## CS161 Review Session Practice Problems

$$
\begin{aligned}
& \text { WITH SOLITION } \\
& \text { SKETCHES! }
\end{aligned}
$$

12/6/2017

## Poll results

As of 1am this morning...


Big-Oh notation
Solving recurrences
Sorting: QuickSort, MergeSort, RadixSo
Sorting lower bounds
Select
Binary Search Trees and Red-Black tree
Universal hashing and hash tables
BFS/DFS

Strongly Connected Components
Shortest paths in graphs: Dijkstra/Bellma
Minimum spanning trees: Prim and Krus
Minimum cuts and maximum flows: Kars
Divide and conquer
Dynamic Programming
Greedy algorithms

## Agenda

- I have a bunch of practice problems.
- Y'all vote on topics and we'll do them.
- I can also answer particular questions about the material.
- Topics I have problems for:
- Grab-bag (multiple choice, etc)
- Hashing
- Red-Black Trees
- Ford-Fulkerson
- Dynamic Programming
- Greedy algorithms
- Divide and conquer
- Randomized algs



## Multiple choice warmup!

For each of the following quantities, identify all of the options that correctly describe the quantity.
(a) The function $f(n)$, where $f(n)=n \log (n) . \quad(A),(C)$
(b) $T(n)$ given by $T(n)=T(n / 4)+\Theta\left(n^{2}\right)$ with $T(n)=1$ for all $n \leq 8$.
(c) $T(n)$ which is the running time of the following algorithm: mysteryAlg( n ):

$$
\text { if } n<3 \text { : }
$$

return 1
return mysteryAlg ( $n / 2$ ) + mysteryAlg ( $(\mathrm{n} / 2)+1$ ) where above all division is integer division (so a/b means $\lfloor a / b\rfloor$ ).
$(A),(C),(D)$
(A) $O\left(n^{2}\right)$
(B) $\Theta\left(n^{2}\right)$
(C) $\Omega(n)$
(D) $O(n)$
(E) $O\left(\log ^{2}(n)\right)$.

## Prove or give a counter-example

Let $G=(V, E)$ be an undirected weighted graph, and let $T$ be a minimum spanning tree in $G$. Decide whether the following statements must be true or may be false, and prove it!
(a) For any pair of distinct vertices $s, t \in V$, there is a unique path from $s$ to $t$ in $T$.

(b) For any pair of distinct vertices $s, t \in V$, the cost of a path between $s$ and $t$ in $T$ is minimal among all paths from $s$ to $t$ in $G$.

True

False


## Hashing warm-up

Let $\mathcal{U}$ be a universe of size $m$, where $m$ is a prime, and consider the following two hash families which hash $\mathcal{U}$ into $n$ buckets, where $n$ is much smaller than $m$.

- First, consider $\mathcal{H}_{1}$, which is the set of all functions from $\mathcal{U}$ to $\{1, \ldots, n\}$ :

$$
\mathcal{H}_{1}=\{h \mid h: \mathcal{U} \rightarrow\{1, \ldots, n\}\}
$$

- Second, let $p=m$ (so $p$ is prime since we assumed $m$ to be prime), and choose $\mathcal{H}_{2}$ to be

$$
\mathcal{H}_{2}=\left\{h_{a, b} \mid a \in\{1, \ldots, p-1\}, b \in\{0, \ldots, p-1\}\right\}
$$

where $h_{a, b}(x)=(a x+b \bmod p) \bmod n$.

- You want to implement a hash table using one of these two families. Why would you choose $\mathcal{H}_{2}$ over $\mathcal{H}_{1}$ ? Choose the best answer.
(A) $\mathcal{H}_{1}$ isn't a universal hash family.
(B) Stbring an element of $\mathcal{H}_{1}$ takes a lot of space.
(C) Storing all of $\mathcal{H}_{1}$ takes a lot of space.

Shortest Paths

- When might you prefer breadth-first search to Dijkstra's algorithm?

If the graph is unweighted

- When might you prefer Floyd-Warshall to Bellman-Ford?

If you want shortest paths between all pairs of vertices.

- When might you prefer Bellman-Ford to Dijkstra's algorithm?

If there are negative edge wis

## Randomized algorithms

Suppose that $b_{1}, \ldots, b_{n}$ are $n$ distinct integers in a uniformly random order. Consider the following algorithm:
findMax(b_1,..., b_n):
currentMax $=-$ Infinity
for $i=1, \ldots, n$ :
if b_i $>$ currentMax:
currentMax $=$ b_i
return currentMax

$$
\begin{aligned}
& \mathbb{E}\{\text { \#times curent Max upditted\} } \\
& =\mathbb{E}\left\{\sum_{i=1}^{n} \mathbb{\mathbb { 1 } \{ b _ { i } > b _ { 1 } , \ldots , b _ { i - 1 } \} \}}\right. \\
& =\sum_{i=1}^{n} \mathbb{P}\left\{b_{i}>b_{1}, \ldots, b_{i-1}\right\} \\
& =\sum_{i=1}^{n} 1 / i \quad \text { since } b_{1,}, b_{i} \text { are } \\
& =\Theta(\log (n)) \quad \text { that any one is largest is } \frac{1}{t} \text {. } \\
& \text { unifirm - the pobability, }
\end{aligned}
$$

What is the expected number of times that currentMax is updated? (Asymptotic notation is fine).

$$
\theta(\log (n))
$$

## Min-cut/Max-flow

Consider the following flow on a graph. The notation $x / y$ means that an edge has flow $x$ out of capacity $y$.

- Draw the residual graph for this flow.

- Find an augmenting path in the residual graph and use it to increase the flow. The path highlighted above results in the flow marked above.blc the updataed
- Find a minimum cut and prove (not by exhaustion) that it is a misuther minimum cut. The cut $\{s a\},\{b, t\}$ has value 2, which is mininal since $2 \leq \max$ flow $=$ mineut $\} 2$


## Dynamic Programming!

- Suppose that roads in a city are laid out in an $n \times n$ grid, but some of the roads are obstructed.
- For example, for $n=3$, the city may look like this:

$$
\begin{align*}
& \text { Define M[iij] = \#paths from }(0,0) \text { to (iij). }  \tag{2,2}\\
& M[i, j]=\mathbb{I}\left\{\{ _ { ( i - 1 , j ) } ^ { ( j , j ) } \} M \left([i-1, j]+\mathbb{1}\left\{d_{(j,-1)}^{(i j)}\right\} M[i, j-1]\right.\right. \\
& \mathrm{Ng}: \\
& - \text { Initialize } M[i, j]=0 \quad \forall i, j \in\{0, \ldots, n-1\} \\
& \text { - } M[0,0] \leftarrow 1 \\
& \text { - for } i=0,-, n-1 \text { : }
\end{align*}
$$

- Return $M[n-1, n-1]$.

where we have only drawn the roads that are not blocked. You want to count the number of ways to get from $(0,0)$ to $(n-1, n-1)$, using paths that only go up and to the right. In the example above, the number of paths is 3 .
- Design a DP algorithm to solve this problem.


## Divide and Conquer!

- Given an array $A$ of length $n$, we say that an array $B$ is a circular shift of $A$ if there is an integer $k$ between 1 and $n$ (inclusive) so that

$$
B=A[k: n]+A[1: k],
$$

where + denotes concatenation.

- For example, if $A=[2,5,6,8,9]$, then $B=[6,8,9,2,5]$ is a circular shift of $A$ (with $k=2$ ). The sorted array $A$ itself is also a circular shift of $A($ with $k=1)$.
- Design a $O(\log (n))$-time algorithm that takes as input an array $B$ which is a circular shift of a sorted array which contains distinct positive integers, and returns the value of the largest element in $B$. For example, give $B$ as above, your algorithm should return 9 .
Solution on next pag.

SOLUTION for DIVIDE + CONQUER
def find $\operatorname{Max}(B)$ :

```
if \(B[0] \leqslant B[n-1]: \|_{\text {case }} 1\)
```

retie $B[n-1]$
mid $=\lfloor n / 2\rfloor+1$
if $B[$ mid $]>B[0]: ~ \$ case 2
velum find Max $(B[$ mid: $n])$
If $B[$ mid $]<B[0]: \geqslant$ case 3
rehem find $\operatorname{Max}(B[:$ mid +1$])$

Idea:

In CASE 1, the situation looks like
В展

so we rectum $B[n-1]$

In CASE 2, it look like

so the max is on the night side and ne recuse on $B[$ mid: ]

In CASE 3, it looks like

so the max is on the left side and we recuse on $B[$ : mid +1$]$

## Greedy Algorithms!

There are $n$ final exams on Dec. 13 at Stanford; exam $i$ is scheduled to begin at time $a_{i}$ and end at time $b_{i}$. Two exams which overlap cannot be administered in the same classroom; two exams $i$ and $j$ are defined to be overlapping if $\left[a_{i}, b_{i}\right] \cap\left[a_{j}, b_{j}\right] \neq \emptyset$ (including if $b_{i}=a_{j}$, so one starts exactly at the time that the other ends). Design an algorithm which solves the following problem.

- Input: Arrays $A$ and $B$ of length $n$ so that $A[i]=a_{i}$ and $B[i]=b_{i}$.
- Output: The smallest number of classrooms necessary to schedule all of the exams, and an optimal assignment of exams to classrooms.
- Running time: $O(n \log (n)+n k)$, where $k$ is the minimum number of classrooms needed.
- For example: Suppose there are three exams, with start and finish times as given below:

| i | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $a_{i}$ | 12 pm | 4 pm | 2 pm |
| $b_{i}$ | 3 pm | 6 pm | 5 pm |



Then the exams can be scheduled in two rooms; Exam 1 and Exam 2 can be scheduled in Room 1 and Exam 3 can be scheduled in Room 2.

Solution to Scheduling Problem
def scheduleRooms $(A, B)$ : $/ \mathbb{I D E A}$. Sort exams by start time. Greedily pat exams into any room that can accomodate them.
$n \leftarrow \operatorname{len}(A)$
If there is no such rom, start a new nom.

$$
C=[(A[i], i) \quad \text { for } i=0,-, n-1]
$$

sort $C$ increasing ardor by start time.
rooms $=[]$ / list of rooms
end Times $=[]$
for $i=0, \ldots, n-1$ :

$$
\text { Cor } r=0,-\operatorname{len}(\text { rooms })-1:
$$

if $C[i][1]>$ end Times $[r]$ :
roons[r] append ( $\left.\mathrm{C}_{[i}\right][1]$ )
end Times $[r]=B[C[i J C i]]$ break

Else: II did not break

$$
\text { ( rooms. append (C[iJ[1]) } \begin{aligned}
& \text { end Times. append }([\mathrm{B}[C[i][1]]])
\end{aligned}
$$

Return rooms.

Correctness by induction
Inductive hyp: After adding the itch exam, there is an optimal schedule that extends the current soluitim.
Base Case: After adding $U$ exams, there is an optimal sal. extending this." Inductive Step: Suppose the inductive hyp holds for $i-1$, and let $S$ be the optimal schedule that extends it.
If $S$ puts exam i where we would put it (say, room $r$ ) then we are done, so suppose that Spurs exam in in room $r$ !


Let $j>i$ be the next exam scheduled is Room.
Then $a_{j} \geq a_{i}$, since $a_{i}$ had the smallest start time of all exams not yet $\mu$ picked. So consider the schedule $S^{\prime}$ where we swap the rest of room $r^{\prime}$ w/ the rest of room:
 optimal. Andit puts exam misnomer, so wire done.


## Universal Hash Families

- Definition: A hash family $\mathcal{H}$ (mapping $\mathcal{U}$ into $n$ buckets) is 2-universal if for all $x \neq y \in \mathcal{U}$ and for all $a, b \in\{1, \ldots, n\}$,

$$
\mathbb{P}((h(x), h(y))=(a, b))=\frac{1}{n^{2}}
$$

(a) Show that if $\mathcal{H}$ is 2-universal, then it is universal.
(b) Show that the converse is not true. That is, there is a universal family that's not 2-universal.
(a) Supposethat $\mathcal{H}$ is 2 -universal. Then $\forall x \neq y \in \mathcal{X}$,

$$
\begin{aligned}
\mathbb{P}\{h(x)=h(y)\} & =\sum_{t \in\{1, \ldots, n\}} \mathbb{P}\{(h(x), h(y))=(t, t)\} \\
& =\sum_{t \in\{1, \ldots, n\}} 1 / n^{2} \\
& =1 / n .
\end{aligned}
$$

So by definition $)($ is universal.
(b) Cunsider: ${ }^{n=2,} u=\{x, y\}, x=\left\{h_{1}, h_{2}\right\}$, whure:

$$
\begin{array}{l|l|l|}
h_{1} & y \\
\cline { 2 - 3 } & 0 & 0 \\
\hline & 1 & 0 \\
\hline
\end{array}
$$

$$
\text { Then } \mathbb{P}\{h(x)=h(y)\}=1 / 2
$$

$$
\text { But } \mathbb{h}_{h \in f}\{(h(x), f(y))=(0,0)\}=1 / 2, n_{14} .
$$

## More universal hash families

Say that $\mathcal{H}$ is a universal hash family, containing functions $h: \mathcal{U} \rightarrow\{1, \ldots, n\}$. Consider the following game.

- You choose $h \in \mathcal{H}$ uniformly at random and keep it secret.
- A bad guy chooses $x \in \mathcal{U}$, and asks you for $h(x)$. (You give it to them).
- The bad guy chooses $y \in \mathcal{U} \backslash\{x\}$, and tries to get $h(y)=h(x)$.
- If $h(x)=h(y)$, the bad guy wins. Otherwise, you win.

One of the following two is true.
(0) There is a universal hash family $\mathcal{H}$ so that the bad guy wins with probability 1 .
(2) For any universal hash family $\mathcal{H}$, the probability that the bad guy

Which is true and why?

## Red-Black Trees

Which of the following can be colored as a red-black tree? Either give a coloring or explain why not.


But THIS one must have at least 4:
The woot, NIL, and then at least tovo intemal ones.

