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Recap from Last Time
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The RMQ Problem

● The Range Minimum Query (RMQ) 
problem is the following:

Given a fixed array A and two indices 
i ≤ j, what is the smallest element out of 

A[i], A[i + 1], …, A[j – 1], A[j]?
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Some Notation

● We'll say that an RMQ data structure has time 
complexity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and

● queries take time at most q(n).

● Last time, we saw structures with the following 
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)

● ⟨O(n log n), O(1)⟩ (sparse table)

● ⟨O(n log log n), O(1)⟩ (hybrid approach)

● ⟨O(n), O(n1/2)⟩ (blocking)

● ⟨O(n), O(log n)⟩ (hybrid approach)

● ⟨O(n), O(log log n)⟩ (hybrid approach)



  

Blocking Revisited
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The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution 
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time 
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))
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A Useful Observation

● Sparse tables can be constructed in time 
O(n log n).

● If we use a sparse table as a top 
structure, construction time is 
O((n / b) log n).
● See last lecture for the math on this.

● Cute trick: If we choose b = Θ(log n), 
then the construction time is O(n).



  

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!



  

An Observation



  

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))
● The query time is

O(q₁(n / b) + q₂(b))
● For this to be ⟨O(n), O(1)⟩, we need to have 

p₂(n) = O(n) and q₂(n) = O(1).

● We can't build an optimal solution out of 
the hybrid approach unless we already 
have one!

● Or can we?



  

A Key Difference

● Our original problem is

Solve RMQ on a single array in time 
⟨O(n), O(1)⟩  

● The new problem is

Solve RMQ on a large number of small 
arrays with O(1) query time and average 

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any 

easier than the first?



  

An Observation
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An Observation

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.

Claim: The indices of the 
answers to any range 

minimum queries on these 
two arrays are the same.



  

Modifying RMQ

● From this point forward, let's have 
RMQA(i, j) denote the index of the 
minimum value in the range rather than 
the value itself.

● Observation: If RMQ structures return 
indices rather than values, we can use a 
single RMQ structure for both of these 
arrays:
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Some Notation

● Let B₁ and B₂ be blocks of length b.

● We'll say that B₁ and B₂ have the same block 
type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always 
the same as the RMQ answers for B₂.

● If we precompute RMQ over B₁, we can reuse 
that RMQ structure on B₂ iff B₁ ~ B₂.
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The Big Picture

● We're building up toward a hybrid structure that 
works as follows. For each block:

● Determine the type of that block.
● If an RMQ structure already exists for its block type, 

just use that structure.
● Otherwise, compute its RMQ structure and store it 

for later.

● Need to choose the block size such that
● there are “not too many” possible block types, which 

ensures we reuse RMQ structures, but
● the blocks aren't so small that we can't efficiently 

build the summary structure on top.



  

Detecting Block Types

● For this approach to work, we need to be 
able to check whether two blocks have the 
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is 
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to 

have to compute RMQ structures on B₁ and B₂ to 
decide whether they have the same block type!

● Is there a simpler way to determine whether 
two blocks have the same type?



  

An Initial Idea

● Since the elements of the array are ordered 
and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.

 

 

 

Claim: If B₁ and B₂ have the same 
permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27



  

An Initial Idea

● Since the elements of the array are ordered 
and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.

 

 

 

Claim: If B₁ and B₂ have the same 
permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 1 2 2 3 1



  

An Initial Idea

● Since the elements of the array are ordered 
and we're looking for the smallest value in 
certain ranges, we might look at the 
permutation types of the blocks.

 

 

 
● Claim: If B₁ and B₂ have the same 

permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 1 2 2 3 1



  

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have 
different permutations but the same block type.

All three of these blocks have the same block type 
but different permutation types:

 

 

Problem Two: The number of possible 
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?
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An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁ 
and B₂ must occur at the same position.

 

 

 

 

Claim: This property must hold recursively on 
the subarrays to the left and right of the 
minimum.
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Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of 

the minimum value. Its left and right children are 
Cartesian trees for the subarrays to the left and 
right of the minimum.
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Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then 
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

Proof sketch:

(⇒) Induction. B₁ and B₂ have equal RMQs, so 
corresponding ranges have the same minima.
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Time-Out for Announcements!



  

Problem Set One

● Problem Set One goes out today. It's due next 
Wednesday at 2:15PM at the start of class.

● You can work individually or in pairs.
● If you work in pairs, submit a single problem set 

with both your names on it. You'll each earn the 
same score.

● If you work individually, we will grade the 
problem set out of 19 points. (There are 23 
possible points on the problem set).

● Please read the handout on the Honor 
Code and the Problem Set Policies before 
starting this problem set.



  

Office Hours

● Office hours schedule:
● TAs: Thursday, 2PM – 4PM, location TBA.
● Keith: Monday, 3:30PM – 5:30PM, location 

TBA.

● Office hours start this week. We'll email 
out locations and post them on the 
course website as well.



  

Your Questions



  

“If you were a data structure, what would 
you be and why?”



  

“What real world problems can
we solve with RMQ?”
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“Will there be a Piazza forum
for this class?”



  

“Can Keith post slides before lecture starts 
(so we can print them to take notes on)?”

“Will slides be posted online after lecture?”



  

Back to CS166!



  

Building Cartesian Trees

● The previous theorem lets us check 
whether B₁ ~ B₂ by testing whether they 
have the same Cartesian tree.

● How efficiently can we actually build 
these trees?



  

Building Cartesian Trees

● Here's a naïve algorithm for constructing 
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree with the 

elements to the left.
● Recursively build a Cartesian tree with the 

elements to the right.
● Return the overall tree.

● What's the runtime of this operation?



  

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it 

occupies, then
● recursively processing the left and right halves 

on the array.
● Similar to the recursion in quicksort: it 

depends on where the minima are.
● Get a good split: O(n log n).
● Get bad splits: O(n2).

● We're going to need to be faster than this.



  

A Better Approach

● It turns out that it's possible to build a Cartesian 
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the 
first element, then the first two, then the first 
three, then the first four, etc.
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A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45

45



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45

45



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45

45

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

32

45

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18

18



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18

18



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18

18

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

16

18

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33



  

A Stack-Based Algorithm

● Maintain a stack of the nodes 
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty 
or the top node has a lower 
value than the current value.

● Set the new node's left child 
to be the last value popped 
(or null if nothing was 
popped).

● Set the new node's parent to 
be the top node on the stack 
(or null if the stack is empty).

● Push the new node onto the 
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33



  

Analyzing the Runtime

● Pushing each node might take time O(n), since we 
might have to pop everything off the stack.

● Runtime is therefore O(n2).
● Claim: Runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to 

the number of stack operations performed when that 
node was processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).



  

The Story So Far

● Since we can build Cartesian trees in 
linear time, we can test if two blocks 
have the same type in linear time.

● Goal: Choose a block size that's small 
enough that there are duplicated blocks, 
but large enough that the top-level RMQ 
can be computed efficiently.

● So how many Cartesian trees are there?
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Proof Approach

● Our stack-based algorithm for generating 
Cartesian trees is capable of producing a 
Cartesian tree for every possible input 
array.

● Therefore, if we can count the number of 
possible executions of that algorithm, we 
can count the number of Cartesian trees.

● Using a simple counting scheme, we can 
show that there are at most 4b possible 
executions.



  

The Insight

● Claim: The Cartesian tree produced by the 
stack-based algorithm is uniquely determined by the 
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the 
execution of the algorithm: b pushes and no more than 
b pops.

● Can represent the execution as a 2b-bit number, where 
1 means “push” and 0 means “pop.” We'll pad the end 
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a 
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so 
there are at most 4b possible Cartesian trees.



  

Cartesian Tree Numbers
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32 45 16 18 9 33 1 1

32

32

45

45



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0

32

32

45

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0

32

45

16

16

18

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0

32

45

16

18

9

9

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33



  

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33



  

We don't actually need to build the 
Cartesian tree – we can just simulate the 

stack!



  

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35



  

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35



  

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27



  

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0

90 45 23 53 60 28 74 71 35



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0

90 45 23 53 60 28 74 71 35

18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0

18 18 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0

18 18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0

18 18 23 53



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0

18 18 23



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0

18 18 23 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0

18 18 23 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1

18 18 23 28 35



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0

18 18 23 28



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0

18 18 23



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0

18 18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0

18



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0



  

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0



  

Finishing Things Up

● Using the previous algorithm, we can compute 
the Cartesian tree number of a block in time 
O(b) and without actually building the tree.

● Gives a simple and efficient linear-time 
algorithm for testing whether two blocks have 
the same block type.

● And, we bounded the number of Cartesian 
trees at 4b using this setup!



  

The Fischer-Heun Structure

● In 2005, Fischer and Heun introduced a (slight 
variation on) the following RMQ data structure.

● Use a hybrid approach with block size b (we'll choose b 
later), a sparse table as a top RMQ structure, and the 
full precomputation data structure for the blocks.

● However, make the following modifications:

● Make a table of length 4b holding RMQ structures. The 
index corresponds to the Cartesian tree number. Initially, 
the array is empty.

● When computing the RMQ for a particular block, first 
compute its Cartesian tree number t.

● If there's an RMQ structure for t in the array, use it.

● Otherwise, compute the RMQ structure for the current 
block, store it in the array and index t, then use it.



  

Analyzing the Runtime

● What is the query time on the 
Fischer-Heun structure?
● O(1) queries in top-level structure.
● O(1) queries in each block.

● Total query time: O(1).



  

Analyzing the Runtime

● Splitting the input into blocks and computing the block 
mins takes time O(n) regardless of b.

● Creating the sparse table takes time O((n / b) log n).

● Computing the Cartesian tree number of each block 
takes time O(n) in total.

● O(b) work O(n / b) times.

● Maximum possible work constructing RMQ structures 
is O(4b b2):

● Takes time O(b2) to compute an RMQ structure.

● Done at most 4b times, one per possible Cartesian tree.

● Total runtime:

O(n + (n / b) log n + 4b b2)



  

The Finishing Touch

● The runtime is

O(n + (n / b) log n + 4b b2)
● As we saw earlier, if we set b = Θ(log n), then

(n / b) log n = O(n)
● Suppose we set b = log₄ (n1/2) = ¼log₂ n. Then

4b b2 = n1/2 (log₂ n)2 = o(n)
● With b = ¼log₂ n, the preprocessing time is

    = O(n + n + n1/2 (log n)2) = O(n)
● We finally have an ⟨O(n), O(1)⟩ RMQ solution!



  

Practical Concerns

● This structure is actually reasonably 
efficient; preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid is a 
bit faster:
● Constant factor in the Fischer-Heun O(n) and 

O(1) are high.
● Constant factor in the hybrid approach's O(n) 

and O(log n) are very low.

● Check the Fischer-Heun paper for details.



  

Wait a Minute...

● This approach assumes that the Cartesian tree 
numbers will fit into individual machine words!

● If b = ¼ log₂ n, then each Cartesian tree number 
will have ½ log₂ n bits.

● Cartesian tree numbers will fit into a machine 
word if n fits into a machine word.

● In the transdichotomous machine model, we 
assume the problem size always fits into a machine 
word.

● Reasonable – think about how real computers work.

● So there's nothing to worry about.



  

The Method of Four Russians

● The technique employed here is an example of 
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially 

many different blocks of size Θ(log n), evaluate the 
blocks more efficiently than evaluating each one 
independently.

● Combine the results together using a top-level 
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log 
factors off of runtimes.



  

Why Study RMQ?

● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem. 
Different intuitions produced different runtimes.

● Build data structures out of other data structures. 
Many modern data structures use other data structures 
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like 
magic the first few times you see it and shows up in lots 
of places.

● Explore modern data structures. This is relatively 
recent data structure (2005), and I wanted to show you 
that the field is still very active!

● So what's next?



  

Next Time

● Balanced Trees
● One of the most versatile and useful data 

structures around.

● B-Trees
● Data structures for storing sorted information on 

disk.

● Red/Black Trees
● They're not as scary as they might look. Trust 

me!
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