Lecture 9

Graphs, BFS and DFS

Announcements!

- HW4 due Friday
- **MIDTERM** in class, Monday 10/30.
 - That's 1 week from today. Please show up.
 - During class, 1:30-2:50
 - If your last name is A-M: 370-370 (here)
 - If your last name is N-V: 160-124
 - If your last name is W-Z: 160-323
 - You may bring one double-sided letter-size page of notes, that you have prepared yourself.
 - Any material through Hashing (Lecture 8) is fair game.
 - Practice exams on the website
 - Review Session tomorrow in Section

More detailed schedule on the website!

Roadmap

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
 - Application: topological sorting
 - Application: in-order traversal of BSTs
- Part 2: Breadth-first search
 - Application: shortest paths
 - Application (if time): is a graph bipartite?

Part 0: Graphs

Citation graph of literary theory academic papers

Theoretical Computer Science academic communities

Communities within the co-authors of Christos H. Papadimitriou

Game of Thrones Character Interaction Network

Graphs debian dependency (sub)graph libbz2-1.0 libselinux1 (>= 1.32) (>= 1.32)(>= 1:2.4.46-5)multiarch-support timeout coreutils (>= 1.15.4)libattr1 [dpkg] (>= 2.4.46-3) (>= 5.93-1)(>= 2.2.51-5) install-info libacl1-kerberos4kth libacl1 dpkg (>= 1.23) bzip2 liblzma5 tar (>= 5.1.1alpha+20110809) ncompress xz-utils xz-lzma apt

Potato trade

Graphs

Graphical models

What eats what in the Atlantic ocean?

A simplified food web for the Northwest Atlantic. ID IMMA

Neural connections in the brain

• There are a lot of graphs.

- We want to answer questions about them.
 - Efficient routing?
 - Community detection/clustering?
 - From pre-lecture exercise:
 - Computing Bacon numbers
 - Signing up for classes without violating pre-req constraints
 - How to distribute fish in tanks so that none of them will fight.
- This is what we'll do for the next several lectures.

Undirected Graphs

- Has vertices and edges
 - V is the set of vertices
 - E is the set of edges
 - Formally, a graph is G = (V,E)

- Example
 - V = {1,2,3,4}
 - $E = \{ \{1,3\}, \{2,4\}, \{3,4\}, \{2,3\} \}$
 - The **degree** of vertex 4 is 2.
 - There are 2 edges coming out
 - Vertex 4's neighbors are 2 and 3

Directed Graphs

- Has vertices and edges
 - V is the set of vertices
 - E is the set of **DIRECTED** edges
 - Formally, a graph is G = (V,E)
- Example
 - V = {1,2,3,4}
 - E = { (1,3), (2,4), (3,4), (4,3), (3,2) }

- The **in-degree** of vertex 4 is 2.
- The **out-degree** of vertex 4 is 1.
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3.

• Option 1: adjacency matrix

• Option 1: adjacency matrix

• Option 1: adjacency matrix

L

3

• Option 2: linked lists.

In either case

- Vertices can store other information
 - Attributes (name, IP address, ...)
 - helper info for algorithms that we will perform on the graph
- Want to be able to do the following operations:
 - Edge Membership: Is edge e in E?
 - **Neighbor Query**: What are the neighbors of vertex v?

Trac	le-offs	
nac		

Generally better for **sparse** graphs

Say there are n vertices and m edges.	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Edge membership Is e = {v,w} in E?	O(1)	O(deg(v)) or O(deg(w))
Neighbor query Give me v's neighbors.	O(n)	O(deg(v))
Space requirements	O(n²)	O(n + m)
See Lecture 9 IPython notebook for data structure that we will be using	We'll assume this representation for the rest of the class	

Part 1: Depth-first search

How do we explore a graph?

5

6

8

At each node, you can get a list of neighbors, and choose to go there if you want.

3

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search Exploring a labyrinth with chalk and a piece of string

Not been there yet

- Been there, haven't explored all the paths out.
- Been there, have explored all the paths out.

Exploring a labyrinth with pseudocode

- Each vertex keeps track of whether it is:
 - Unvisited (
 - In progress
 - All done 🔵

- Each vertex will also keep track of:
 - The time we first enter it.
 - The time we finish with it and mark it **all done**.

You might have seen other ways to implement DFS than what we are about to go through. This way has more bookkeeping, but more intuition – also, the bookkeeping will be useful later!

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

- **DFS**(w, currentTime):
 - w.startTime = currentTime
 - currentTime ++
 - Mark w as in progress.
 - for v in w.neighbors:
 - if v is unvisited:
 - currentTime
 - = **DFS**(v, currentTime)
 - currentTime ++
 - w.finishTime = currentTime
 - Mark w as all done
 - return currentTime

DFS finds all the nodes reachable from the starting point

In an undirected graph, this is called a **connected component.**

One application: finding connected components.

To explore the whole graph

• Do it repeatedly!

Why is it called depth-first?

• We are implicitly building a tree:

Running time

To explore just the connected component we started in

- We look at each edge only once.
- And basically don't do anything else.
- So...

O(m)

- (Assuming we are using the linked-list representation)
- (Details on board)

Running time To explore the whole thing

Here m=0 but it still takes time O(n) to

explore the graph.

- Explore the connected components one-by-one.
- This takes time [on board]

O(n + m)

or

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork

Pre-lecture exercise

- How can you sign up for classes so that you never violate the pre-req requirements?
- More practically, given a package dependency graph, how do you install packages in the correct order?

Application: topological sorting

• Question: in what order should I install packages?

Can't always eyeball it.

Let's do DFS

Discussion and observations on board.

Suppose the underlying graph has no cycles graph has no cycles

Claim: In general, we'll always have:

To understand why, let's go back to that DFS tree.

So to prove this ->

Then B.finishTime < A.finishTime

Suppose the underlying graph has no cycles

lf

А

• **Case 1**: B is a descendant of A in the DFS tree.

- Then
 B.startTime
 A.finishTime
 A.startTime
 B.finishTime
- aka, B.finishTime < A.finishTime.

So to prove this ->

NOTE: In class this case was missing!!! I messed up ☺ But it's here now. Then B.finishTime < A.finishTime

Α

В

Suppose the underlying graph has no cycles

 Case 2: B is a NOT descendant of A in the DFS tree.

lf

- Then we must have explored B before A.
 - Otherwise we would have gotten to B from A, and B would have been a descendant of A in the DFS tree.
- Then

aka, B.finishTime < A.finishTime.

Back to this problem

• Question: in what order should I install packages?

In reverse order of finishing time

- Do DFS
- Maintain a list of packages, in the order you want to install them.
- When you mark a vertex as **all done**, put it at the **beginning** of the list.

- dpkg
- coreutils
- tar
- libbz2
- libselinux1
- multiarch_support

For implementation, see IPython notebook

```
In [71]: V = topoSort(G)
for v in V:
    print(v)

dkpg
tar
coreutils
libbz2
libselinux1
multiarch_support
```

What did we just learn?

- DFS can help you solve the **TOPOLOGICAL SORTING PROBLEM**
 - That's the fancy name for the problem of finding an ordering that respects all the dependencies
- Thinking about the DFS tree is helpful.

Example:

This example skipped in class – here for reference.

В Α Start:0 С Start:1 D Start:2

Start:3 В Leave:4 Α Start:0 С Start:1 D Start:2

Start:3 В Leave:4 Α Start:0 С Start:1 D Start:2 Leave:5

Start:3 В Leave:4 Α Start:0 С Start:1 Leave: 6 D Start:2 Leave:5

Start:3 В Leave:4 Α Start:0 Leave: 7 С Start:1 Leave: 6 D Start:2 Leave:5

Example

Do them in this order:

Another use of DFS

• In-order enumeration of binary search trees

Given a binary search tree, output all the nodes **in order**.

Instead of outputting a node when you are done with it, output it when you are done with the left child and before you begin the right child.

Part 2: breadth-first search

Same disclaimer as for DFS: you may have seen other ways to implement this, this will be convenient for us.

Breadth-First Search

Exploring the world with pseudocode

- Set L_i = [] for i=1,...,n
- L₀ = {w}, where w is the start node
- For i = 0, ..., n-1:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn't yet visited:
 - mark v as visited, and put it in L_{i+1}

Go through all the nodes in L_i and add their unvisited neighbors to L_{i+1} L_i is the set of nodes we can reach in i steps from w

BFS also finds all the nodes reachable from the starting point

It is also a good way to find all the **connected components.**

Running time To explore the whole thing

- Explore the connected components one-by-one.
- Same argument as DFS: running time is

O(n + m)

Verify these!

• Like DFS, BFS also works fine on directed graphs.

Siggi the Studious Stork

Why is it called breadth-first?

• We are implicitly building a tree:

• And first we go as broadly as we can.

Pre-lecture exercise

• What Samuel L. Jackson's Bacon number?

(Answer: 2)

I wrote the pre-lecture exercise before I realized that I really wanted an example with distance 3

It is really hard to find people with Bacon number 3!

Application: shortest path

• How long is the shortest path between w and v?

Application: shortest path

• How long is the shortest path between w and v?

To find the distance between w and all other vertices v The distance bet vertices is the ler

- Do a BFS starting at w
- For all v in L_i
 - The shortest path between w and v has length i
 - A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.

Gauss has no Bacon number

The **distance** between two vertices is the length of the shortest path between them.

Proof idea (on board)

Proof idea

Just the idea...see CLRS for details!

- Suppose by induction it's true for vertices in L_0, L_1, L_2
 - For all i < 3, the vertices in L_i have distance i from v.
- Want to show: it's true for vertices of distance 3 also.
 - aka, the shortest path between w and v has length 3.
- Well, it has distance at most 3
 - Since we just found a path of length 3
- And it has distance at least 3
 - Since if it had distance i < 3, it would have been in Li.

What did we just learn?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time O(m).
- The BSF tree is also helpful for:
- Testing if a graph is bipartite or not.

Pre-lecture exercise: fish

- Some pairs of species will fight if put in the same tank.
- You only have two tanks.
- Connected fish will fight.

Application: testing if a graph is bipartite

• Bipartite means it looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

if the student is

enrolled in the class

Is this graph bipartite?

How about this one?

How about this one?

This one?

Solution using BFS

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Breadth-First Search For testing bipartite-ness

Breadth-First Search For testing bipartite-ness

Hang on now.

 Just because this coloring doesn't work, why does that mean that there is no coloring that works?

I can come up with plenty of bad colorings on this legitimately bipartite graph...

Plucky the pedantic penguin

Some proof required

Ollie the over-achieving ostrich

• If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.

Some proof required

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.
- So the graph has an odd cycle as a subgraph.
- But you can **never** color an odd cycle with two colors so that no two neighbors have the same color.
 - [Fun exercise!]
- So you can't legitimately color the whole graph either.
- Thus it's not bipartite.

What did we just learn?

BFS can be used to detect bipartite-ness in time O(n + m).

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
 - Application: topological sorting
 - Application: in-order traversal of BSTs
- Part 2: Breadth-first search
 - Application: shortest paths
 - Application (if time): is a graph bipartite?

Recap

- Depth-first search
 - Useful for topological sorting
 - Also in-order traversals of BSTs
- Breadth-first search
 - Useful for finding shortest paths
 - Also for testing bipartiteness
- Both DFS, BFS:
 - Useful for exploring graphs, finding connected components, etc

Still open (next few classes)

- We can now find components in undirected graphs...
 - What if we want to find strongly connected components in directed graphs?
- How can we find shortest paths in weighted graphs?
- What is Samuel L. Jackson's Erdos number?
 - (Or, what if I want everyone's everyone-else number?)

Next Time

Strongly Connected Components

Before Next Time

• Pre-lecture exercise: Strongly Connected What-Now?