Lecture 9

Graphs, BFS and DFS

Announcements!

- HW4 due Friday
- MIDTERM in class, Monday 10/30.
- That's 1 week from today. Please show up.
- During class, 1:30-2:50
- If your last name is A-M: 370-370 (here)
- If your last name is N-V: 160-124
- If your last name is W-Z: 160-323
- You may bring one double-sided letter-size page of notes, that you have prepared yourself.
- Any material through Hashing (Lecture 8) is fair game.
- Practice exams on the website
- Review Session tomorrow in Section

Roadmap

Graphs!
Max and Mortest,

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
- Application: topological sorting
- Application: in-order traversal of BSTs
- Part 2: Breadth-first search
- Application: shortest paths
- Application (if time): is a graph bipartite?

Part 0: Graphs

Graphs

Graph of the internet (circa 1999...it's a lot bigger now...)

Graphs

Citation graph of literary theory academic papers

Graphs

Theoretical Computer Science academic communities

Communities within the co-authors of Christos H. Papadimitriou

Graphs

Game of Thrones Character Interaction Network

Graphs

jetblue flights

Graphs

Complexity Zoo containment graph

Graphs

debian dependency (sub)graph

Graphs

Immigration
flows

Graphs

Potato trade

World trade in fresh potatoes, flows over 0.1 m US\$ average 2005-2009

Graphs

Graphs

Graphical models

Graphs

What eats what in the Atlantic ocean?

Graphs

Neural connections in the brain

Graphs

- There are a lot of graphs.
- We want to answer questions about them.
- Efficient routing?
- Community detection/clustering?
- From pre-lecture exercise:
- Computing Bacon numbers
- Signing up for classes without violating pre-req constraints
- How to distribute fish in tanks so that none of them will fight.
- This is what we'll do for the next several lectures.

Undirected Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of edges
- Formally, a graph is $G=(V, E)$
- Example

- $\mathrm{V}=\{1,2,3,4\}$
- $E=\{\{1,3\},\{2,4\},\{3,4\},\{2,3\}\}$
- The degree of vertex 4 is 2 .
- There are 2 edges coming out
- Vertex 4's neighbors are 2 and 3

Directed Graphs

- Has vertices and edges
- V is the set of vertices
- E is the set of DIRECTED edges
- Formally, a graph is $G=(V, E)$
- Example

- $V=\{1,2,3,4\}$
- $E=\{(1,3),(2,4),(3,4),(4,3),(3,2)\}$
- The in-degree of vertex 4 is 2 .
- The out-degree of vertex 4 is 1 .
- Vertex 4's incoming neighbors are 2,3
- Vertex 4's outgoing neighbor is 3 .

How do we represent graphs?

- Option 1: adjacency matrix

How do we represent graphs?

- Option 1: adjacency matrix
$\left.\begin{array}{c}\sim \\ \sim \\ \sim \\ 1\end{array} \begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$

How do we represent graphs?

- Option 1: adjacency matrix

Destination			
	2	3	4
	0	1	0
	0	0	
$\omega 0$	1	0	
$\stackrel{\square}{4}$,

How do we represent graphs?

- Option 2: linked lists.

How would you modify this for directed graphs?

In either case

- Vertices can store other information
- Attributes (name, IP address, ...)
- helper info for algorithms that we will perform on the graph
- Want to be able to do the following operations:
- Edge Membership: Is edge e in E?
- Neighbor Query: What are the neighbors of vertex v?

Trade-offs

Say there are n vertices and m edges.

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Generally better for sparse graphs

Edge membership
Is $e=\{v, w\}$ in E ?

O(1)

O(deg(v)) or O(deg(w))

O(deg(v))
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n}+\mathrm{m})$
We'll assume this representation for the rest of the class

Part 1: Depth-first search

How do we explore a graph?

At each node, you can get a list of neighbors, and choose to go there if you want.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet

Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search

Exploring a labyrinth with chalk and a piece of string

Not been there yet
Been there, haven't explored all the paths out.

Been there, have explored all the paths out.

Depth First Search Exploring a labyrinth with pseudocode

- Each vertex keeps track of whether it is:
- Unvisited
- In progress
- All done
- Each vertex will also keep track of:
- The time we first enter it.

- The time we finish with it and mark it all done.

You might have seen other ways to implement DFS than what we are about to go through. This way has more bookkeeping, but more intuition - also, the bookkeeping will be useful later!

Depth First Search

currentTime $=0$

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

currentTime $=1$

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited.
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisitied:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

currentTime $=21$

unvisited End: 21
unvisited in progress
all done

- DFS(w, currentTime):
- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisited:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

Depth First Search

currentTime $=21$

unvisited End: 21
unvisited
in progress
Takes until currentTime $=20$
all done

- w.startTime = currentTime
- currentTime ++
- Mark w as in progress.
- for v in w.neighbors:
- if v is unvisitied:
- currentTime
= DFS(v, currentTime)
- currentTime ++
- w.finishTime = currentTime
- Mark w as all done
- return currentTime

DFS finds all the nodes reachable from the starting point

One application: finding connected components.

In an undirected graph, this is called a connected component.

To explore the whole graph

- Do it repeatedly!

Why is it called depth-first?

- We are implicitly building a tree:

Call this the "DFS tree"

- And first we go as deep as we can.

Running time

To explore just the connected component we started in

- We look at each edge only once.
- And basically don't do anything else.
- So...

O(m)

- (Assuming we are using the linked-list representation)
- (Details on board)

Running time

To explore the whole thing

- Explore the connected components one-by-one.
- This takes time [on board]

$$
O(n+m)
$$

or

You check:

DFS works fine on directed graphs too!

Only walk to C, not to B.

Siggi the studious stork

Pre-lecture exercise

- How can you sign up for classes so that you never violate the pre-req requirements?
- More practically, given a package dependency graph, how do you install packages in the correct order?

Application: topological sorting

- Question: in what order should I install packages?

Suppose the dependency graph has no cycles: it is a Directed Acyclic Graph (DAG)
libbz2

Can't always eyeball it.

Let's do DFS

Discussion and

 observations on board.

Finish times seem useful

 graph has no cycles
Claim: In general, we'll always have:

finish: [larger]
finish: [smaller]

To understand why, let's go back to that DFS tree.

A more general statement (this holds even if there are cycles) This is called the "parentheses theorem" in CLRS
(check this statement carefully!)

- If v is a descendant of w in this tree:

- If w is a descendant of v in this tree:

- If neither are descendants of each other: v.start v.finish w.start w.finish

So to prove this ->

Then B.finishTime < A.finishTime
Suppose the underlying graph has no cycles

- Case 1: B is a descendant of A in the DFS tree.
- Then

A.startTime

- aka, B.finishTime < A.finishTime.

So to prove this ->
NOTE: In class this case was missing!!! I messed up $*$
But it's here now.

If $A \rightarrow B$
Then B.finishTime < A.finishTime
Suppose the underlying graph has no cycles

- Case 2: B is a NOT descendant of A in the DFS tree.
- Then we must have explored B before A.
- Otherwise we would have gotten to B from A, and B would have been a descendant of A in the DFS tree.
- Then

- aka, B.finishTime < A.finishTime.

Back to this problem

- Question: in what order should I install packages?

Suppose the dependency graph has no cycles: it is a Directed Acyclic Graph (DAG)
libbz2

In reverse order of finishing time

- Do DFS
- Maintain a list of packages, in the order you want to install them.
- When you mark a vertex as all done, put it at the beginning of the list.
- dpkg
- coreutils
- tar
- libbz2
- libselinux1
- multiarch_support

For implementation, see IPython notebook

```
In [69]: print(G)
CS161Graph with:
            Vertices:
            Edges:
rt) (libbz2,1ibselinux1)
```

```
In [71]: V = topoSort(G)
```

In [71]: V = topoSort(G)
for v in V:
for v in V:
print(v)

```
    print(v)
```

```
dkpg
```

dkpg
tar
tar
coreutils
coreutils
libbz2
libbz2
libselinuxl
libselinuxl
multiarch_support

```
multiarch_support
```

 dkpg, coreutils,multiarch_support,libselinux1,libbz2,tar,
 (dkpg,multiarch_support) (dkpg, coreutils) (dkpg,tar) (dkpg,libbz2
) (coreutils,libbz2) (coreutils,libselinux1) (libselinux1,multiarch_suppo

What did we just learn?

- DFS can help you solve the TOPOLOGICAL SORTING PROBLEM
- That's the fancy name for the problem of finding an ordering that respects all the dependencies
- Thinking about the DFS tree is helpful.

Example:

This example skipped in class - here for reference.

Example

This example skipped in class - here for reference.

Example

This example skipped in class - here for reference.

Start:2

Example

This example skipped in class - here for reference.

All done

Start:2

Example

This example skipped in class - here for reference.

B

Start:2

Example

This example skipped in class - here for reference.

Unvisited

In progress

All done

Example

This example skipped in class - here for reference.
Unvisited
OIn progress

All done

Start:1
Leave: 6

Example

Do them in this order:

Start:2
Leave:5

Another use of DFS

- In-order enumeration of binary search trees

Given a binary search tree, output all the nodes in order.

Instead of outputting a node when you are done with it, output it when you are done with the left child and before you begin the right child.

Part 2: breadth-first search

How do we explore a graph?

If we can fly

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet
Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search Exploring the world with a bird's-eye view

Not been there yet

Can reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps
World:

Breadth-First Search

Exploring the world with pseudocode

- Set $\mathrm{L}_{\mathrm{i}}=[]$ for $\mathrm{i}=1, \ldots, \mathrm{n}$
L_{i} is the set of nodes we can reach in i steps from w
- For $\mathrm{i}=0, . . ., \mathrm{n}-1$:
- For u in L_{i} :
- For each v which is a neighbor of u :
- If v isn't yet visited:
- mark v as visited, and put it in $\mathrm{L}_{\mathrm{i}+1}$

Go through all the nodes in L_{i} and add their unvisited neighbors to L_{i+1}

BFS also finds all the nodes reachable from the starting point

It is also a good way to find all the connected components.

Running time

To explore the whole thing

- Explore the connected components one-by-one.
- Same argument as DFS: running time is

$\mathrm{O}(\mathrm{n}+\mathrm{m})$

Verify these!

- Like DFS, BFS also works fine on directed graphs.

Siggi the Studious Stork

Why is it called breadth-first?

- We are implicitly building a tree:

YOINK!

- And first we go as broadly as we can.

Pre-lecture exercise

- What Samuel L. Jackson's Bacon number?

I wrote the pre-lecture exercise before I realized that I really wanted an example with distance 3

It is really hard to find people with Bacon

Application: shortest path

- How long is the shortest path between w and v ?

Application: shortest path

- How long is the shortest path between w and v ?

To find the distance between w

and all other vertices v

The distance between two vertices is the length of the shortest path between them.

- Do a BFS starting at w
- For all vin L_{i}
- The shortest path between w and v has length i
- A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.

Gauss has no Bacon number

Proof idea (on board)

Not been there
Can reach there in zero steps

Can reach there in one step
Can reach there in two steps

Can reach there in three steps

Proof idea

THIS SLIDE SKIPPED IN CLASS

- Suppose by induction it's true for vertices in L_{0}, L_{1}, L_{2}
- For all $\mathrm{i}<3$, the vertices in L_{i} have distance ifrom v .
- Want to show: it's true for vertices of distance 3 also.
- aka, the shortest path between w and v has length 3.
- Well, it has distance at most 3
- Since we just found a path of length 3
- And it has distance at least 3
- Since if it had distance $\mathrm{i}<3$, it would have been in Li.

Not been there
Can reach there in zero steps
Can reach there in one step
Can reach there in two steps
Can reach there in three steps

What did we just learn?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time $O(m)$.

The BSF tree is also helpful for:

- Testing if a graph is bipartite or not.

Pre-lecture exercise: fish

- Some pairs of species will fight if put in the same tank.
- You only have two tanks.
- Connected fish will fight.

Application: testing if a graph is

 bipartite- Bipartite means it looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Example:

Ore in tank A
O are in $\operatorname{tank} \mathrm{B}$ if the fish fight

Example:

O are students
O are classes

if the student is enrolled in the class

Is this graph bipartite?

How about this one?

How about this one?

This one?

Solution using BFS

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one step

Can reach there in two steps

Can reach there in three steps

Breadth-First Search For testing bipartite-ness

Not been there yetCan reach there in zero steps

Can reach there in one stepCan reach there in two steps

Can reach there in three steps

Hang on now.

- Just because this coloring doesn't work, why does that mean that there is no coloring that works?

I can come up with plenty of bad colorings on this legitimately
bipartite graph...

Some proof required

Make this proof sketch formal!

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.

There must
be an even number of these edges

Some proof required

Make this proof
sketch formal!

Ollie the over-achieving ostrich

- If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.
- So the graph has an odd cycle as a subgraph.
- But you can never color an odd cycle with two colors so that no two neighbors have the same color.
- [Fun exercise!]
- So you can’t legitimately color the whole graph either.
- Thus it's not bipartite.

What did we just learn?

BFS can be used to detect
bipartite-ness in time $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

Outline

- Part 0: Graphs and terminology
- Part 1: Depth-first search
- Application: topological sorting
- Application: in-order traversal of BSTs
- Part 2: Breadth-first search
- Application: shortest paths
- Application (if time): is a graph bipartite?

Recap

- Depth-first search
- Useful for topological sorting
- Also in-order traversals of BSTs
- Breadth-first search
- Useful for finding shortest paths
- Also for testing bipartiteness
- Both DFS, BFS:
- Useful for exploring graphs, finding connected components, etc

Still open (next few classes)

- We can now find components in undirected graphs...
- What if we want to find strongly connected components in directed graphs?
- How can we find shortest paths in weighted graphs?
-What is Samuel L. Jackson's Erdos number?
- (Or, what if I want everyone's everyone-else number?)

Next Time

- Strongly Connected Components

Before Next Time

- Pre-lecture exercise: Strongly Connected What-Now?

