
CS 161 Fall 2017: Section 2

Randomized Algorithms: Majority Element

Suppose we are given an array, 𝐴, of length 𝑛, with the promise that there exists some number, 𝑥, that
occurs at least 𝑛/2 + 1 times in the array. Additionally, we are only allowed to check whether two elements
are equal (no comparisons).

Last week, we developed an algorithm to find this in 𝑂(𝑛 log 𝑛) using divide and conquer. This week, we
will develop a randomized algorithm that is expected to run in linear time.

(a) Complete the following pseudo-code for a randomized algorithm that returns the majority element of 𝐴.

MajorityElement(Input: array A of length n)

While True

i = ChooseRandomNumber(1,...,n) //uniformly random number between 1 and n

(b) Is there a bound on the worst-case runtime of the above algorithm?

(c) Prove that the expected number of equality checks is at most 2𝑛.

Select with Different Group Sizes

The algorithm Select finds the 𝑘𝑡ℎ smallest element in an array of 𝑛 elements in 𝑂(𝑛) time. In class, we
chose to split the 𝑛 numbers into groups of 5 elements, and used the “median of the medians” as a pivot. In
this problem, we consider what would have happened if we had split the elements into groups of 3, rather
than groups of 5. To simplify your arguments, feel free to assume that all array sizes are divisible by 3 at all
recursive stages of the algorithm, and ignore rounding issues. The pseudocode for this new Select algorithm
is given below—the only difference between this and the algorithm we saw in class is that the number “3”
in ChoosePivot was replaced by “5”.
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Algorithm 1: Select(𝐴,𝑛, 𝑘)

if 𝑛 == 1 then
return 𝐴[1];

𝑝← ChoosePivot(𝐴,𝑛);
𝐴< ← {𝐴(𝑖) | 𝐴(𝑖) < 𝑝};
𝐴> ← {[𝐴(𝑖) | 𝐴(𝑖) > 𝑝};
if |𝐴<| = 𝑘 − 1 then

return 𝑝;

else if |𝐴<| > 𝑘 − 1 then
return Select(𝐴<, |𝐴<|, 𝑘);

else if |𝐴<| < 𝑘 − 1 then
return Select(𝐴>, |𝐴>|, 𝑘 − |𝐴+< | − 1);

Algorithm 2: ChoosePivot(𝐴,𝑛)

Split 𝐴 into 𝑛/3 groups 𝑠1, . . . , 𝑠𝑛/3 of 3 elements each;
for 𝑖 = 1 to 𝑛/3 do

𝑚𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑠𝑖); (this takes a constant number of operations, since |𝑠𝑖| = 3

𝑀 = {𝑚1, . . . ,𝑚𝑛/3};
return Select(𝑀,𝑛/3, 𝑛/6); (this returns the median of 𝑀)

(a) Suppose we divide a list 𝐴 of 𝑛 distinct numbers into 𝑛/3 groups of 3, and let 𝑝 be the median of the
medians of the sets. (This is the behavior of ChoosePivot, as described above.) Derive an upper bound
on the number of elements of 𝐴 that are greater than 𝑝. (This same bound also applies to the number
of elements that are less than 𝑝, right?)

(b) (2 points) Derive a recurrence for the worst-case run time 𝑇 (𝑛) for this variant of Select.

(c) (2 points) Using the substitution/“guess and check” method, solve the recurrence from part b) to compute
the runtime of this version of the Select algorithm. (Hint: The run time may not be 𝑂(𝑛). )
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