
CS 161 Fall 2017: Section 1

Asymptotic Analysis

For each of the following functions, prove whether 𝑓 = 𝑂(𝑔), 𝑓 = Ω(𝑔), or both (𝑓 = Θ(𝑔)). (For example, by
specifying some explicit constants 𝑛0, 𝑐 > 0 (or 𝑛0, 𝑐1, 𝑐2 in the case that 𝑓 = Θ(𝑔)) such that the definition
of Big-Oh, Big-Omega, or Big-Theta is satisfied.)

𝑓(𝑛) = 𝑛 log
(︀
𝑛3

)︀
𝑔(𝑛) = 𝑛 log 𝑛(a)

𝑓(𝑛) = 22𝑛 𝑔(𝑛) = 3𝑛(b)

𝑓(𝑛) =

𝑛∑︁
𝑖=1

log 𝑖 𝑔(𝑛) = 𝑛 log 𝑛(c)

Recurrence Relations

Recall the Master theorem from lecture:

Theorem 0.1. Given a recurrence 𝑇 (𝑛) = 𝑎𝑇 (𝑛
𝑏 ) + 𝑂(𝑛𝑑) with 𝑎 ≥ 1, and 𝑏 > 1, and 𝑇 (1) = Θ(1), then

𝑇 (𝑛) =

⎧⎪⎨⎪⎩
𝑂(𝑛𝑑 log 𝑛) if 𝑎 = 𝑏𝑑

𝑂(𝑛𝑑) if 𝑎 < 𝑏𝑑

𝑂(𝑛log𝑏 𝑎) if 𝑎 > 𝑏𝑑

What is the Big-Oh runtime for algorithms with the following recurrence relations?

(a) 𝑇 (𝑛) = 3𝑇 (𝑛
2 ) + Θ(𝑛2)

(b) 𝑇 (𝑛) = 4𝑇 (𝑛
2 ) + Θ(𝑛)

(c) 𝑇 (𝑛) = 2𝑇 (
√
𝑛) + 𝑂(log 𝑛)

Divide and Conquer: Majority Element

Suppose we are given an array, 𝐴, of length 𝑛, with the promise that there exists some number, 𝑥, that
occurs at least 𝑛/2 + 1 times in the array. Additionally, we are only allowed to check whether two elements
are equal (no comparisons).

(a) Complete the following pseudo-code for a divide-and-conquer algorithm that returns the majority element
of 𝐴. Feel free to assume that the 𝑛 is a power of 2.

MajorityElement(Input: array A of length n)

If n = 1, return A[1]

Else

Let m1 = MajorityElement(A[1:n/2])

Let m2 = MajorityElement(A[n/2+1:n])

1



(b) Give a brief but formal proof of the correctness of your algorithm. Again, feel free to assume 𝑛 = 2𝑠 for
some integer 𝑠. [Hint: induction on 𝑠!!]

(c) Express the runtime of your algorithm via a recurrence relation, and solve the relation to give the
asymptotic (Big-Oh) runtime of your algorithm.

2


