
Lecture	9
Graphs,	BFS	and	DFS



Announcements!

• HW4	due Friday

• MIDTERM in	class,	Monday	10/30.

• That’s	1	week	from	today.	Please	show	up.

• During	class,	1:30-2:50

• If	your	last	name	is	A-M:	370-370	(here)

• If	your	last	name	is	N-V:	160-124

• If	your	last	name	is	W-Z:	160-323

• You	may	bring	one	double-sided	letter-size	page	of	notes,	
that	you	have	prepared	yourself.		

• Any	material	through	Hashing	(Lecture	8)	is	fair	game.

• Practice	exams	on	the	website

• Review	Session	tomorrow	in	Section



Roadmap

Graphs!

Asymptotic	

Analysis

Dynamic	

ProgrammingGreedy	Algs

MIDTERM

The

Future!

More	detailed	schedule	on	the	website!



Outline

• Part	0:	Graphs	and	terminology

• Part	1:	Depth-first	search	

• Application:	topological	sorting

• Application:	in-order	traversal	of	BSTs

• Part	2:	Breadth-first	search

• Application:	shortest	paths

• Application	(if	time):	is	a	graph	bipartite?



Part	0:	Graphs



Graphs

Graph	of	the	internet	

(circa	1999…it’s	a	lot	

bigger	now…)



Graphs

Citation	graph	of	

literary	theory	

academic	papers



Graphs

Theoretical	Computer	

Science	academic	

communities



Graphs
Game	of	Thrones	Character	

Interaction	Network



Graphs jetblue flights



Graphs
Complexity	Zoo

containment	graph



Graphs debian dependency	(sub)graph



Graphs

Immigration	

flows



Graphs
Potato	trade



Graphs

Soybeans

Water



Graphs
Graphical	models



Graphs

What	eats	what	in	

the	Atlantic	ocean?



Graphs Neural	connections	

in	the	brain



Graphs

•There	are	a	lot	of	graphs.

• We	want	to	answer	questions	about	them.
• Efficient	routing?

• Community	detection/clustering?

• From	pre-lecture	exercise:
• Computing	Bacon	numbers

• Signing	up	for	classes	without	violating	pre-req constraints

• How	to	distribute	fish	in	tanks	so	that	none	of	them	will	fight.

• This	is	what	we’ll	do	for	the	next	several	lectures.



Undirected	Graphs

• Has	vertices and	edges

• V	is	the	set	of	vertices

• E	is	the	set	of	edges

• Formally,	a	graph	is	G	=	(V,E)

• Example

• V	=	{1,2,3,4}

• E	=	{	{1,3},	{2,4},	{3,4},	{2,3}	}

1

2

3

4

• The	degree	 of	vertex	4	is	2.		

• There	are	2	edges	coming	out.

• Vertex	4’s neighbors are	2	and	3

G	=	(V,E)	



Directed	Graphs

• Has	vertices and	edges

• V	is	the	set	of	vertices

• E	is	the	set	of	DIRECTED edges

• Formally,	a	graph	is	G	=	(V,E)

• Example

• V	=	{1,2,3,4}

• E	=	{	(1,3),	(2,4),	(3,4),	(4,3),	(3,2)	}

1

2

3

4
G	=	(V,E)	

• The	in-degree of	vertex	4	is	2.

• The	out-degree of	vertex	4	is	1.

• Vertex	4’s incoming	neighbors	are	2,3	

• Vertex	4’s	outgoing	neighbor is	3.



How	do	we	represent	graphs?

• Option	1:	adjacency	matrix

1

2

3

4

1										2											3											4

1
					2

						3
						4

0 0

0 0

1 0

1 1

1 1

0 1

0 1

1 0

	



How	do	we	represent	graphs?

• Option	1:	adjacency	matrix

1

2

3

4

1										2											3											4

1
					2

						3
						4

1 0

0 0

1 0

1 1

1 1

0 1

0 1

1 0

	



How	do	we	represent	graphs?

• Option	1:	adjacency	matrix

Destination

1										2											3											4

1
						2

						3
						4

S
o
u
rce

0 0

0 0

1 0

0 1

0 1

0 0

0 1

1 0

	

1

2

3

4



How	do	we	represent	graphs?

• Option	2:	linked	lists.

1

2

3

4

How	would	you	

modify	this	for	

directed	graphs?
4’s	neighbors	are	

2	and	3

1 2 3 4

3 4 1

4

2

33

2



In	either	case

• Vertices	can	store	other	information

• Attributes	(name,	IP	address,	…)

• helper	info	for	algorithms	that	we	will	perform	on	the	
graph

• Want	to	be	able	to	do	the	following	operations:

• Edge	Membership:	Is	edge	e	in	E?

• Neighbor	Query:	What	are	the	neighbors	of	vertex	v?



Trade-offs

Edge	membership
Is	e	=	{v,w}	in	E?

Neighbor	query
Give	me	v’s	neighbors.

Say	there	are	n	vertices	

and	m	edges.

Space	requirements

1 0

0 0

1 0

1 1

1 1

0 1

0 1

1 0

	

1 2 3 4

3 4 1

4

2

33

O(1)

O(n)

O(deg(v))	or

O(deg(w))

O(deg(v))

O(n2) O(n	+	m)
We’ll	assume	this	

representation	for	

the	rest	of	the	class

See	Lecture	9	IPython notebook	for	the	actual	

data	structure	that	we	will	be	using!



Part	1:	Depth-first	search



How	do	we	explore	a	graph?

1

2

3

4

5

8

6
7

At	each	node,	you	can	get	a	list	of	neighbors,	

and	choose	to	go	there	if	you	want.



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	chalk	and	a	piece	of	string

Not	been	there	yet

Been	there,	haven’t	

explored	all	the	

paths	out.

Been	there,	have	

explored	all	the	

paths	out.

start



Depth	First	Search	
Exploring	a	labyrinth	with	pseudocode

• Each	vertex	keeps	track	of	whether	it	is:

• Unvisited

• In	progress

• All	done

• Each	vertex	will	also	keep	track	of:

• The	time	we	first	enter	it.

• The	time	we	finish	with	it	and	mark	it	all	done.

You	might	have	seen	other	ways	to	implement	DFS	than	what	we	

are	about	to	go	through.		This	way	has	more	bookkeeping,	but	more	

intuition	– also,	the	bookkeeping	will	be	useful	later!



Depth	First	Search

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

w

currentTime =	0



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

currentTime =	1

w



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

currentTime =	1

w



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

Start:	1

currentTime =	2

w



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

Start:	1

Takes	until	

currentTime =	20

currentTime =	20



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

Start:	1
End:	21

Takes	until	

currentTime =	20

currentTime =	21

w



Depth	First	Search	

A

C

D

• DFS(w,	currentTime):

• w.startTime =	currentTime

• currentTime ++

• Mark	w	as	 .

• for v	in	w.neighbors:

• if	v	is	 :

• currentTime

=	DFS(v,	currentTime)

• currentTime ++

• w.finishTime =	currentTime

• Mark	w	as	

• return currentTime

unvisited

in	progress

all	done

Start:0

Start:	1
End:	21

etc

Takes	until	

currentTime =	20

currentTime =	21

w



DFS	finds	all	the	nodes	reachable	
from	the	starting	point

start

One	application:	finding	

connected	components.

In	an	undirected	graph,	this	is	

called	a	connected	component.



To	explore	the	whole	graph

• Do	it	repeatedly!

start

start



Why	is	it	called	depth-first?

• We	are	implicitly	building	a	tree:

• And	first we	go	as	deep as	we	can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F D

E

Call	this	the	

“DFS	tree”



Running	time
To	explore	just	the	connected	component	we	started	in

• We	look	at	each	edge	only	once.

• And	basically	don’t	do	anything	else.

• So…

O(m)

• (Assuming	we	are	using	the	linked-list	representation)

• (Details	on	board)



Running	time
To	explore	the	whole	thing

• Explore	the	connected	components	one-by-one.

• This	takes	time	[on	board]

O(n	+	m)

or

Here	the	running	time	is	

O(m)	like	before
Here	m=0	but	it	still	takes	time	O(n)	to	

explore	the	graph.



You	check:

Siggi the	studious	stork

DFS	works	fine	on	directed	graphs	too!

A

C

B

Only	walk	to	C,	not	to	B.



Pre-lecture	exercise

• How	can	you	sign	up	for	classes	so	that	you	never	
violate	the	pre-req requirements?

• More	practically,	given	a	package	dependency	
graph,	how	do	you	install	packages	in	the	correct	
order?

tar

coreutils

dpkg

libbz2

libselinux1

multiarch

-support



Application:	topological	sorting

• Question:	in	what	order	should	I	install	packages?

tar

coreutils

dpkg

libbz2

libselinux1

multiarch

-support

Suppose	the	dependency	graph	has	no	cycles:	

it	is	a	Directed	Acyclic	Graph	(DAG)



Can’t	always	eyeball	it.



Let’s	do	DFS

tar

coreutils

dpkg

libbz2

libselinux1

multiarch

-support

start:2

start:0

start:1

start:3

finish:4

finish:5
finish:6

finish:8

start:7

start:9

finish:10

finish:11

Discussion	and	

observations	on	board.



Finish	times	seem	useful

A B

Claim: In	general,	we’ll	always	have:

Suppose	the	underlying	

graph	has	no	cycles

finish:	[smaller]finish:	[larger]

To	understand	why,	let’s	go	back	to	that	DFS	tree.



A	more	general	statement	
(this	holds	even	if	there	are	cycles)

This	is	called	the	“parentheses	theorem”	in	CLRS

• If	v	is	a	descendant	of	w	in	this	tree:

• If	w	is	a	descendant	of	v	in	this	tree:

• If	neither	are	descendants	of	each	other:

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

w.start w.finishv.start v.finish

(or	the	other	way	around)

(check	this	

statement	

carefully!)

w

v

w

v

timeline



So	to	prove	this	->
If

Then	B.finishTime <	A.finishTime

A B

Suppose	the	underlying	

graph	has	no	cycles

• Case	1:	B	is	a	descendant	of	A	in	the	

DFS	tree.

• Then

• aka,	B.finishTime <	A.finishTime.

A.startTime

A.finishTimeB.startTime

B.finishTime

A

B



So	to	prove	this	->
If

Then	B.finishTime <	A.finishTime

A B

Suppose	the	underlying	

graph	has	no	cycles

• Case	2:	B	is	a	NOT descendant	of	A	in	the	

DFS	tree.

• Then	we	must	have	explored	B	before	A.
• Otherwise	we	would	have	gotten	to	B	from	A,	and	B	

would	have	been	a	descendant	of	A	in	the	DFS	tree.

• Then

• aka,	B.finishTime <	A.finishTime.

A.startTime

A.finishTime
B.startTime

B.finishTime

B

A

NOTE:	In	class	this	case	was	missing!!!	

I	messed	up	L

But	it’s	here	now.



Back	to	this	problem

• Question:	in	what	order	should	I	install	packages?

tar

coreutils

dpkg

libbz2

libselinux1

multiarch

-support

Suppose	the	dependency	graph	has	no	cycles:	

it	is	a	Directed	Acyclic	Graph	(DAG)



In	reverse	order	of	finishing	time

• Do	DFS

• Maintain	a	list	of	packages,	in	the	
order	you	want	to	install	them.

• When	you	mark	a	vertex	as	all	done,	
put	it	at	the	beginning of	the	list.

start:3

finish:4
tar

coreutils

dpkg

libbz2

libselinux1

multiarch

-support

start:2

start:0

start:1
finish:5

finish:6

finish:8
start:7

start:9

finish:10

finish:11

• dpkg

• coreutils

• tar

• libbz2

• libselinux1

• multiarch_support



For	implementation,	
see	IPython notebook



What	did	we	just	learn?

• DFS	can	help	you	solve	the	topological 

sorting problem

• That’s	the	fancy	name	for	the	problem	of	finding	an	
ordering	that	respects	all	the	dependencies

• Thinking	about	the	DFS	tree	is	helpful.



Example:	

A

B

C

D

Unvisited

In	progress

All	done

Start:0

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

Start:2

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

Start:2

Start:3

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

Start:3

Leave:4

Start:2

B

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

Start:3

Leave:4

Start:2

Leave:5

BD

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Start:1

Leave:	6

Start:3

Leave:4

Start:2

Leave:5

BDC

This	example	skipped	in	

class	– here	for	reference.



Example

A

B

C

D

Unvisited

In	progress

All	done

Start:0

Leave:	7

Start:1

Leave:	6

Start:3

Leave:4

Start:2

Leave:5

BDCA

Do	them	in	this	order:

This	example	skipped	in	

class	– here	for	reference.



Another	use	of	DFS

• In-order	enumeration	of	binary	search	trees

42 8

7

1

3

5

Instead	of	outputting	a	node	

when	you	are	done	with	it,	

output	it	when	you	are	done	

with	the	left	child	and	before	

you	begin	the	right	child.

Given	a	binary	search	

tree,	output	all	the	

nodes	in	order.



Part	2:	breadth-first	search



How	do	we	explore	a	graph?

1

If	we	can	fly

2

3

4

8
6

5

9

7



Breadth-First	Search
Exploring	the	world	with	a	bird’s-eye	view

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
Exploring	the	world	with	a	bird’s-eye	view

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
Exploring	the	world	with	a	bird’s-eye	view

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps

start



Breadth-First	Search
Exploring	the	world	with	a	bird’s-eye	view

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
Exploring	the	world	with	a	bird’s-eye	view

start

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
Exploring	the	world	with	pseudocode

• Set	Li =	[]	for	i=1,…,n

• L0 =	{w},	where	w	is	the	start	node

• For i =	0,	…,	n-1:

• For u	in	Li:

• For	each	v	which	is	a	neighbor	of	u:

• If	v	isn’t	yet	visited:

• mark	v	as	visited,	and	put	it	in	Li+1

Li is	the	set	of	nodes	

we	can	reach	in	i

steps	from	w

Go	through	all	the	nodes	

in	Li and	add	their	

unvisited	neighbors	to	Li+1

-

L1

L2

L3

L0

Same	disclaimer	as	for	DFS:	you	may	have	seen	other	ways	to	implement	this,	

this	will	be	convenient	for	us.



BFS	also	finds	all	the	nodes	
reachable	from	the	starting	point

start

It	is	also	a	good	way	to	find	all	

the	connected	components.



Running	time
To	explore	the	whole	thing

• Explore	the	connected	components	one-by-one.

• Same	argument	as	DFS:	running	time	is

O(n	+	m)

• Like	DFS,	BFS	also	works	fine	on	directed	graphs.

Siggi the	Studious	Stork

Verify	these!



Why	is	it	called	breadth-first?

• We	are	implicitly	building	a	tree:

• And	first we	go	as	broadly as	we	can.

A

D

B

C

E

G

F

YOINK!
A

B

C

G

F
D

E

Call	this	the	

“BFS	tree”

L3

L1

L2

L0



Pre-lecture	exercise

• What	Samuel	L.	Jackson’s	Bacon	number?

Samuel	L.

JacksonKevin

Bacon

Ariana	Richards

(Answer:	2)



I	wrote	the	pre-lecture	exercise	
before	I	realized	that	I	really	wanted	
an	example	with	distance	3

Kevin

Bacon

Oliver	Sacks It	is	really	hard	to	find	

people	with	Bacon	

number	3!

Tilda	

Swinton

James	

McAvoy



Application:	shortest	path

w

v

• How	long	is	the	shortest	path	between	w	and	v?



Application:	shortest	path

w

v

• How	long	is	the	shortest	path	between	w	and	v?

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps

It’s	three!



To	find	the	distance between	w	
and	all	other	vertices	v

• Do	a	BFS	starting	at	w

• For	all	v	in	Li
• The	shortest	path	between	w	
and	v	has	length	i

• A	shortest	path	between	w	and	
v	is	given	by	the	path	in	the	BFS	
tree.

• If	we	never	found	v,	the	
distance	is	infinite.

The	distance between	two	

vertices	is	the	length	of	the	

shortest	path	between	them.

w

v Call	this	the	

“BFS	tree”

L3

L1

L2

L0

Gauss	has	no	

Bacon	number



Proof	idea	(on	board)

w

v

Not	been	there	

Can	reach	there	

in	one	step

Can	reach	there	

in	two	steps

Can	reach	there	

in	three	steps

Can	reach	there	

in	zero	steps



Proof	idea

• Suppose	by	induction it’s	true	for	vertices	in	L0,	L1,	L2
• For	all	i <	3,	the	vertices	in	Li have	distance	i from	v.	

• Want	to	show:	it’s	true	for	vertices	of	distance	3	also.

• aka,	the	shortest	path	between	w	and	v	has	length	3.

w

v

Just	the	idea…see	

CLRS	for	details!

Not	been	there	

Can	reach	there	

in	one	step

Can	reach	there	

in	two	steps

Can	reach	there	

in	three	steps

Can	reach	there	

in	zero	steps

• Well,	it	has	distance	
at	most	3

• Since	we	just	found	a	
path	of	length	3

• And	it	has	distance	at	
least	3

• Since	if	it	had	distance	
i <	3,	it	would	have	
been	in	Li.

THIS	SLIDE	

SKIPPED	IN	CLASS



• The	BFS	tree	is	useful	for	computing	distances	
between	pairs	of	vertices.

• We	can	find	the	shortest	path	between	u	and	v	in	
time	O(m).

The	BSF	tree	is	also	helpful	for:
• Testing	if	a	graph	is	bipartite	or	not.

What	did	we	just	learn?



Pre-lecture	exercise:	fish

• Some	pairs	of	species	will	fight	if	put	in	the	same	tank.

• You	only	have	two	tanks.

• Connected	fish	will	fight.



Application:	testing	if	a	graph	is	
bipartite

• Bipartite	means	it	looks	like	this:

Can	color	the	vertices	red	

and	orange	so	that	there	

are	no	edges	between	any	

same-colored	vertices

Example:

are	students

are	classes

if	the	student	is	

enrolled	in	the	class

Example:

are	in	tank	A

are	in	tank	B

if	the	fish	fight



Is	this	graph	bipartite?



How	about	this	one?



How	about	this	one?



This	one?



Solution	using	BFS

• Color	the	levels	of	the	BFS	tree	in	
alternating	colors.

• If	you	never	color	two	connected	
nodes	the	same	color,	then	it	is	
bipartite.

• Otherwise,	it’s	not.

A

B

C

G

F
D

E



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Breadth-First	Search
For	testing	bipartite-ness

Not	been	there	yet

Can	reach	there	in	

one	step

Can	reach	there	in	

two	steps

start

Can	reach	there	in	

three	steps

Can	reach	there	in	

zero	steps



Hang	on	now.

• Just	because	this coloring	doesn’t	
work,	why	does	that	mean	that	
there	is	no coloring	that	works?

Plucky	the	

pedantic	penguin

I	can	come	up	

with	plenty	of	bad	

colorings	on	this	

legitimately	

bipartite	graph…



Some	proof	required

• If	BFS	colors	two	neighbors	the	same	color,	then	it’s	
found	an	cycle	of	odd	length	in	the	graph.

start

Ollie	the	over-achieving	ostrich

Make	this	proof	

sketch	formal!

A

B

C

G

F
D

E

There	must	

be	an	even	

number	of	

these edges

This	one	extra	

makes	it	odd



Some	proof	required

• If	BFS	colors	two	neighbors	the	same	color,	then	it’s	
found	an	cycle	of	odd	length	in	the	graph.

• So	the	graph	has	an	odd	cycle	as	a	subgraph.

• But	you	can	never color	an	odd	cycle	with	two	colors	so	
that	no	two	neighbors	have	the	same	color.

• [Fun	exercise!]

Ollie	the	over-achieving	ostrich

Make	this	proof	

sketch	formal!

• So	you	can’t	legitimately	

color	the	whole	graph	

either.

• Thus	it’s	not	bipartite.



What	did	we	just	learn?

BFS	can	be	used	to	detect	
bipartite-ness	in	time	O(n	+	m).



Outline

• Part	0:	Graphs	and	terminology

• Part	1:	Depth-first	search	

• Application:	topological	sorting

• Application:	in-order	traversal	of	BSTs

• Part	2:	Breadth-first	search

• Application:	shortest	paths

• Application	(if	time):	is	a	graph	bipartite?

Recap



Recap

• Depth-first	search

• Useful	for	topological	sorting

• Also	in-order	traversals	of	BSTs

• Breadth-first	search

• Useful	for	finding	shortest	paths

• Also	for	testing	bipartiteness

• Both	DFS,	BFS:

• Useful	for	exploring	graphs,	finding	connected	
components,	etc



Still	open	(next	few	classes)

• We	can	now	find	components	in	undirected	graphs…

• What	if	we	want	to	find	strongly	connected	components	in	
directed	graphs?

• How	can	we	find	shortest	paths	in	weighted graphs?

• What	is	Samuel	L.	Jackson’s	Erdos number?

• (Or,	what	if	I	want	everyone’s	everyone-else	number?)



Next	Time

• Strongly	Connected	Components

• Pre-lecture	exercise:	Strongly	Connected	What-Now?

Before Next	Time


