CS161 Review Session Practice Problems

12/6/2017

Poll results

As of 1am this morning...

Big-Oh notation
Solving recurrences
Sorting: QuickSort, MergeSort, RadixSo
Sorting lower bounds
Select
Binary Search Trees and Red-Black tree
Universal hashing and hash tables
BFS/DFS

Strongly Connected Components
Shortest paths in graphs: Dijkstra/Bellma
Minimum spanning trees: Prim and Krus
Minimum cuts and maximum flows: Kars
Divide and conquer
Dynamic Programming
Greedy algorithms

Agenda

- I have a bunch of practice problems.
- Y'all vote on topics and we'll do them.
- I can also answer particular questions about the material.
- Topics I have problems for:
- Grab-bag (multiple choice, etc)
- Hashing
- Red-Black Trees
- Ford-Fulkerson
- Dynamic Programming
- Greedy algorithms
- Divide and conquer
- Randomized algs

Multiple choice warmup!

For each of the following quantities, identify all of the options that correctly describe the quantity.
(a) The function $f(n)$, where $f(n)=n \log (n)$.
(b) $T(n)$ given by $T(n)=T(n / 4)+\Theta\left(n^{2}\right)$ with $T(n)=1$ for all $n \leq 8$.
(c) $T(n)$ which is the running time of the following algorithm: mysteryAlg(n) : if n < 3 :
return 1
return mysteryAlg ($n / 2$) + mysteryAlg ($(\mathrm{n} / 2)+1$)
where above all division is integer division (so a/b means $\lfloor a / b\rfloor$).
(A) $O\left(n^{2}\right)$
(B) $\Theta\left(n^{2}\right)$
(C) $\Omega(n)$
(D) $O(n)$
(E) $O\left(\log ^{2}(n)\right)$.

Prove or give a counter-example

Let $G=(V, E)$ be an undirected weighted graph, and let T be a minimum spanning tree in G. Decide whether the following statements must be true or may be false, and prove it!
(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from s to t in T.

True

False
(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between s and t in T is minimal among all paths from s to t in G.

True

False

Hashing warm-up

Let \mathcal{U} be a universe of size m, where m is a prime, and consider the following two hash families which hash \mathcal{U} into n buckets, where n is much smaller than m.

- First, consider \mathcal{H}_{1}, which is the set of all functions from \mathcal{U} to $\{1, \ldots, n\}$:

$$
\mathcal{H}_{1}=\{h \mid h: \mathcal{U} \rightarrow\{1, \ldots, n\}\}
$$

- Second, let $p=m$ (so p is prime since we assumed m to be prime), and choose \mathcal{H}_{2} to be

$$
\mathcal{H}_{2}=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}
$$

where $h_{a, b}(x)=(a x+b \bmod p) \bmod n$.

- You want to implement a hash table using one of these two families. Why would you choose \mathcal{H}_{2} over \mathcal{H}_{1} ? Choose the best answer.
(A) \mathcal{H}_{1} isn't a universal hash family.
(B) Storing an element of \mathcal{H}_{1} takes a lot of space.
(C) Storing all of \mathcal{H}_{1} takes a lot of space.

Shortest Paths

- When might you prefer breadth-first search to Dijkstra's algorithm?
- When might you prefer Floyd-Warshall to Bellman-Ford?
- When might you prefer Bellman-Ford to Dijkstra's algorithm?

Randomized algorithms

Suppose that b_{1}, \ldots, b_{n} are n distinct integers in a uniformly random order. Consider the following algorithm:
findMax(b_1,..., b_n):
currentMax = -Infinity
for $\mathrm{i}=1, \ldots, \mathrm{n}$:
if b_i > currentMax:
currentMax = b_i
return currentMax
What is the expected number of times that currentMax is updated? (Asymptotic notation is fine).

Min-cut/Max-flow

Consider the following flow on a graph. The notation x / y means that an edge has flow x out of capacity y.

- Draw the residual graph for this flow.
- Find an augmenting path in the residual graph and use it to increase the flow.
- Find a minimum cut and prove (not by exhaustion) that it is a minimum cut.

Dynamic Programming!

- Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.
- For example, for $n=3$, the city may look like this:

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0,0)$ to $(n-1, n-1)$, using paths that only go up and to the right. In the example above, the number of paths is 3 .
- Design a DP algorithm to solve this problem.

Divide and Conquer!

- Given an array A of length n, we say that an array B is a circular shift of A if there is an integer k between 1 and n (inclusive) so that

$$
B=A[k: n]+A[1: k],
$$

where + denotes concatenation.

- For example, if $A=[2,5,6,8,9]$, then $B=[6,8,9,2,5]$ is a circular shift of A (with $k=2$). The sorted array A itself is also a circular shift of $A($ with $k=1)$.
- Design a $O(\log (n))$-time algorithm that takes as input an array B which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in B. For example, give B as above, your algorithm should return 9 .

Greedy Algorithms!

There are n final exams on Dec. 13 at Stanford; exam i is scheduled to begin at time a_{i} and end at time b_{i}. Two exams which overlap cannot be administered in the same classroom; two exams i and j are defined to be overlapping if $\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right] \neq \emptyset$ (including if $b_{i}=a_{j}$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- Input: Arrays A and B of length n so that $A[i]=a_{i}$ and $B[i]=b_{i}$.
- Output: The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- Running time: $O(n \log (n)+n k)$, where k is the minimum number of classrooms needed.
- For example: Suppose there are three exams, with start and finish times as given below:

i	1	2	3
a_{i}	12 pm	4 pm	2 pm
b_{i}	3 pm	6 pm	5 pm

Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.

Universal Hash Families

- Definition: A hash family \mathcal{H} (mapping \mathcal{U} into n buckets) is 2-universal if for all $x \neq y \in \mathcal{U}$ and for all $a, b \in\{1, \ldots, n\}$,

$$
\mathbb{P}((h(x), h(y))=(a, b))=\frac{1}{n^{2}} .
$$

(a) Show that if \mathcal{H} is 2-universal, then it is universal.
(b) Show that the converse is not true. That is, there is a universal family that's not 2-universal.

More universal hash families

Say that \mathcal{H} is a universal hash family, containing functions $h: \mathcal{U} \rightarrow\{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \backslash\{x\}$, and tries to get $h(y)=h(x)$.
- If $h(x)=h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.
(1) There is a universal hash family \mathcal{H} so that the bad guy wins with probability 1.
(2) For any universal hash family \mathcal{H}, the probability that the bad guy wins is at most $1 / n$.

Which is true and why?

Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.

