
CS 161 Fall 2017: Section 6

Currency Exchange

Suppose the various economies of the world use a set of currencies 𝐶1, . . . , 𝐶𝑛—think of these as dollars,
pounds, bitcoins, etc. Your bank allows you to trade each currency 𝐶𝑖 for any other currency 𝐶𝑗 , and finds
some way to charge you for this service (in a manner to be elaborated in the subparts below). We will devise
algorithms to trade currencies to maximize the amount we end up with.

(a) Suppose that for each ordered pair of currencies (𝐶𝑖, 𝐶𝑗), the bank charges a flat fee of 𝑓𝑖𝑗 > 0 dollars to
exchange 𝐶𝑖 for 𝐶𝑗 (regardless of the quantity of currency being exchanged). Devise an efficient algorithm
which, given a starting currency 𝐶𝑠, a target currency 𝐶𝑡, and a list of fees 𝑓𝑖𝑗 for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛},
computes the cheapest way (that is, incurring the least in fees) to exchange all of our currency in 𝐶𝑠

into currency 𝐶𝑡. Justify the correctness of your algorithm and its runtime.

(b) Consider the more realistic setting where the bank does not charge flat fees, but instead uses exchange
rates. In particular, for each ordered pair (𝐶𝑖, 𝐶𝑗), the bank lets you trade one unit of 𝐶𝑖 for 𝑟𝑖𝑗 > 0
units of 𝐶𝑗 . Devise an efficient algorithm which, given starting currency 𝐶𝑠, target currency 𝐶𝑡, and a
list of rates 𝑟𝑖𝑗 , computes a sequence of exchanges that results in the greatest amount of 𝐶𝑡. Justify the
correctness of your algorithm and its runtime.[Hint: How can you turn a product of terms into a sum?]

(c) Due to fluctuations in the markets, it is occasionally possible to find a sequence of exchanges that lets
you start with currency A, change into currencies, B, C, D, etc., and then end up changing back to
currency A in such a way that you end up with more money than you started with—that is, there are
currencies 𝐶𝑖1 , . . . , 𝐶𝑖𝑘 such that

𝑟𝑖1𝑖2 × 𝑟𝑖2𝑖3 × · · · × 𝑟𝑖𝑘−1𝑖𝑘 × 𝑟𝑖𝑘𝑖1 > 1.

Devise an efficient algorithm that finds such an anomaly if one exists. Justify the correctness of your
algorithm and its runtime.

Traveling Across the Country

We have a graph representation of the country, where nodes 𝑢𝑖 are on the east coast and nodes 𝑣𝑗 are on the
west coast, with 𝑛 nodes in total. We also have |𝐸| undirected edges representing distances between these
cities.

(a) Design an efficient algorithm to compute the shortest path starting at any city on the east coast and
ending at any city on the west coast.

(b) This time, we start from a specific city 𝑢𝑖 and end at a specific city 𝑣𝑗 . However, we impose an additional
restriction that we must traverse one of the edges between two cities 3 times: that is, for some 𝑤,𝑤′,
we must traverse 𝑤 → 𝑤′, 𝑤′ → 𝑤, and then 𝑤 → 𝑤′ again. Design an efficient algorithm to find the
shortest path from 𝑢𝑖 to 𝑣𝑗 with this additional constraint.

1

