
CS 161 Fall 2017: Section 5

Farmville

Suppose there is a set of farms that have entered into a cooperative agreement. They built a series of
irrigation pipes connecting the farms, with each pipe having a direction of flow (i.e. water can only travel in
one, fixed, direction in each pipe). Each farm uses some of the water that passes through the pipes that go
through the farm, and each farm also has a well that can contribute water to any irrigation pipes leaving the
farm. [Think of this as a way of distributing the risk that certain wells might go dry one year, and others go
dry a different year...some years Farmer Joe takes more water from the network than he contributes, some
years he supplies more water from his well than he takes.]

(a) After designing the network of (directed) pipes, the farmers want to ensure that water from every
farm can get to every other farm. (For example, if there is only one farm whose well is still working,
every farmer should still be able to get some of that water via the irrigation pipe network.) The only
algorithm that the farmers know is BFS, which runs in time 𝑂(|𝑉 | + |𝐸|) and takes as input a directed
graph 𝐺 = (𝑉,𝐸) and a source node 𝑠 ∈ 𝑉 , and outputs the set of nodes that can be reached from node
𝑠. Design a way for the farmers to check whether the desired condition holds for a given proposed pipe
network, that uses their BFS algorithm only a constant number of times.

(b) Thanks to your solution, the farmers built a successful network, and enjoy many years of steady crops.
One year, however, a turnip gets stuck in an irrigation pipe, clogging that pipe; in the week it takes to fix
that pipe, Farmer Joe’s potatoes all perish from lack of water. The farmer coop forms a new emergency
planning committee to design a new, improved irrigation plan. This time, they want a network such
that the guarantees of the above part (namely that water from any farm’s well can flow to any other
farm via the irrigation pipes) will continue to hold even if any single pipe becomes clogged. Describe
an algorithm for this part that uses your algorithm from the previous part. Justify the correctness and
runtime of the algorithm.

(c) What is the minimum number of irrigation pipes, as a function of the number of farms, 𝑛, that are
necessary in any network that satisfies the desired property described in part (b)? Prove your answer–
both that the claimed number can be achieved, and that no smaller number is possible.

2SAT-SCC

In 2SAT, you have a set of boolean clauses, each containing two variables. Your goal is to set all of these
clauses to true, or report that there is no way to accomplish this goal. For example,

(𝑥1 ∨ 𝑥2) ∧ (𝑥̄1 ∨ 𝑥3) ∧ (𝑥̄2 ∨ 𝑥̄3)

can be satisfied by setting 𝑥1 and 𝑥3 to true and 𝑥2 to false.

(a) We first decompose each clause into its implications: this means that a clause represented by 𝑎∨ 𝑏 would
be represented by 𝑎̄ =⇒ 𝑏 and 𝑏̄ =⇒ 𝑎. What are the implications in the clauses above?
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(b) We build a graph by creating two nodes for each variable 𝑥: 𝑥 and 𝑥̄. We then add directed edges based
in the implications from each clause. What is the graph representation of the above boolean clauses?

(c) What do SCCs in these 2SAT graphs represent? What if 𝑥 and 𝑥̄ were inside of the same SCC?

(d) Assume we have a sink strongly-connected component 𝐶 from the graph, and that no variable and its
negation both appear inside of 𝐶. If 𝐶 has nodes of the form 𝑎, 𝑏 . . . 𝑧, what corresponding component
do we know must exist in the graph? Is there an edge between these two components?

(e) Given this graph structure and the properties above, develop an algorithm to solve 2SAT.
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