Lecture 9

Graphs, BFS and DFS

Announcements!

* HW4 due Friday

 MIDTERM in class, Monday 10/30.

* That’s 1 week from today. Please show up.
* During class, 1:30-2:50

 If your last name is A-M: 370-370 (here)

* If your last name is N-V: 160-124

* If your last name is W-Z: 160-323

* You may bring one double-sided letter-size page of notes,
that you have prepared yourself.

* Any material through Hashing (Lecture 8) is fair game.
* Practice exams on the website
e Review Session tomorrow in Section

More detailed schedule on the website!

Roadmap

Divide and
conguer

Dynamic
Programming

Greedy Algs

MIDTERM

LOn
&est, s

A Min,

Future!

Outline

* Part O: Graphs and terminology

e Part 1: Depth-first search
* Application: topological sorting
* Application: in-order traversal of BSTs

e Part 2: Breadth-first search

e Application: shortest paths
e Application (if time): is a graph bipartite?

Part O: Graphs

Graph of the internet
(circa 1999...it's a lot
bigger now...)

raphs

Citation graph of
literary theory
academic papers

® Davidson D 1884

@ Hardng 5 1887
@ Rony 7 1960 Waker A 1983 @ oS TPIBAIE Lo L 1659
@ Chodorow N 1878

@ Faron Frantz Wretchod Earth .‘ 1081
@ Witiganatein L Phios Investgation 1684 aggrman Liker
@ Siapin 81085 : P %"W ot = 85 7s
Ceroau - ’ ® Fryo M 18983
M&M‘m & Daly M 1978

 Latour B s Sandra M 1579 i sk wumsml m‘*’w"w‘m & Snon A eham C 1980

@ Andor
Benjamin W 1972 &"t‘. mﬁn

s @ Biver R 1084
im’/\mwma
© Latour B 1567 Bourdieu Prorre 1984 .MM| {
@ Srowattor Eloine 1877

Benjmin Ji a 1568
, 3 nk':-‘/f:sn

4

¥ Beryamin Watar 1677
@ Mercus G 1986

L]
. Coloons abaiopaenet) 1974
1580 - Siverman K 1063

@ Cilfoet J 1688 Noncy 1978% P
© Goodman Nelson 1978 @ fiiey 1568) Ta;‘m:‘m
A0 \¥iggicon D W 1571
® Goodman N 1978 4 8 1952 il
SN 3 { = Moo SRR S G B 1 1002
@ Citlorg Jurfass H 1578 2 ¢ p W -~
@ Sais v 1969 OMVLMW’ : i b e 1)
P . 1 ' Mohanty G T 2003
®Fans 1889 °."‘:m ; 1..‘, vl ’ [Qeovaliodomsl 1994 1 srey Chances Taioade 1688
@ Paio Reputic » Hem y : ; e o Uma 1607
* @ Grosz Eigim FraserNarcy 1997 YOOI M 1990
@ Boom Harols 1975 .mwmmmm = .‘m'* b} © Buttor Jesith 2000
4 996 Chow Rey 1983 ® Folgp Strskpad s
omﬁmmnm . Appish KA 1991
By i B . Fanon Frantz 4067 1982
| i © GG i ‘g o . < s
.mmim = = Sy o " Bneom Wm|m Sy fotia 1803 @ Caruth Cashy 1996
www 4 Fr-
ak G C 1999
© Both Wayne C 1561 : " Lacan) Eu“w“""
@ Nistotie Rwtorc s A 4
: @ Cutor J 1881 ""\BE7 ; .MJN}%“““ Du::: ?w.lm o (s
& uwm&m‘m 1579/ 3, Jpoccuriha iR
z
. Eﬁalnn OJMFM‘%GM"WF“W @ Pation Pl 1904
e Famir

11 OE Man Paul 1386 ‘um:EtﬂO \ » Jarmesoo Frodi: 1970

@ Foutalhgte) Qi apinas Archaco ® Dolouze Gilos 1650

¥ Kare immanuet Crisque Judgment ‘m"*'v"’!'\wmmnmqmm Gorgo
T] O 4 TT98 kg v (mum “ 2% g Agamsen Giorglo 1968
. b Ja y 1958
& Kant | Geltiqwe Puro Roason &M KGringinsg 2 s “F""W""""? L@ Holer-roazen Daniol 1998
@ Hedoggee Mastin 1962 ! .\meM1
\ 1900 Agamd TN G 2008 o oo alkor 1906
® Qerrga J 2002 © Boriamb N V888 05 1082 B Hardt 2304
® Ooryta Jacques 1974 \ .W&'ﬂp 1958
Gordon Coln 1980 © Derrian TaRREH dauos 1001 Jacaues 1957 e
@ Darrisy JSaciues 2080 & sy 101 ® Nancy Jean-huc 1991
© Butk-morss Susaen 1088 ® Agamben G 1999
® Foucault M Dieciolne Pungh
@ Derrica Jacques 1985
@ Oorrica J 1957
Covel S 1979

@ Cavel Stankey 1562

. = .
L e
Graphs ,
. {Togig, query, ...} [o
L
{meghan, auction, price, ...}
Theoretical Computer .
Science academic o\
L .
communities WO \ o {
°* o / RKIelnberq ’
. 5 N. lmmorllca -
[J '.: o 'Y
{approxim o

\ |
| {approxim, mechan,‘auction, ...}
S, P

Example from DBLP:
Communities within the co-authors of Christos H. Papadimitriou

Game of Thrones Character

G ra p h S Interaction Network

5o m)’ﬁo

Rejtleshirt
Ygrigte

O Qhorin
Crastegy

<« Jon Arryn 2o
Ma‘rcl?lloﬁv‘ Barristan //

255 Daenerys
Rovert Arry o i;’\/ \\.Kraznys

~_—Rhaegar Worm

Rakharo
’ Meera |
Viserys
Jojen 5
Mace
\ ,D-O
P\ X, Ittt — oran
~ Sansaalme _Renlyjme
\ L
= X A AR Ellaria
s o J : AN) 4 Podruik \);A g/
ressen “ ‘ ‘ | ¥ K}eva.s.hae/ °
4 Chataya o
Salladhor ‘ Amory
Shireen

Gendry Ilyn Lancel

G ra p h S jetblue flights

seattle
syracuse N ihgton
rochester 5 boston
. ! 7 -
szca,:l,:e:m salt lake city buffalo ~/'_.‘3“ ' nyc/jfk
an -. : - i, nyciga
san jose e de/dulles
ontario e — /t}‘ |\\ \
long beach <. 5 f’.':)'/l .A. \
san diego \phoenix new orleans °d’"d°/’ o wasf palmbea:ch
> r’tampa 1ves nasson |
. é !
R & fort myers &g || 7/ nevhea |
S fortlauderdale \
""""" it
santiago 3 / | l|
santo domingo l l
mmit-rmhit'

Complexity Zoo

containment graph ,/}f—-:zg‘é‘

r@@. E

—5%—

—— = 2

T oA) A!}A"!'!*’;%%
ilh=s :-a»avjé‘igg-’;\‘\“‘
S\ | % o}o}o’ﬁ‘}vlﬂb‘%z.“
ke S a‘%‘\ll.

= 8 LT/ V’.‘,{g‘&?)};‘v@g‘%{b@w}?«
SRS ST
> TrESm T s s ll
T el R

SEN ? 1< 715
REFED\\F 4

— e

Graphs

libbz2-1.0

debian dependency (sub)graph

libselinuxl1

(>= 1:2.4.46-5)
”'——’—‘———~—-—~___’_,_tnneout
coreutils (>=1.15.4) libattrl /
[dpkg] = 2.4.46-
(>=2.2.51-5) A : i
install-info

libacll

® multiarch-support

libacll-kerberos4kth

dpkg

(>=1.23)

\ wr Joo &

xz-utils

Y

(>=5.1.1alpha+20110809)

G ra p | | S The bilateral flows between 196 countries are estimated from sequen-

tial stock tables (see overleaf for details). They are com-

North The circular plot shows the estimates of directional flows between the
r Ame’i(‘a 50 countries that send andjor receive at least 0.5% of the

g
parable across countries and capture the number "\(_a 5 world's migrants in 2005-10. Tick marks indicate
of People who (hanggd their country of . ?“(\e g gross migration (in + out) in 100,000,
fesidence between mid-2005and @ ¥
mid-2010. 2 :

- ———— —— 0
ggtggaaasaﬂams%ssss%sﬁ — i

’- .
)
@

Sro, O

Immigration
flows

G,
(443 & ﬁlm Em— ﬁ/ %,
“ F ~wxex & & @
§ kS -Ff i g ° g‘w‘,
& & We'

Graphs

World trade in fresh potatoes, flows over 0.1 m US$ average 2005-2009

ARG URY

Potato trade

Soybeans

Water

Graphs

Graphical models

Graphs

What eats what in
the Atlantic ocean?

A smphifad food web fc the Norhwes: Avlantiz. © INMA

Neural connections
in the brain

k-core
9.

Graphs

* There are a lot of graphs.

* We want to answer questions about them.
e Efficient routing?
 Community detection/clustering?

* From pre-lecture exercise:
e Computing Bacon numbers
* Signing up for classes without violating pre-req constraints
* How to distribute fish in tanks so that none of them will fight.

e This is what we’ll do for the next several lectures.

Undirected Graphs 2

* Has vertices and edges o

e \/is the set of vertices

* Eisthe set of edges e

* Formally, a graph is G = (V,E)

G = (V,E)
* Example e

* V={1,2,3,4}
* E={1{1,3},12,4}, 13,4}, 12,3} }

* The degree of vertex 4 is 2.
* There are 2 edges coming out
* Vertex 4’s neighbors are 2 and 3

Directed Graphs

* Has vertices and edges
e \/is the set of vertices

* Eisthe set of DIRECTED edges

* Formally, a graph is G = (V,E)

* Example
* V={1,23,4}

/
&
7

* E=1(1,3),(2,4),(3,4), (4,3), (3,2) }

The in-degree of vertex 4 is 2.

The out-degree of vertex 4 is 1.
Vertex 4’s incoming neighbors are 2,3
Vertex 4’s outgoing neighbor is 3.

How do we represent graphs?

e Option 1: adjacency matrix

v € ¢ 1

O RLRO O-
—_ R, O O
—_ O W

How do we represent graphs?

e Option 1: adjacency matrix

v € ¢ 1

O RO MR-
—_m O O
—_ O W

How do we represent graphs?

e Option 1: adjacency matrix

Destination
1

92IN0§
[4
-
O RO OV
—_ O O =W

How do we represent graphs?

* Option 2: linked lists.

1 2 3

!

4
g How would you

. ify this f
4’s neighbors are mOd' y this for
directed graphs?
2and 3

W=

St

In either case

* Vertices can store other information
e Attributes (name, IP address, ...)

* helper info for algorithms that we will perform on the
graph

* Want to be able to do the following operations:
* Edge Membership: Is edge e in E?
* Neighbor Query: What are the neighbors of vertex v?

Genera”y better

Trade-offs "SParse grappq

Say there are n vertices (1) 8 1 (1)} g:) I S8

and m edges. 1101 z i
01 1 0 S

Edge membership O(deg(v

Is e ={v,w}inE? O(1) Ozdeggvg)))or

Neighbor query

Give me Vv’s neighbors.

O(n)

O(deg(v))

Space requirements

O(n?)

See Lecture 9 IPython notebook for the actual

data structure that we will be using!

O(n + m)

We’ll assume this
representation for
the rest of the class

Part 1: Depth-first search

How do we explore a graph?

At each node, you can get a list of neighbors,
and choose to go there if you want.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

O Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

Q Not been there yet

' Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with chalk and a piece of string

O Not been there yet

‘ Been there, haven’t
explored all the
paths out.

Been there, have
explored all the
paths out.

Depth First Search
Exploring a labyrinth with pseudocode

* Each vertex keeps track of whether it is:
* Unvisited ()

* In progress ()
* Alldone @

* Each vertex will also keep track of:
 The time we . S

e The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we
are about to go through. This way has more bookkeeping, but more
intuition — also, the bookkeeping will be useful later!

Depth First Search

currentTime = 0 * DFS(w, currentTime):
* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime ++
w.finishTime = currentTime
Mark w as all done
* return currentTime

Depth First Search

currentTime = 1 * DFS(w, currentTime):
* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime ++
w.finishTime = currentTime
Mark w as all done
* return currentTime

Depth First Search

currentTime = 1 * DFS(w, currentTime):
* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
* currentTime ++
w.finishTime = currentTime
Mark w as all done
* return currentTime

Start:0

Depth First Search

currentTime = 2 * DFS(w, currentTime):
* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime ++
w.finishTime = currentTime

() unvisited Mark w as all done
O in progress * return currentTime

Start:0

Depth First Search

currentTime = 20 * DFS(w, currentTime):
* w.startTime = currentTime
currentTime ++
 Mark w as in progress
for vin w.neighbors:
e ifvis
* currentTime
= DFS(v, currentTime)
Start: 1 * currentTime ++
w.finishTime = currentTime

@ unvisited Mark w as all done
return currentTime

Start:0

5
©
=
@)
0Q
=
()
wn
(70}
[J

Takes until
currentTime = 20 . all done

Depth First Search

currentTime = 21 * DFS(w, currentTime):

* w.startTime = currentTime
currentTime ++

 Mark w as in progress

for vin w.neighbors:

e ifvis
Start:0 |
e currentTime
W = DFS(v, currentTime)
Start: 1 e currentTime ++

End: 21

O unvisited
O in progress
. all done

w.finishTime = currentTime
Mark w as all done
return currentTime

Takes until
currentTime = 20

Depth First Search

currentTime = 21

Start:0

Start: 1
End: 21

O unvisited
O in progress
. all done

Takes until
currentTime = 20

* DFS(w, currentTime):

* w.startTime = currentTime
* currentTime ++
 Mark w as in progress
* for vin w.neighbors:
e ifvis
* currentTime

= DFS(v, currentTime)

* currentTime ++
w.finishTime = currentTime
Mark w as all done
* return currentTime

DFS finds all the nodes reachable
from the starting point

In an undirected graph, this is
called a connected component.

One application: finding
connected components.

To explore the whole graph

* Do it repeatedly!

Why is it called depth-first?

* We are implicitly building a tree:

Call this the §
“DFS tree” :

Running time

To explore just the connected component we started in

* We look at each edge only once.

* And basically don’t do anything else.
* So...

O(m)

e (Assuming we are using the linked-list representation)
 (Details on board)

Running time

To explore the whole thing

* Explore the connected components one-by-one.
* This takes time [on board]

O(n + m)

" o ©® ©® 0 ©
e © & o ©

Here m=0 but it still takes time O(n) to
explore the graph.

Here the running time is
O(m) like before

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork

Pre-lecture exercise

* How can you sign up for classes so that you never
violate the pre-req requirements?

* More practically, given a package dependency
graph, how do you install packages in the correct

order?
multiarch

,

dpkg

¢' A

Application: topological sorting

* Question: in what order should I install packages?

Suppose the dependency graph has no cycles:

@ it is a Directed Acyclic Graph (DAG)
multiarch
¢ -support

dpkg

Can’t always eyeball it.

exf-tools-wsdlto || cxfjava2ws-plugin exfrt cxf-parent cxf-archetypes cxf-common exf-rt-bindings exf-tools - n-plugins -jaxws-javafirst i i oxf cxf-tools-javato
org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxf || org.apache.cxfarchetype | org.apache.cxf || org.apache.cxf || org.apache.cxf
2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT O-SNAPSHOT || 2.4.0-SNAPSHOT | 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT || 2.4.0-SNAPSHOT
exf-corbatools-maven-plugin cxf-rt-management-web
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-java2ws
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-wsdlto-frontend-javascript
org.apache.c
2.4.0-SNAPSHOT

xf-tools-wsdlto-test
org.apache.cxf
2.4.0-SNAPSHOT

Cxfrt-javascript
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.c:
2.4.0-SNAPSHOT

exf-tools-corba
org.apache.cxf
2.4.0-SNAPSHOT

xfirt-ws-security
org.apache.cxf

xfrt-frontend-jaxrs
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

gration-jbi

1t

ba

licy oxfini

org.apache.cxf

exfrt-binding

P
org.apache.cxf

org.apache.cxf

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

cxf-rt-databinding-sdo

org.apache.cxf

2.4.0-SNAPSHOT

exfrt-frontend-js

exf-re-bindings-http

exfintegration-jca

org.apache.cxf org.apache.cxf

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

Il

cxf-rt-bindings-obj ~'“

org.apache.cxf

2.4.0-SNAPSHOT

cxfrt-databinding-aegis

org.apache.cxf org.apache.cxf

2.4.0-SNAPSHOT

ding.

<F-tool

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

exf-codegen-plugin

org.apache.cxf
2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

org.apache.cxf

cxf-rt-ws-rm

cxfrt-bindings-jbi
org.apache.cxf

exf-rt-frontend-jaxws

org.apache.cxf
2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

dito-frontend -
org.apache.cxf
2.4.0-SNAPSHOT

<F-tool

it indi
org.apache.cxf
2.4.0-SNAPSHOT

exf-rt-transports-http-osgi

org.apache.cxf

exf-rt-transports- http-jetty
org.apache.cxf

cxfrt-testsupport
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

tend I

oxErefi

org.apache.cxf

ey portah
org.apache.cxf

dl-validator-plugin
org.apache.cxf
2.4.0-SNAPSHOT

dit

ool
org.apache.cxf
2.4.0-SNAPSHOT

I

oxf-tools-validator
org.apache.cxf
2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

cxf-rt-transports-jms
org.apache.cxf
2.4.0-SNAPSHOT

cxf-tools-common
org.apache.cxf
2.4.0-SNAPSHOT

cxf-rt-ws-addr
-SNAPSHOT

org.apache.cxf
2.

cxf-rt-management

cxfrt-transports-jbi
.apache.cxf

org.apache.cxf
2.4.0-SNAPSHOT

i

of
2.4.0-SNAPSHOT

exFrt-bindings-xml frt-bindings-soap it local
org.apache.cxf org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
exf-rt-bindings-coloc cxfrt-databinding-jaxb
org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT 2.4.0-SNAPSHOT
cxf-testutils

org.apache.cxf
2.4.0-SNAPSHOT

»
lid & dvalidation ot
org.apache.cxf org.apache.cxf
2.4.0-SNAPSHOT

xtwst:
org.apache.cxf

2.4.0-SNAPSHOT

2.4.0-SNAPSHOT

xt-api
org.apache.cxf
2.4.0-SNAPSHOT

- n-utilities

" ™
org.apache.cxf
2.4.0-SNAPSHOT

org.apache.cxf
2.4.0-SNAPSHOT

M

Apache CXF

| et’s do DFS Discussion and

observations on board.

start:9

finish:lO

start:7

finish:8 multiarch

‘B -support

9 start:3

finish:4
A
dpkg) start:0
finish:11
start:2

art-d finish:5

finish:6

Suppose the underlying
graph has no cycles

Finish times seem useful

Claim: In general, we’ll always have:

(2 ——(e

finish: [larger] finish: [smaller]

To understand why, let’s go back to that DFS tree.

(check this

A more general statement statement /g

(this holds even if there are cycles) carefully!)
This is called the “parentheses theorem™ in CLRS

e |Ifvisadescendant of win this tree:

w.start wv.start v.finish w.finish
timeline I I I I

e |fwisadescendant of vin this tree:

v.start w.start w.finish v.finish

— 1 1 1 1

* If neither are descendants of each other: ;
v.start v.finish w.start w.finish '

— 1 1 1 1

(or the other way around)

(A8

Then B.finishTime < A.finishTime
Suppose the underlying

raph has no cycles ;)
grap y 8 ‘\

e Case 1: Bis adescendant of A in the
DFS tree.

So to prove this ->

* Then |
B.startTime A.finishTime

A.startTime I B.finishTime I

e aka, B.finishTime < A.finishTime.

(A8

So to prove this -> o o
Then B.finishTime < A.finishTime

NOTE: In class this case was missing!!!
| messed up ® Suppose the underlying
But it’s here now. graph has no cycles : r

e Case 2: Bis a NOT descendant of A in the

DFS tree.

* Then we must have explored B before A.
* Otherwise we would have gotten to B from A, and B

would have been a descendant of A in the DFS tree. :' :

* Then : sl
B.finishTime A.finishTime . :

B.startTime l A.startTime I . 5 s o
SIRO

e aka, B.finishTime < A.finishTime.

Back to this problem

* Question: in what order should I install packages?

Suppose the dependency graph has no cycles:

@ it is a Directed Acyclic Graph (DAG)
multiarch
» -support

dpkg

In reverse order of finishing time

[
Do DFS . dpkq
* Maintain a list of packages, in the * coreutils
order you want to install them. ° tar
* libbz2
* When you mark a vertex as all done, « libselinuxl

multiarch support

put it at the beginning of the list.

start:9
finish:10

start:7
finish:8

finish:4

start:0
finish:11

start:2
finish:5

start:1
finish:6

For implementation,
see [Python notebook

In [(69): print(G)

CS161Graph with:

Vertices:

dkpg,coreutils,multiarch_support,libselinuxl,libbz2,tar,

Edges:

(dkpg,multiarch_support) (dkpg,coreutils) (dkpg,tar) (dkpg,libbz2
) (coreutils,libbz2) (coreutils,libselinuxl) (libselinuxl,multiarch_suppo
rt) (libbz2,libselinuxl)

In [71]: V = topoSort(G)
for v in V:
print(v)

dkpg

tar

coreutils

libbz2
libselinuxl
multiarch_support

What did we just learn?

* DFS can help you solve the TOPOLOGICAL
SORTING PROBLEM

e That’s the fancy name for the problem of finding an
ordering that respects all the dependencies

* Thinking about the DFS tree is helpful.

This example skipped in
Exa M p | e: class — here for reference.

O Unvisited
O In progress

. All done

Start:0

This example skipped in
Exa M p | e class — here for reference.

O Unvisited
O In progress

. All done

Start:0

Start:1

This example skipped in
Exa M p | e class — here for reference.

O Unvisited
O In progress

. All done

Start:0

Start:1

Start:2

This example skipped in
Exa M p | e class — here for reference.

Start:3

O Unvisited
O In progress

. All done

Start:0

Start:1

Start:2

Example

Start:3
Leave:4

Start:0

Start:1

Start:2

This example skipped in
class — here for reference.

O Unvisited
O In progress

. All done

Example

Start:3
Leave:4

Start:0

Start:1

Start:2
Leave:5

This example skipped in
class — here for reference.

O Unvisited
‘ In progress

‘ All done

Example

Start:3
Leave:4

Start:0

Start:1
Leave: 6

Start:2
Leave:5

This example skipped in
class — here for reference.

O Unvisited
‘ In progress

‘ All done

Example

Start:3
Leave:4

Start:0
Leave: 7

Start:1
Leave: 6

Start:2
Leave:5

This example skipped in
class — here for reference.

O Unvisited
‘ In progress

‘ All done

Do them in this order:

Another use of DFS

* In-order enumeration of binary search trees

Given a binary search
tree, output all the
nodes in order.

Instead of outputting a node
when you are done with it,
output it when you are done
with the left child and before
you begin the right child.

Part 2: breadth-first search

How do we explore a graph?

If we can fly

Breadth-First Search

Exploring the world with a bird’s-eye view

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

Exploring the world with a bird’s-eye view

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

Exploring the world with a bird’s-eye view

start

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

Exploring the world with a bird’s-eye view

start

O Not been there yet

‘ Can reach there in
zero steps

‘ Can reach there in
one step

‘ Can reach there in
two steps

‘ Can reach there in
three steps

Breadth-First Search

Exploring the world with a bird’s-eye view

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

Same disclaimer as for DFS: you may have seen other ways to implement this,

this will be convenient for us.
Breadth-First Search
Exploring the world with pseudocode

L. is the set of nodes

*SetL =[] fori=1,...,n
we canreachini

* L, = {w}, where w is the start node steps from w
*Fori=0, .. n-1:
* Foruin L;:
* For each v which is a neighbor of u: O
* If visn’t yet visited: o

* mark v as visited, and put itin L,

Go through all the nodes
in L. and add their
unvisited neighbors to L,

BFS also finds all the nodes
reachable from the starting point

It is also a good way to find all
the connected components.

Running time

To explore the whole thing

* Explore the connected components one-by-one.
* Same argument as DFS: running time is

O(n + m)
Verify these!

 Like DFS, BFS also works fine on directed graphs.

Siggi the Studious Stork

Why is it called breadth-first?

* We are implicitly building a tree:

* And first we go as broadly as we can.

Pre-lecture exercise

e What Samuel L. Jackson’s Bacon number?

(Answer: 2)

| wrote t
before |
an exam

Tilda
Swinton

ne pre-lecture exercise
realized that | really wanted
ole with distance 3

Oliver Sacks It is really hard to find
people with Bacon
number 3!

Application: shortest path

* How long is the shortest path between w and v?

Application: shortest path

* How long is the shortest path between w and v?

O Not been there yet

. Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

Can reach there in
three steps

It’s three!

To find the distance between w
and all other vertices v o i oo ot ine

shortest path between them.

* Do a BFS starting at w

* Forallvin L

* The shortest path between w
and v has length i

* A shortest path between w and
v is given by the path in the BFS
tree.

* |f we never found v, the
distance is infinite.

Gauss has no

Call this the
Bacon number

“BFS tree”

Proof idea (on board)

O Not been there

. Can reach there
in zero steps

. Can reach there
W in one step

O Can reach there
in two steps

O Can reach there
in three steps

\Y

. THIS SLIDE
Proof idea SKIPPED IN CLASS

~pebs Just the idea...see
4 ¥ CLRS for details!

e Suppose by induction it’s true for vertices in LO |.1

* For all i < 3, the vertices in L. have distance i from v.

 Want to show: it’s true for vertices of distance 3 also.
* aka, the shortest path between w and v has length 3.

 Well, it has distance
at most 3

e Since we just found a
path of length 3

e And it has distance at
least 3
e Since if it had distance

i < 3, it would have
been in Li.

W

O Not been there

. Can reach there
in zero steps

. Can reach there
in one step

O Can reach there
in two steps

O Can reach there
in three steps

\Y

What did we just learn?

* The BFS tree is useful for computing distances
between pairs of vertices.

* We can find the shortest path between u and v in
time O(m).

The BSF tree is also helpful for:

* Testing if a graph is bipartite or not.

Pre-lecture exercise: fish

* Some pairs of species will fight if put in the same tank.
* You only have two tanks.

* Connected fish will fight.

Application: testing if a graph is
bipartite

Can color the vertices red

. . i i . and orange so that there
* Bipartite means it looks like this: o 15 edges between any

Example:

® areintank A

© areintank B
@0 if the fish fight

same-colored vertices
‘

\

Example:

@ are students

O are classes

@—0 if the student is
enrolled in the class

s this graph bipartite?

N
":

SN
/" X\

How about this one?

How about this one?

This one?

Solution using BFS

e Color the levels of the BFS tree in
alternating colors.

* If you never color two connected
nodes the same color, then it is
bipartite.

 Otherwise, it’s not.

Breadth-First Search

For testing bipartite-ness

O Not been there yet

O Can reach there in
zero steps

‘ Can reach there in
one step

O Can reach there in
two steps

‘ Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

O Not been there yet

O Can reach there in
zero steps

‘ Can reach there in
one step

O Can reach there in
two steps

‘ Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

start

O Not been there yet

O Can reach there in
zero steps

. Can reach there in
one step

O Can reach there in
two steps

. Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

start

Q Not been there yet

' Can reach there in
zero steps

' Can reach there in
one step

' Can reach there in
two steps

' Can reach there in
three steps

Breadth-First Search

For testing bipartite-ness

O Not been there yet

‘ Can reach there in
zero steps

‘ Can reach there in
one step

‘ Can reach there in
two steps

‘ Can reach there in
three steps

Hang on now.

* Just because this coloring doesn’t
work, why does that mean that
there is no coloring that works?

| can come up
with plenty of bad
colorings on this
legitimately
bipartite graph...

Plucky the
pedantic penguin

Make this proof
sketch formall

Some proof required

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found an cycle of odd length in the graph.

A

There must

= be an even
number of

start
these edges

This one extra
makes it odd

Make this proof
sketch formal!
Some proof required ’!

Ollie the over-achieving ostrich

* If BFS colors two neighbors the same color, then it’s
found an cycle of odd length in the graph.

* So the graph has an odd cycle as a subgraph.

* But you can never color an odd cycle with two colors so
that no two neighbors have the same color.

e [Fun exercise!]

* So you can’t legitimately O
color the whole graph
either. y
O

* Thus it’s not bipartite.

What did we just learn?

BFS can be used to detect
bipartite-ness in time O(n + m).

@

Outline

* Part O: Graphs and terminology

e Part 1: Depth-first search
* Application: topological sorting
* Application: in-order traversal of BSTs

* Part 2: Breadth-first search
e Application: shortest paths

e Application (if time): is a graph bipartite? l

Recap

Recap

* Depth-first search
» Useful for topological sorting
* Also in-order traversals of BSTs

* Breadth-first search
e Useful for finding shortest paths
* Also for testing bipartiteness

* Both DFS, BFS:

* Useful for exploring graphs, finding connected
components, etc

Still open (next few classes)

* We can now find components in undirected graphs...

* What if we want to find strongly connected components in
directed graphs?

* How can we find shortest paths in weighted graphs?

e What is Samuel L. Jackson’s Erdos number?
* (Or, what if | want everyone’s everyone-else number?)

Next Time

 Strongly Connected Components

Before Next Time

* Pre-lecture exercise: Strongly Connected What-Now?

