

Range Minimum Queries
Part Two

Recap from Last Time

41 59 26 5331 41 59 26 53 58 97 93

The RMQ Problem

● The Range Minimum Query (RMQ)
problem is the following:

Given a fixed array A and two indices
i ≤ j, what is the smallest element out of

A[i], A[i + 1], …, A[j – 1], A[j]?

31 58 97 93

Some Notation

● We'll say that an RMQ data structure has time
complexity ⟨p(n), q(n)⟩ if

● preprocessing takes time at most p(n) and

● queries take time at most q(n).

● Last time, we saw structures with the following
runtimes:

● ⟨O(n2), O(1)⟩ (full preprocessing)

● ⟨O(n log n), O(1)⟩ (sparse table)

● ⟨O(n log log n), O(1)⟩ (hybrid approach)

● ⟨O(n), O(n1/2)⟩ (blocking)

● ⟨O(n), O(log n)⟩ (hybrid approach)

● ⟨O(n), O(log log n)⟩ (hybrid approach)

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ on
the block minimums!

This is just RMQ on
the block minimums!

Blocking Revisited

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

This is just RMQ
inside the blocks!

This is just RMQ
inside the blocks!

The Framework

● Suppose we use a ⟨p₁(n), q₁(n)⟩-time RMQ solution
for the block minimums and a ⟨p₂(n), q₂(n)⟩-time
RMQ solution within each block.

● Let the block size be b.

● In the hybrid structure, the preprocessing time is

O(n + p₁(n / b) + (n / b) p₂(b))

● The query time is

O(q₁(n / b) + q₂(b))

31 26 23 62 27

31 41 59 26 53 58 97 93 23 84 62 64 33 83 2731 41 59 26 53 58 97 93 23 84 62 64 33 83 27

31 26 23 62 27

A Useful Observation

● Sparse tables can be constructed in time
O(n log n).

● If we use a sparse table as a top
structure, construction time is
O((n / b) log n).
● See last lecture for the math on this.

● Cute trick: If we choose b = Θ(log n),
then the construction time is O(n).

Is there an ⟨O(n), O(1)⟩ solution to RMQ?

Yes!

An Observation

The Limits of Hybrids

● The preprocessing time on a hybrid structure is

O(n + p₁(n / b) + (n / b) p₂(b))
● The query time is

O(q₁(n / b) + q₂(b))
● For this to be ⟨O(n), O(1)⟩, we need to have

p₂(n) = O(n) and q₂(n) = O(1).

● We can't build an optimal solution out of
the hybrid approach unless we already
have one!

● Or can we?

A Key Difference

● Our original problem is

Solve RMQ on a single array in time
⟨O(n), O(1)⟩

● The new problem is

Solve RMQ on a large number of small
arrays with O(1) query time and average

preprocessing time O(n).
● These are not the same problem.
● Question: Why is this second problem any

easier than the first?

An Observation

10 30 20 40 166 361 261 464

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46410 30 20 40 166 361 261 464

An Observation

10 166

30 20 40 361 261 46430 20 40 361 261 46410 166

An Observation

10 166

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 36110 16630 20 40 361 261 46420 40 261 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 40 361 261 46440 46410 166

An Observation

30 20 361 26110 16630 20 361 26110 16640 46440 464

An Observation

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Claim: The indices of the
answers to any range

minimum queries on these
two arrays are the same.

Modifying RMQ

● From this point forward, let's have
RMQA(i, j) denote the index of the
minimum value in the range rather than
the value itself.

● Observation: If RMQ structures return
indices rather than values, we can use a
single RMQ structure for both of these
arrays:

30 20 361 26110 16630 20 361 26110 16640 46440 464

Some Notation

● Let B₁ and B₂ be blocks of length b.

● We'll say that B₁ and B₂ have the same block
type (denoted B₁ ~ B₂) if the following holds:

For all 0 ≤ i ≤ j < b:
RMQB₁(i, j) = RMQB₂(i, j)

● Intuitively, the RMQ answers for B₁ are always
the same as the RMQ answers for B₂.

● If we precompute RMQ over B₁, we can reuse
that RMQ structure on B₂ iff B₁ ~ B₂.

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

RMQ
Structure

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

RMQ
Structure

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

RMQ
Structure

RMQ
Structure

An Observation

31 41 59 26 53 58 97 23 93 84 62 64 33 83 27

RMQ
Structure

RMQ
Structure

RMQ
Structure

The Big Picture

● We're building up toward a hybrid structure that
works as follows. For each block:

● Determine the type of that block.
● If an RMQ structure already exists for its block type,

just use that structure.
● Otherwise, compute its RMQ structure and store it

for later.

● Need to choose the block size such that
● there are “not too many” possible block types, which

ensures we reuse RMQ structures, but
● the blocks aren't so small that we can't efficiently

build the summary structure on top.

Detecting Block Types

● For this approach to work, we need to be
able to check whether two blocks have the
same block type.

● Problem: Our formal definition of B₁ ~ B₂ is
defined in terms of RMQ.
● Not particularly useful a priori; we don't want to

have to compute RMQ structures on B₁ and B₂ to
decide whether they have the same block type!

● Is there a simpler way to determine whether
two blocks have the same type?

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same
permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

Claim: If B₁ and B₂ have the same
permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 1 2 2 3 1

An Initial Idea

● Since the elements of the array are ordered
and we're looking for the smallest value in
certain ranges, we might look at the
permutation types of the blocks.

● Claim: If B₁ and B₂ have the same

permutation on their elements, then B₁ ~ B₂.

31 41 59

12 2 5

16 18 3

66 26 6

27 18 28

60 22 14

66 73 84

72 99 27

1 2 3 2 3 1 2 1 3 1 2 3

3 1 2 3 2 1 3 1 2 2 3 1

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
different permutations but the same block type.

All three of these blocks have the same block type
but different permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
different permutations but the same block type.

● All three of these blocks have the same block type
but different permutation types:

Problem Two: The number of possible
permutations of a block is b!.

b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
different permutations but the same block type.

● All three of these blocks have the same block type
but different permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

Some Problems

● There are two main problems with this approach.

● Problem One: It's possible for two blocks to have
different permutations but the same block type.

● All three of these blocks have the same block type
but different permutation types:

● Problem Two: The number of possible
permutations of a block is b!.

● b has to be absolutely minuscule for b! to be small.

● Is there a better criterion we can use?

261 268 161 161 261 167

4 5 1 1 4 3

167 166

3 2

166 268

2 5

167 261 161

3 4 1

268 166

5 2

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

75 35 80 85 83

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

Claim: This property must hold recursively on
the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268 161 167 166

14 22 11 43 35

6 5 3 9 7

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

3 9 7

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

6 5

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

161 167 166

11 43 35

An Observation

● Claim: If B₁ ~ B₂, the minimum elements of B₁
and B₂ must occur at the same position.

● Claim: This property must hold recursively on

the subarrays to the left and right of the
minimum.

261 268

14 22

261 268 161 167 166

14 22 11 43 35

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of

the minimum value. Its left and right children are
Cartesian trees for the subarrays to the left and
right of the minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

2

0 4

31

2

4

3

1

0

4

0

2

31

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

Proof sketch:

(⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

k k

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

k k

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇒) Induction. B₁ and B₂ have equal RMQs, so
corresponding ranges have the same minima.

k k

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Cartesian Trees and RMQ

● Theorem: Let B₁ and B₂ be blocks of length b. Then
B₁ ~ B₂ iff B₁ and B₂ have equal Cartesian trees.

● Proof sketch:

● (⇐) Induction. It's possible to answer RMQ using a
recursive walk on the Cartesian tree.

31 41 59 26 53 58 97 23 93 84 33 64 62 83 27

7

3

12

14

13

100

1

2

4

5

6 11

9

8

Time-Out for Announcements!

Problem Set One

● Problem Set One goes out today. It's due next
Wednesday at 2:15PM at the start of class.

● You can work individually or in pairs.
● If you work in pairs, submit a single problem set

with both your names on it. You'll each earn the
same score.

● If you work individually, we will grade the
problem set out of 19 points. (There are 23
possible points on the problem set).

● Please read the handout on the Honor
Code and the Problem Set Policies before
starting this problem set.

Office Hours

● Office hours schedule:
● TAs: Thursday, 2PM – 4PM, location TBA.
● Keith: Monday, 3:30PM – 5:30PM, location

TBA.

● Office hours start this week. We'll email
out locations and post them on the
course website as well.

Your Questions

“If you were a data structure, what would
you be and why?”

“What real world problems can
we solve with RMQ?”

Lowest Common Ancestors

CS166
Data Structures

CS166
A

GD

E

B

C F

A B C B A D E D F D A G A

Lowest Common Ancestors

A

GD

E

B

C F

A B C B A D E D F D A G A

Lowest Common Ancestors

This is called an Euler
tour of the tree. We'll talk
about this more in a few
weeks.

This is called an Euler
tour of the tree. We'll talk
about this more in a few
weeks.

A

GD

E

B

C F

A B C B A D E D F D A G A

Lowest Common Ancestors

0 1 2 1 0 1 2 1 2 1 0 1 0

A

GD

E

B

C F

A B C B A D E D F D A G A

Lowest Common Ancestors

0 1 2 1 0 1 2 1 2 1 0 1 0

A

GD

E

B

C F

A B C B A D E D F D A G A

“Will there be a Piazza forum
for this class?”

“Can Keith post slides before lecture starts
(so we can print them to take notes on)?”

“Will slides be posted online after lecture?”

Back to CS166!

Building Cartesian Trees

● The previous theorem lets us check
whether B₁ ~ B₂ by testing whether they
have the same Cartesian tree.

● How efficiently can we actually build
these trees?

Building Cartesian Trees

● Here's a naïve algorithm for constructing
Cartesian trees:
● Find the minimum value.
● Recursively build a Cartesian tree with the

elements to the left.
● Recursively build a Cartesian tree with the

elements to the right.
● Return the overall tree.

● What's the runtime of this operation?

Building Cartesian Trees

● This algorithm works by
● doing a linear scan over the array,
● identifying the minimum at whatever position it

occupies, then
● recursively processing the left and right halves

on the array.
● Similar to the recursion in quicksort: it

depends on where the minima are.
● Get a good split: O(n log n).
● Get bad splits: O(n2).

● We're going to need to be faster than this.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393 84 33 64 62 83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

Observation 1: This new
node cannot end up as the
left child of any node in the
tree.

Observation 1: This new
node cannot end up as the
left child of any node in the
tree.

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

Observation 2: This new
node will end up on the right
spine of the tree.

Observation 2: This new
node will end up on the right
spine of the tree.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

Observation 3: Cartesian
trees are min-heaps with
respect to the elements in
the original array.

Observation 3: Cartesian
trees are min-heaps with
respect to the elements in
the original array.

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

7

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

7

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

7

A Better Approach

● It turns out that it's possible to build a Cartesian
tree over an array of length k in time O(k).

● High-Level Idea: Build a Cartesian tree for the
first element, then the first two, then the first
three, then the first four, etc.

6393

0

84

1

33

2

64

3

62

4

5

83

6

55

7

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33

A Stack-Based Algorithm

● Maintain a stack of the nodes
on the right spine of the tree.

● To insert a new node:

● Pop the stack until it's empty
or the top node has a lower
value than the current value.

● Set the new node's left child
to be the last value popped
(or null if nothing was
popped).

● Set the new node's parent to
be the top node on the stack
(or null if the stack is empty).

● Push the new node onto the
stack.

32 45 16 18 9 33

32

45

16

18

9

9

33

33

Analyzing the Runtime

● Pushing each node might take time O(n), since we
might have to pop everything off the stack.

● Runtime is therefore O(n2).
● Claim: Runtime is actually Θ(n).
● Proof: Work done per node is directly proportional to

the number of stack operations performed when that
node was processed.

● Total number of stack operations is at most 2n.
● Every node is pushed once.
● Every node is popped at most once.

● Total runtime is therefore Θ(n).

The Story So Far

● Since we can build Cartesian trees in
linear time, we can test if two blocks
have the same type in linear time.

● Goal: Choose a block size that's small
enough that there are duplicated blocks,
but large enough that the top-level RMQ
can be computed efficiently.

● So how many Cartesian trees are there?

Theorem: The number of Cartesian trees
for an array of length b is at most 4b.

In case you're curious, the actual number is

which is roughly

Theorem: The number of Cartesian trees
for an array of length b is at most 4b.

In case you're curious, the actual number is

which is roughly

1
b+1 (2b

b)

Theorem: The number of Cartesian trees
for an array of length b is at most 4b.

In case you're curious, the actual number is

which is roughly

4b

b3/2
√π

1
b+1 (2b

b)

Proof Approach

● Our stack-based algorithm for generating
Cartesian trees is capable of producing a
Cartesian tree for every possible input
array.

● Therefore, if we can count the number of
possible executions of that algorithm, we
can count the number of Cartesian trees.

● Using a simple counting scheme, we can
show that there are at most 4b possible
executions.

The Insight

● Claim: The Cartesian tree produced by the
stack-based algorithm is uniquely determined by the
sequence of pushes and pops made on the stack.

● There are at most 2b stack operations during the
execution of the algorithm: b pushes and no more than
b pops.

● Can represent the execution as a 2b-bit number, where
1 means “push” and 0 means “pop.” We'll pad the end
with 0's (pretend we pop everything from the stack.)

● We'll call this number the Cartesian tree number of a
particular block.

● There are at most 22b = 4b possible 2b-bit numbers, so
there are at most 4b possible Cartesian trees.

Cartesian Tree Numbers

32 45 16 18 9 33

Cartesian Tree Numbers

32 45 16 18 9 33

Cartesian Tree Numbers

32 45 16 18 9 33

32

Cartesian Tree Numbers

32 45 16 18 9 33

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

45

Cartesian Tree Numbers

32 45 16 18 9 33 1

32

32

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

Cartesian Tree Numbers

32 45 16 18 9 33 1 1

32

32

45

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0

32

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0

32

45

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1

32

45

16

16

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1

32

45

16

16

18

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0

32

45

16

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0

32

45

16

18

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1

32

45

16

18

9

9

33

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0

32

45

16

18

9

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33

Cartesian Tree Numbers

32 45 16 18 9 33 1 1 0 0 1 1 0 0 1 1 0 0

32

45

16

18

9

33

We don't actually need to build the
Cartesian tree – we can just simulate the

stack!

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45 90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Cartesian Tree Numbers

27 18 28 18 28 45

1

90 45 23 53 60 28 74 71 35

27

Cartesian Tree Numbers

27 18 28 18 28 45

1 0

90 45 23 53 60 28 74 71 35

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1

90 45 23 53 60 28 74 71 35

18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0

90 45 23 53 60 28 74 71 35

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1

90 45 23 53 60 28 74 71 35

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1

90 45 23 53 60 28 74 71 35

18 18 28 45 90

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1

90 45 23 53 60 28 74 71 35

18 18 28 45 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

18 18 28 45

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0

18 18 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1

18 18 23 53 60

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0

18 18 23 53

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1

18 18 23 28 74

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1

18 18 23 28 71

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1

18 18 23 28 35

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0

18 18 23 28

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0

18 18 23

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0

18 18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0

18

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Cartesian Tree Numbers

27 18 28 18 28 45

1 0 1 1 0 1 1 1 1 0 1 0

90 45 23 53 60 28 74 71 35

0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 0 0 0

Finishing Things Up

● Using the previous algorithm, we can compute
the Cartesian tree number of a block in time
O(b) and without actually building the tree.

● Gives a simple and efficient linear-time
algorithm for testing whether two blocks have
the same block type.

● And, we bounded the number of Cartesian
trees at 4b using this setup!

The Fischer-Heun Structure

● In 2005, Fischer and Heun introduced a (slight
variation on) the following RMQ data structure.

● Use a hybrid approach with block size b (we'll choose b
later), a sparse table as a top RMQ structure, and the
full precomputation data structure for the blocks.

● However, make the following modifications:

● Make a table of length 4b holding RMQ structures. The
index corresponds to the Cartesian tree number. Initially,
the array is empty.

● When computing the RMQ for a particular block, first
compute its Cartesian tree number t.

● If there's an RMQ structure for t in the array, use it.

● Otherwise, compute the RMQ structure for the current
block, store it in the array and index t, then use it.

Analyzing the Runtime

● What is the query time on the
Fischer-Heun structure?
● O(1) queries in top-level structure.
● O(1) queries in each block.

● Total query time: O(1).

Analyzing the Runtime

● Splitting the input into blocks and computing the block
mins takes time O(n) regardless of b.

● Creating the sparse table takes time O((n / b) log n).

● Computing the Cartesian tree number of each block
takes time O(n) in total.

● O(b) work O(n / b) times.

● Maximum possible work constructing RMQ structures
is O(4b b2):

● Takes time O(b2) to compute an RMQ structure.

● Done at most 4b times, one per possible Cartesian tree.

● Total runtime:

O(n + (n / b) log n + 4b b2)

The Finishing Touch

● The runtime is

O(n + (n / b) log n + 4b b2)
● As we saw earlier, if we set b = Θ(log n), then

(n / b) log n = O(n)
● Suppose we set b = log₄ (n1/2) = ¼log₂ n. Then

4b b2 = n1/2 (log₂ n)2 = o(n)
● With b = ¼log₂ n, the preprocessing time is

 = O(n + n + n1/2 (log n)2) = O(n)
● We finally have an ⟨O(n), O(1)⟩ RMQ solution!

Practical Concerns

● This structure is actually reasonably
efficient; preprocessing is relatively fast.

● In practice, the ⟨O(n), O(log n)⟩ hybrid is a
bit faster:
● Constant factor in the Fischer-Heun O(n) and

O(1) are high.
● Constant factor in the hybrid approach's O(n)

and O(log n) are very low.

● Check the Fischer-Heun paper for details.

Wait a Minute...

● This approach assumes that the Cartesian tree
numbers will fit into individual machine words!

● If b = ¼ log₂ n, then each Cartesian tree number
will have ½ log₂ n bits.

● Cartesian tree numbers will fit into a machine
word if n fits into a machine word.

● In the transdichotomous machine model, we
assume the problem size always fits into a machine
word.

● Reasonable – think about how real computers work.

● So there's nothing to worry about.

The Method of Four Russians

● The technique employed here is an example of
the Method of Four Russians.

● Idea:
● Split the input apart into blocks of size Θ(log n).
● Using the fact that there can only be polynomially

many different blocks of size Θ(log n), evaluate the
blocks more efficiently than evaluating each one
independently.

● Combine the results together using a top-level
structure on an input of size Θ(n / log n).

● This technique is used frequently to shave log
factors off of runtimes.

Why Study RMQ?

● I chose RMQ as our first problem for a few reasons:

● See different approaches to the same problem.
Different intuitions produced different runtimes.

● Build data structures out of other data structures.
Many modern data structures use other data structures
as building blocks, and it's very evident here.

● See the Method of Four Russians. This trick looks like
magic the first few times you see it and shows up in lots
of places.

● Explore modern data structures. This is relatively
recent data structure (2005), and I wanted to show you
that the field is still very active!

● So what's next?

Next Time

● Balanced Trees
● One of the most versatile and useful data

structures around.

● B-Trees
● Data structures for storing sorted information on

disk.

● Red/Black Trees
● They're not as scary as they might look. Trust

me!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240

