".

• 𝑦j = 𝑦"			𝑚𝑜𝑑	𝑛.

1

23

4
0

𝑓],^ 𝑥

1

23

4 0
U	=

1

2

3

mod	3

𝑎𝑥 + 𝑏	𝑚𝑜𝑑	𝑝

eg,	y0 =	3,	y1 =	1.

This	slide	skipped	in	class	– here	for	reference!



The	probability	that	0	and	1	collide	is	small

• Want	to	show:

• 𝑃U∈V 	ℎ 0 = ℎ 1 ≤
"

&

• The	number	of	a,b so	that	0,1	collide	under	ha,b is	at	most	
the	number	of	𝑦j ≠ 𝑦"	so	that	𝑦j = 𝑦"			𝑚𝑜𝑑	𝑛.

• How	many	is	that?		
• We	have	p	choices	for	𝑦j,	then	at	most	1/n	of	the	remaining	p-1	are	
valid	choices	for	𝑦"…

• So	at	most	𝑝 ⋅
l="

&
.

1

23

4
0

𝑓],^ 𝑥

1

23

4 0
U	=

1

2

3

mod	3

𝑎𝑥 + 𝑏	𝑚𝑜𝑑	𝑝

eg,	y0 =	3,	y1 =	1.

This	slide	skipped	in	class	– here	for	reference!



The	probability	that	0	and	1	collide	is	small

• Want	to	show:

• 𝑃U∈V 	ℎ 0 = ℎ 1 ≤
"

&

• The	#	of	(a,b) so	that	0,1	collide	under	ha,b is	≤ 𝑝 ⋅
l="

&
.

• The	probability	(over	a,b)	that	0,1	collide	under	ha,b is:	

• 𝑃U∈V 	ℎ 0 = ℎ 1 	≤
l⋅

mno

p

V

• 																																								= 	
l⋅

mno

p

l l="

• =
"

&
.

This	slide	skipped	in	class	– here	for	reference!



The	same	argument	goes	for	any	pair

for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

That’s	the	definition	of	a	universal	hash	family.

So	this	family	H	indeed	does	the	trick.

This	slide	skipped	in	class	– here	for	reference!



But	let’s	check	that	it	does work

• Back	to	IPython Notebook	for	Lecture	8…

Empirical	probability	of	collision	out	of	100	trials

N
u
m
b
e
r	
o
f	
p
a
ir
s	
o
f	
(x
,y
).
	

(O
u
t	
o
f	
	
$
j
j
$

=
	1
9
9
0
0
		p
a
ir
s)
	

M=200,	n=10



So	the	whole	scheme	will	be

n
	b
u
cke

ts

ha,b

ui

Universe	U

Choose	a	and	b	at	random	

and	form	the	function	ha,b

We	can	store	h	in	space	

O(log(M))	since	we	just	need	

to	store	a	and	b.

Probably	

these	

buckets	will	

be	pretty	

balanced.



Outline

• Hash	tables	are	another	sort	of	data	structure	that	
allows	fast	INSERT/DELETE/SEARCH.

• like	self-balancing	binary	trees

• The	difference	is	we	can	get	better	performance	in	
expectation	by	using	randomness.	

• Hash	families	are	the	magic	behind	hash	tables.

• Universal	hash	families	are	even	more	magic.

Recap



Want	O(1)	
INSERT/DELETE/SEARCH

• We	are	interesting	in	putting	nodes	with	keys	into	a	
data	structure	that	supports	fast	
INSERT/DELETE/SEARCH.

• INSERT

• DELETE

• SEARCH

5

data	structure

5

4

52

HERE	IT	IS



We	studied	
this	game

13 22 43 92

1. An	adversary	chooses	any	n	items	

𝑢", 𝑢$, … , 𝑢& ∈ 𝑈,	and	any	sequence	

of	L	INSERT/DELETE/SEARCH	

operations	on	those	items.

2. You,	the	algorithm,	

chooses	a	random hash	

function	ℎ: 𝑈 → {1,… , 𝑛}.

3. HASH	IT	OUT

1

2

3

n

13

22

92

…

43
7

7

INSERT	13,	INSERT	22,	INSERT	43,	

INSERT	92,	INSERT	7,	SEARCH	43,	

DELETE	92,	SEARCH	7,	INSERT	92



Uniformly	random	h	was	good

• If	we	choose	h	uniformly	at	random,
for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

• That	was	enough	to	ensure	that,	in	expectation,	
a	bucket	isn’t	too	full.

A	bit	more	formally:

For	any	sequence of	INSERT/DELETE/SEARCH	operations	

on	any	n	elements	of	U,	the	expected	runtime	(over	the	

random	choice	of	h)	is	O(1)	per	operation.



Uniformly	random	h	was	bad

• If	we	actually	want	to	implement	this,	we	have	to	
store	the	hash	function	h.

• That	takes	a	lot	of	space!
• We	may	as	well	have	just	
initialized	a	bucket	for	every	
single	item	in	U.

• Instead,	we	chose	a	function	
randomly	from	a	smaller	set.



We	needed	a	smaller	set
that	still	has	this	property

• If	we	choose	h	uniformly	at	random,
for	all	𝑢6 , 𝑢7 ∈ 𝑈					with	𝑢6 ≠ 𝑢7 ,		

𝑃U∈V 	ℎ 𝑢6 = ℎ 𝑢7 ≤
1

𝑛

This	was	all	we	needed	to	make	

sure	that	the	buckets	were	

balanced	in	expectation!

• We	call	any	set	with	that	property	a	

universal	hash	family.

• We	gave	an	example	of	a	really	small	one	J



Conclusion:

• We	can	build	a	hash	table	that	supports	
INSERT/DELETE/SEARCH in	O(1)	expected	time,

• if	we	know	that	only	n	items	are	every	going	to	show	up,	
where	n	is	waaaayyyyyy less	than	the	size	M	of	the	universe.

• The	space	to	implement	this	hash	table	is	

O(n	log(M))	bits.
• O(n)	buckets	

• O(n)	items	with	log(M)	bits	per	item	

• O(log(M))	to	store	the	hash	fn.

• M	is	waaayyyyyy bigger	than	n,	but	log(M)	probably	isn’t.



That’s	it	for	data	structures	
(for	now)

Data	Structure:	RBTrees and	Hash	Tables

Now	we	can	use	these	going	forward!



Before Next	Time

• Graph	algorithms!

• Pre-lecture	exercise	for	Lecture	9

• Intro	to	graphs

Next	Time


