CS161 Review Session Practice Problems

12/6/2017

Poll results

As of 1am this morning...

Agenda

- I have a bunch of practice problems.
- Y'all vote on topics and we'll do them.
- I can also answer particular questions about the material.
- Topics I have problems for:
 - Grab-bag (multiple choice, etc)
 - Hashing
 - Red-Black Trees
 - Ford-Fulkerson
 - Dynamic Programming
 - Greedy algorithms
 - Divide and conquer
 - Randomized algs

Multiple choice warmup!

For each of the following quantities, **identify all of the options** that correctly describe the quantity.

- (a) The function f(n), where $f(n) = n \log(n)$.
- (b) T(n) given by $T(n) = T(n/4) + \Theta(n^2)$ with T(n) = 1 for all $n \le 8$.
- (c) T(n) which is the running time of the following algorithm:

```
mysteryAlg( n ):
if n < 3:
    return 1
return mysteryAlg( n/2 ) + mysteryAlg( (n/2) + 1 )</pre>
```

where above all division is integer division (so a/b means $\lfloor a/b \rfloor$).

(A)
$$O(n^2)$$
 (B) $\Theta(n^2)$ (C) $\Omega(n)$ (D) $O(n)$ (E) $O(\log^2(n))$.

Prove or give a counter-example

Let G = (V, E) be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements **must be true** or **may be false**, and prove it!

(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

True

False

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.

True

False

Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

• First, consider \mathcal{H}_1 , which is the set of all functions from \mathcal{U} to $\{1,\ldots,n\}$:

$$\mathcal{H}_1 = \{h \mid h : \mathcal{U} \to \{1, \ldots, n\}\}$$

• Second, let p = m (so p is prime since we assumed m to be prime), and choose \mathcal{H}_2 to be

$$\mathcal{H}_2 = \{h_{a,b} \mid a \in \{1, \dots, p-1\}, b \in \{0, \dots, p-1\}\},\$$

- where $h_{a,b}(x) = (ax + b \mod p) \mod n$.
- You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_2 over \mathcal{H}_1 ? Choose the best answer.
- (A) \mathcal{H}_1 isn't a universal hash family.
- (B) Storing an element of \mathcal{H}_1 takes a lot of space.
- (C) Storing all of \mathcal{H}_1 takes a lot of space.

Shortest Paths

• When might you prefer breadth-first search to Dijkstra's algorithm?

When might you prefer Floyd-Warshall to Bellman-Ford?

• When might you prefer Bellman-Ford to Dijkstra's algorithm?

Randomized algorithms

Suppose that b_1, \ldots, b_n are n distinct integers in a **uniformly random order**. Consider the following algorithm:

```
findMax(b_1,...,b_n):
currentMax = -Infinity
for i = 1,...,n:
    if b_i > currentMax:
        currentMax = b_i
return currentMax
```

What is the expected number of times that currentMax is updated? (Asymptotic notation is fine).

Min-cut/Max-flow

Consider the following flow on a graph. The notation x/y means that an edge has flow x out of capacity y.

- Draw the residual graph for this flow.
- Find an augmenting path in the residual graph and use it to increase the flow.
- Find a minimum cut and prove (not by exhaustion) that it is a minimum cut.

Dynamic Programming!

- Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.
- For example, for n = 3, the city may look like this:

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from (0,0) to (n-1,n-1), using paths that only go up and to the right. In the example above, the number of paths is 3.

Design a DP algorithm to solve this problem.

Divide and Conquer!

• Given an array A of length n, we say that an array B is a *circular shift* of A if there is an integer k between 1 and n (inclusive) so that

$$B = A[k : n] + A[1 : k],$$

where + denotes concatenation.

- For example, if A = [2, 5, 6, 8, 9], then B = [6, 8, 9, 2, 5] is a circular shift of A (with k = 2). The sorted array A itself is also a circular shift of A (with k = 1).
- Design a O(log(n))-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9.

Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_i and end at time b_i . Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be *overlapping* if $[a_i, b_i] \cap [a_j, b_j] \neq \emptyset$ (including if $b_i = a_j$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- Input: Arrays A and B of length n so that $A[i] = a_i$ and $B[i] = b_i$.
- Output: The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- Running time: $O(n \log(n) + nk)$, where k is the minimum number of classrooms needed.
- For example: Suppose there are three exams, with start and finish times as given below:

i	1	2	3
aį	12pm	4pm	2pm
b _i	3pm	6pm	5pm

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.

Universal Hash Families

• Definition: A hash family \mathcal{H} (mapping \mathcal{U} into n buckets) is **2-universal** if for all $x \neq y \in \mathcal{U}$ and for all $a, b \in \{1, ..., n\}$,

$$\mathbb{P}((h(x),h(y))=(a,b))=\frac{1}{n^2}.$$

- (a) Show that if \mathcal{H} is 2-universal, then it is universal.
- (b) Show that the converse is not true. That is, there is a universal family that's not 2-universal.

More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h: \mathcal{U} \to \{1, \dots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for h(x). (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \setminus \{x\}$, and tries to get h(y) = h(x).
- If h(x) = h(y), the bad guy wins. Otherwise, you win.

One of the following two is true.

- There is a universal hash family ${\cal H}$ so that the bad guy wins with probability 1.
- ② For any universal hash family \mathcal{H} , the probability that the bad guy wins is at most 1/n.

Which is true and why?

Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.

