Lecture &

Announcements

e HW3 due Friday!
* HW4 posted Friday!

* Q: Where can | see examples of proofs?
* Lecture Notes
 CLRS

e HW Solutions

 Office hours: lines are long ®

e Solutions:

* We will be (more) mindful of throughput.
—GetmoreTtAs
X i] |
e Use Piazza!
e Start early. (There are no lines on Monday!)

Today: hashing

Outline ,

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* |like self-balancing binary trees

e The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Goal:
Just like on Monday

* We are interesting in putting nodes with keys into a
data structure that supports fast
INSERT/DELETE/SEARCH.

* INSERT
. DELETEE

node with key “2”

* SEARCH | 52

data structure

HERE IT IS

On Monday:

* Self balancing trees:
* O(log(n)) deterministic INSERT/DELETE/SEARCH

Hprettysweet

oday:

 Hash tables: 6

* O(1) expected time INSERT/DELETE/SEARCH @

* Worse worst-case performance, but often great in practice.

H#evensweeterinpractice

eg, Python’s dict, Java’s HashSet /HashMap, C++'s unordered map
Hash tables are used for databases, caching, object representation, ...

This is called

One Way tO get O(:I_) tlme “direct addressing”
 Say all keys are in the set {1,2,3,4,5,6,7,8,9}.

* INSERT:

5] (6]] [5
* DELETE: E
soscn 3] [

/s
e 2 &
SZ‘/Z/ %f

UUHUHHUQ@

3 is here.

+ Kind of like BUCKETSORT from Lecture 6.

* Same problem: if the keys may come from a
universe U ={1,2,, 10000000000}....

uuuutttbiiuubibildiuutoot

Jubbuuubububbbbubbuul
LUUULULUEUUUUUBU UUbUUUuUOL

The solution then was...

* Put things in buckets based on one digit.

INSERT:

2] 5] [5] [(2] [] [1]

UH Bl LI

It’s in this bucket somewhere...

go through until we find it.
Now SEARCH

17€Z

INSERT:

....this hasn’t made
Now SEARCH

our lives easier...

Hash tables

* That was an example of a hash table.
* not a very good one, though.

* We will be more clever (and less deterministic) about
our bucketing.

 This will result in fast (expected time)
INSERT/DELETE/SEARCH.

But first! Terminology.

* We have a universe U, of size M.

* Mis really big.

e But only a few (say at most n for today’s lecture)
elements of M are ever going to show up.

* M is waaaayyyyyyy bigger than n.

e But we don’t know which ones will show up in advance.

od

All of the keys in the
universe live in this

blob.

Universe U

A few elements are special
and will actually show up.

Example: U is the set of all strings of at most
140 ascii characters. (1280 of them).

The only ones which | care about are those
which appear as trending hashtags on
twitter. #hashinghashtags

There are way fewer than 12849 of these.

Examples aside, I’'m going to draw elements like |
always do, as blue boxes with integers in them...

For this lecture, I’'m assuming that the

The preVIOUS exa m ple number of things is the same as the

with this termino|ogy number of buckets, both are n.
This doesn’t have to be the case,

although we do want:

 We have a universe U, of size M.
#buckets = O(#things which show up)

e at most n of which will show up.
* M is waaaayyyyyy bigger than n.
* We will put items of U into n buckets.

* There is a hash function h:U = {1,...,n} which says what
element goes in what bucket.

h(X) = least 1 = n buckets
significant digit of x.

All of the keys in the
universe live in this

blob.

Universe U

This is a hash table (with chaining)

For demonstration

* Array of n buckets. purposes only!
] . This is a terrible hash
* Each bucket stores a linked list. function! Don’t use this!
 We caninsert into a linked list in time O(1)
* To find something in the linked list takes time O(Iength(list))./
* h:U - {1,...,,n} can be any function:

* but for concreteness let’s stick with h(x) = least significant digit of x.

INSERT: o s
5] =

SEARCH 43:

Scan through all the elements in 9 E——}

bucket h(43) = 3. n buckets (say n=9)

Aside: Hash tables with open addressing

* The previous slide is about hash tables with chaining.

* There’s also something called “open addressing”

* Read in CLRS if you are interested!

1| 1>
[>

3

=hEE

This is a “chain”

9

n=9 buckets

9

9

9
9

>[13],
2un Coy

13
>[43]
9

n=9 buckets

\end{Aside}

This is a hash table (with chaining)

For demonstration

* Array of n buckets. purposes only!
] . This is a terrible hash
* Each bucket stores a linked list. function! Don’t use this!
 We caninsert into a linked list in time O(1)
* To find something in the linked list takes time O(Iength(list))./
* h:U - {1,...,,n} can be any function:

* but for concreteness let’s stick with h(x) = least significant digit of x.

INSERT: o s
5] =

SEARCH 43:

Scan through all the elements in 9 E——}

bucket h(43) = 3. n buckets (say n=9)

|IPython notebook time

* (Seems to work!)
* (Will this example be a good idea?)

Sometimes this a good idea
Sometimes this is a bad idea

* How do we pick that function so that this is a good idea?
1. We want there to be not many buckets (say, n).
* This means we don’t use too much space
2. We want the items to be pretty spread-out in the buckets.
* This means it will be fast to SEARCH/INSERT/DELETE
(@)

vs. 1

= Ei [
2_‘ 1>

[mme o[e
IESOE S

n=9 buckets n=9 buckets

Worst-case analysis

* Design a function h: U -> {1,...,n} so that:

 No matter what input (fewer than n items of U)
a bad guy chooses, the buckets will be balanced.

 Here, balanced means

* |f we had this, then we’d achieve our dream of
O(1) INSERT/DELETE/SEARCH

YIIII GANNOT ESCAPE THE DARK SIDE

'3-'.

ol
W|'|'|| IIETEIIMIHISTII:

HASH FUNCTIONS ---

We really can’t beat the bad guy here.

* The universe U has M items

* They get hashed into n buckets

* At least one bucket has at least M/n items hashed to it.
 Mis WAAYYYYY bigger then n, so M/n is bigger than n. W 5=

* Bad guy chooses n of the items that landed in this
very full bucket.

= N buckets

These are all the things that
hash to the first bucket.

..............

Universe U

Solution:
Randomness

g

What does
random mean

The ga me here? Uniformly 2+ YOU, the algorithm,

random? chooses a random hash
function h: U - {1, ...,n}.

Plucky the pedantic penguin

1. An adversary chooses any n items 0
U, Uy, ..., Uy € U, and any sequence 6
of INSERT/DELETE/SEARCH
operations on those items.

H E E E - 3. lHASH IT OUT 4hashpuns

INSERT 13, INSERT 22, INSERT 43,
- INSERT 92, INSERT 7, SEARCH 43, 2
DELETE 92, SEARCH 7, INSERT 92

S
n

Example

e Say that h is uniformly random.

e That means that h(1) is a uniformly random number
between 1 and n.

h(2) is also a uniformly random number between 1 and n,
independent of h(1).

h(3) is also a uniformly random number between 1 and n,
independent of h(1), h(2).

* h(n) is also a uniformly random number between 1 and n,
independent of h(1), h(2), ..., h(n-1).

.
@Fé:

|
$19%9Nnq U

Why should that help?

Intuitively: The bad guy can’t foil a hash
function that he doesn’t yet know.

Why not? What if there’s some strategy
that foils a random function with high
probability?

We'll need to do some analysis...

What do we want?

It’s bad if lots of items land in u.’s bucket.
So we want not that.

>
n

More precisely

* We want:

e
* For all u; that the bad guy chose he’eizf”d’ep/a
H H (;s / Ca ,
* E[number of items in u, ‘s bucket] < 2. It"’OUIdZ;.‘"’Vcoe 2
/

Wy Staps.
* If that were the case, be g0,

* For each operation involving u. s
e E[time of operation] =0(1)
So, In expectation,
it would takes O(1) time per
INSERT/DELETE/SEARCH
operation.

921> 8

So we want:

* Foralli=1, ..., n,
E[number of items in u, ‘s bucket | < 2.

. | This slide
Aside: why not: skipped in class

e Foralli=1,...,n:

E[number of items in bucketi] < ?

Suppose that:

wals{uls{z] e

this happens with

N
AN

> probability 1/n
5| > L
- B
E— | and this happens
nl 1> 3_9 etc with probability 1/n
1 Then E[number of items in bucket i] = 1 for all i.

— But P{ the buckets get big } = 1.

h is uniformly random

Expected number of items in u’s bucket?

. E[m(ui) = h(uj)}

j=1
* =1+ Zj:ti P{ h(u;) = h(uj)} That’s what
. =1 + Zj:ti 1/n Zr?; Zvri]llHV\;evrify we wanted.
. =1+ <2
n

=\
n@ B

Universe lo *%l m
‘ | COLLISION!

|
s1@yong u

That's great!

e Foralli=1, ..., n,

* E[number of items in u. ‘s bucket] <2

* This implies (as we saw before):

* For any sequence of INSERT/DELETE/SEARCH operations on
any n elements of U, the expected runtime (over the
random choice of h) is O(1) per operation.

So, the solution is:
pick a uniformly random hash function.

The elephant in the room

How do we do that?

Let’s implement this!

* IPython Notebook for Lecture 8

Let’s NOT implement this!

Issues:

e Suppose U = { all of the possible hashtags }

* If we completely choose the random function
up front, we have to iterate through all of U.

» 128140 possible ASCII strings of length 140.
* (More than the number of particles in the universe)

* And even ignoring the time considerations
* We have to store h(x) for every x.

Another thought...

e Just remember h on the relevant values

h(13) = We need some way of

h(22) storing keys and values
with O(1)

INSERT/DELETE/SEARCH

Algorithm now Algorithm later

How much space does it take
to store h?

* For each element x of U:
* store h(x)
e (which is a random numberin {1,...,n}).

e Storing a number in {1,..,n} takes log(n) bits.
* So storing M of them takes Mlog(n) bits.

* In contrast, direct addressing would require M bits.

Hang on now

* Sure, that way of storing the function h won’t work.
* But maybe there’s another way?

Aside: description length

e Say | have a set S with s things in it.

* | get to write down the elements of S however | like.
* (in binary)

* How many bits do | need?

I’ll call this one “Fido”

On board: the answer is log(s) Or, 01101011 This one is nam(e)d ’;Hoircules"
r

Space needed to store a random fn h?

e Say that this elephant-shaped blob represents the set
of all hash functions.
* |t has size nM. (Really big!)

 To write down a random hash function, we need
log(n™) = Mlog(n) bits. ®

Solution

* Pick from a smaller set of functions.

A cleverly chosen subset
of functions. We call such
a subset a hash family.

We need only log[H| bits
to store an element of H.

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* |like self-balancing binary trees

e The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Hash families

* A hash family is a collection of hash functions.

"All of the hash functions” is
an example of a hash family.

This is still a terrible ideal

Exa m p | e Don’t use this example!
. For pedagogical purposes only!
a smaller hash family

* H ={ function which returns the least sig. digit,
function which returns the most sig. digit }
* Pick hin H at random.

* Store just one bit
to remember
which we picked.

Th e ga me 2. You, the algorithm, chooses a random hash
h,= Most_significant_digit ~ function h:U - {0, ...,9}. Choose it
h, = Least_significant_digit randomly from H.

H = {h, hy} O @

| picked h,

1. An adversary (who knows H) chooses any n
items uq,uU,, ..., u, € U, and any sequence
of INSERT/DELETE/SEARCH operations on
those items.

E E EE E 3. :ASH:OUT #hashpuns

INSERT 19, INSERT 22, INSERT 42, |
INSERT 92, INSERT O, SEARCH 42, 1

,; \
S\ DELETE 92, SEARCH O, INSERT 92 | |

Th e ga me 2. You, the algorithm, chooses a random hash
h,= Most_significant_digit function h: U - {0, ...,9}. Choose it
h, = Least_significant_digit rando

H = tho, by} This adversary
1. An adversary (who knows H) choosé COUld have been

items uq, Uy, ..., u,, € U, and any set

of INSERT/DELETE/SEARCH operatiof fNNOI e adve 'sa r|a| |

those items.

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.
* |like self-balancing binary trees

e The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

How to pick the hash family?

* Definitely not like in that example.
* Let’s go back to that computation from earlier....

£

Expected number of items in u’s bucket?

 E [m(uﬁ = h(y)}

o =1+ XY P{ h(u;) = h(uj)} So the number
. — 1+ . 1/n You will verify of items in ui’s

E_J;” / this on HW bucket is O(1).
. =1+ — < 2.

=\
n@ B

Universe lo *%l m
‘ | COLLISION!

|
s1@yong u

How to pick the hash family?

* Let’s go back to that computation from earlier....
e E| number of things in bucket h(u;) |

. = Y7 P{h(u) = h(y;)}
. = 1+ Zji'P{h(ui)zh(ujD

° <1+ Zj-‘/—'i 1/n
: =1+ <2
n
* All we needed was that this < 1/n. 2§

Strategy

* Pick a small hash family H, so that when | choose h
randomly from H,

. In English: fix any
for all ul, u] E U Wlth ul i u], two elements of U.

The probability

1
PhEH{ h(ul’) — h(u])} S E that they collide

under a random h
in His small.

* A hash family H that satisfies this is
called a universal hash family.

* Then we still get O(1)-sized buckets in
expectation.

* But now the space we need is

log(|H|) bits.
* Hopefully pretty small!

So the whole scheme will be

Choose h randomly a

from a universal hash
family H

We can store h in small space
since H is so small.

Probably
p— these
> >
= buckets will
p— % be pretty
- c* balanced.

Universe U

Universal hash family
Let’s stare at this definition

* His a universal hash family if:
* When h is chosen uniformly at random from H,

for all u;,u €U with u; # uj,

1
Pren{ h(w) = h(w;)} < -

You actually saw this in your pre-lecture exercise!
Toads = hash fns

Ice cream = items

”Like” and “Dislike” = buckets

Slide
Check our understanding...| (probably)
skipped in

* H is a universal hash family if: class
 When h is chosen uniformly at random from H,

for all u,u €U with u; # u;,
1
Pren{ h(u) = h(y;)} < —

* H is [something else] if:
 When h is chosen uniformly at random from H,

forallu € U,forall x € {0, ...,n — 1},

1
Phegti h(u;) = x} < - Are these
different?

Slide skipped in class

Pre-lecture exercise

Statement 1: P[random toad likes vanilla] =%, P[random toad likes chocolate] = %
P[“vanilla” lands in the bucket “like”] = %

Statement 2: P[random toad feels the same about chocolate and vanilla] =%
P [vanilla and chocolate land in the same bucket] =%

Universe = { vanilla, chocolate }
Buckets = { like, dislike }
Toads = different possible ways of distributing items

Slide skipped in class

Pre-lecture exercise

Statement 1: P[random toad likes vanilla] = %, P[random toad likes chocolate | = %4
P[“vanilla” lands in the bucket “like”] = %

Statement 2: P[random toad feels the same about chocolate and vanilla] = %
P [vanilla and chocolate land in the same bucket] =%

(=]
Sy

Universe = { vanilla, chocolate }
Buckets = { like, dislike }
Toads = different possible ways of distributing items

Seem like they might be the same...?

Slide skipped in class

Pre-lecture exercise

Statement 1: P[random toad likes vanilla] = %, P[random toad likes chocolate | = %4
P[“vanilla” lands in the bucket “like”] = %

Statement 2: P[random toad feels the same about chocolate and vanilla] = %
P [vanilla and chocolate land in the same bucket] =%

Universe = { vanilla, chocolate }
Buckets = { like, dislike }

But nol 1is true but 2 is not. Toads = different possible ways of distributing items

Slide skipped in class
Check our understanding...

* His a universal hash family if:
* When his chosen uniformly at random from H,

for all u;,uj €U with u; # u;,
1
PhEH{ h(u;) = h(uj)} = "

* H is [something else] if:
* When h is chosen uniformly at random from H,

forallu € U,forall x € {0, ...,n — 1},

Prepi h(w;) = x} < - These are
different!

* Pick a small hash family H, so that when |
choose h randomly from H,

Exa m p | e for all u,u €U with u; # u;,

1
Pren{ h(u) = h(y)} < -

e Uniformly random hash function h
e [We just saw this]
e [Of course, this one has other downsides...]

* Pick a small hash family H, so that when |
choose h randomly from H,

Non-example forall iy €U with %,
Pren{ h(w;) = h(w)} < -

* h, = Most_significant_digit

* h, = Least_significant_digit

* H=1{h,, h}

* [discussion on board]

A small universal hash family??

* Here’s one:
* Pick a primep = M.
* Define
fap(x) =ax+b modp

hap(x) = fap(x) modn
* Claim:

H={hgp(x) : a€f{l,..,p—1},b€{0,..,p—1}}

is a universal hash family.

Say what?

* Example: M =p=5,n=3
e To draw h from H:

* Pickarandomain{1,..,4}, bin {0,...,4}

* As per the definition:

* fb1(x)=2x+1 mod5
* hp1(x) = f1(x) mod3

/}%\

2

This step just
scrambles stuff up.
No collisions here!

£210Q)

od 3

Thi\ﬁ’ '

s step is the'one 2
where two different ”

elements might collide.

lgnoring why this is a good idea

* Can we store h with small space?

O

e Just need to store two numbers:
e aisin{l,...,p-1}
* bisin{0,...,p-1}
e So about 2log(p) bits
* By our choice of p, that’s O(log(M)) bits.

Compare: direct addressing was M bits!
Twitter example: log(M) = 140 log(128) = 980 vs M = 128140

Another way to see this
using only the size of H

* We have p-1 choices for a, and p choices for b.
* So |H| =p(p-1) = O(M?)

* Space needed to store an element h:
« log(M2) = O(log(M)).

O(M log(n)) bits
per function

O(log(M)) bits
per function

Why does this work?

* This is actually a little complicated.
* There are some hidden slides here about why.
* Also see the lecture notes.

* The thing we have to show is that the collision
probability is not very large.

* Intuitively, this is because:
e for any (fixed, not random) pair x # y in{0,....,p-1},
e If aand b are random,
e ax + b and ay + b are independent random variables. (why?)

This slide skipped in class — here for reference! Convince
yourself that it

Why does this work? willbe the same

for any pair!

* Want to show:
e forall Ui, Uj e U with u; # u;, PhEH{ h(ul) — h(u])} S%
* aka, the probability of any two elements colliding is small.

 Let’s just fix two elements and see an example.
* Let’s consider u;, = 0, u; = 1.

fa,b (x; mod 3

ax + b mod p

This slide skipped in class — here for reference!

The probability that O and 1 collide is small

 Want to show:
* Pren{h(0) = (1)} <+

* Forany y, # vy, € {0,1,2,3,4}, how many a,b are there
so that fa,b(o) = Yo and fa,b(l) = V1 ?

* Claim: it’s exactly one.
a-0+b=y, modp : db
a-1+b=y; modp oraan :

* Proof: solve the system of egs.

1
mod 3 p)
> ——
3
eg, ¥o=3, v, =1 S

This slide skipped in class — here for reference!

The probability that O and 1 collide is small

* Want to show:
* Pren{h(0) = h(1)} <-
* Forany y, # vy, € {0,1,2,3,4}, exactly one pair a,b have
fa,b(o) = Yo and fa,b(l) = V1-
* If 0 and 1 collide it’s b/c there’s some y, # v, so that:

: fa,b(o) = Y and fa,b(l) = Y1-
* Vo = y; mod n.

This slide skipped in class — here for reference!

The probability that O and 1 collide is small
* Want to show:
* Pren{h(0) = h(1)} < —

* The number of a,b so that 0,1 collide under h, , is at most
the number of y, # vy, so that Yo = V1 mod n.

* How many is that?

* We have p choices for y,, then at most 1/n of the remaining p-1 are
valid choices for y; ...

e Soat most p - (p—_l)

n

This slide skipped in class — here for reference!

The probability that O and 1 collide is small

 Want to show:
* Pren{ h(0) = h(1)} < -

n

* The probability (over a,b) that 0,1 collide under h, , is:

* The # of (,b) so that 0,1 collide under h, , is < p - (==).

 Pren{ h(0) = h(1)} < ")

This slide skipped in class — here for reference!

The same argument goes for any pair

forallu;, u; € U withu; # u;,
1
Phent h(uy) = h(u;)} < ”

That’s the definition of a universal hash family.
So this family H indeed does the trick.

But let’s check that it does work

e Back to IPython Notebook for Lecture 8...

M=200, n=10
— 12000 + not good hash family
£ I universal hash family
= @©
> 9 10000 A
X o
5 S
=
S
y— 6000 -
oz
TR
9~ 4000 -
E o
S5 O
zZ +
-} .
o 2000
0 —

00 01 02 03 04 05 06 07 08 09 10

Empirical probability of collision out of 100 trials

So the whole scheme will be

<

W

Choose a and b at random
and form the function h,

We can store h in space
O(log(M)) since we just need
to store a and b.

Probably

p— these
> >

= buckets will

ha,b e Qo be pretty
S— (p]

c* balanced.

Universe U

Outline

 Hash tables are another sort of data structure that
allows fast INSERT/DELETE/SEARCH.

* |like self-balancing binary trees

e The difference is we can get better performance in
expectation by using randomness.

* Hash families are the magic behind hash tables.

* Universal hash families are even more magic.

Recap 4

Want O(1)
INSERT/DELETE/SEARCH

* We are interesting in putting nodes with keys into a
data structure that supports fast
INSERT/DELETE/SEARCH.

* INSERT

* DELETE E
* SEARCH

data structure
HERE IT IS

We StUdied 2. You, the algorithm,

chooses a random hash

th 1S 83 me function h: U - {1, ...,n}.

1. An adversary chooses any n items 0
U, Uy, ..., Uy € U, and any sequence 6
of L INSERT/DELETE/SEARCH
operations on those items.

HASH IT OUT

HEEE- 1

INSERT 13, INSERT 22, INSERT 43, 22
- INSERT 92, INSERT 7, SEARCH 43, 2

DELETE 92, SEARCH 7, INSERT 92

S
n

Uniformly random h was good

6,{29
. br~,” oy
* If we choose h uniformly at random, f"(‘%%/'/,;/fs’c),7
for all U;, Uj € U with U; + Uj, 8/776’// Yis

Pren{ h(w;) = h(u)} < %

* That was enough to ensure that, in expectation,
a bucket isn’t too full.

A bit more formally:

For any sequence of INSERT/DELETE/SEARCH operations
on any n elements of U, the expected runtime (over the
random choice of h) is O(1) per operation.

Uniformly random h was bad

* If we actually want to implement this, we have to
store the hash function h.

* That takes a lot of space!

* We may as well have just
initialized a bucket for every
single item in U.

* Instead, we chose a function
randomly from a smaller set.

We needed a smaller set
that still has this property

* If we choose h uniformly at random,
forall u;,u; € U withu; # u;,

1
Pren{ h(w;) = h(u)} < -

This was all we needed to make
sure that the buckets were
balanced in expectation!

* We call any set with that property a

universal hash family.
* We gave an example of a really small one © ﬂ

Conclusion:

* We can build a hash table that supports
INSERT/DELETE/SEARCH in O(1) expected time,

* if we know that only n items are every going to show up,
where n is waaaayyyyyy less than the size M of the universe.

* The space to implement this hash table is

O(n log(M)) bits.
* O(n) buckets
e O(n) items with log(M) bits per item
* O(log(M)) to store the hash fn.

* M is waaayyyyyy bigger than n, but log(M) probably isn’t.

That’s it for data structures
(for now)

Achievement unlocked

Data Structure: RBTrees and Hash Tables

Now we can use these going forward!

Next Time
e Graph algorithms!

Before Next T

lecture exercise for Lecture 9
* |Intro to graphs

° Pre

