

Balanced Trees
Part Two

Problem Set One due at
the start of class.

Written assignments
can be submitted up

front.

Problem Set One due at
the start of class.

Written assignments
can be submitted up

front.

Outline for This Week

● B-Trees
● A simple type of balanced tree developed for

block storage.

● Red/Black Trees
● The canonical balanced binary search tree.

● Augmented Search Trees
● Adding extra information to balanced trees to

supercharge the data structure.

● Two Advanced Operations
● The split and join operations.

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black trees.

● Order Statistic Trees
● BSTs with indexing.

● Augmented Binary Search Trees
● Building new data structures out of old ones.

● Dynamic 1D Closest Points
● Applications to hierarchical clustering.

● Join and Split Operations
● Two powerful BST primitives.

Review from Last Time

B-Trees

B-tree of order 2

(2-3-4 Tree)

B-tree of order 2

(2-3-4 Tree)

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A B-tree of order b is a multiway search tree with the
following properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3

11

23 37

7 31

17

13

Red/Black Trees

● A red/black tree is a
BST with the following
properties:
● Every node is either

red or black.
● The root is black.
● No red node has a red

child.
● Every root-null path in

the tree passes
through the same
number of black nodes.

19

3 11 23 37

7

311713

Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4
trees; they represent the structure of
2-3-4 trees in a different way.

● Accordingly, red/black trees have height
O(log n).

● After inserting or deleting an element
from a red/black tree, the tree invariants
can be fixed up in time O(log n) by
applying rotations and color flips that
simulate a 2-3-4 tree.

Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

Dynamic Order Statistics

Order Statistics

● In a set S of totally ordered values, the kth order
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In CS161, you (probably) saw quickselect or the
median-of-medians algorithm for computing order
statistics of a fixed array.

● Goal: Solve this problem efficiently when the data
set is changing (i.e. elements are added or
removed).

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

994

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

5

6

7

8

9

11

1094

Problem: After inserting a
new value, we may have to
update Θ(n) values.

Problem: After inserting a
new value, we may have to
update Θ(n) values.

An Observation

● The exact index of each number is a
global property of the tree.
● Depends on all other nodes and their

positions.

● Could we find a local property that lets
us find order statistics?
● Depends purely on nearby nodes.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

6

7

8

10

9

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

2

3

4

5

0

1

2

4

3

If new nodes are added to the
left subtree, these numbers

don't need to be updated.

If new nodes are added to the
left subtree, these numbers

don't need to be updated.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

0

Each node is annotated
with the number of

children in its left subtree.

Each node is annotated
with the number of

children in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

0

5

0

1

2

1

090

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Since the number just holds the number
of nodes in its left subtree, we only need

to increment the value for nodes that
have the new node in its left subtree.

Finding Order Statistics

19

3 23

7

311713

5

4

14

150

1

0

3

1

6

0

2

3

1

090

160How do we update the
numbers after the rotation?

How do we update the
numbers after the rotation?

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

na

nb na

nb – na – 1

Rotations and Order Statistics

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Left

nb

na

na

nb + na + 1

Order Statistic Trees

● The tree we just saw is called an order
statistic tree.

● Include in each node a count of the nodes
in the left subtree.

● Only O(log n) values must be updated on
an insertion or deletion and each can be
updated in time O(1).

● Supports all BST operations plus select
(find kth order statistic) and rank (tell
index of value) in time O(log n).

The General Pattern

● This data structure works in the appropriate
time bounds because values only change in
two cases:
● Along the root-leaf access path.
● During rotations.

● Red/black trees have height O(log n) and
require only O(log n) rotations per insertion
or deletion.

● We can augment red/black trees with any
attributes we'd like as long as they obey
these properties.

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that

node's key and the values of f computed at node's
children.

● Theorem: The values of f can be cached in the nodes
of a red/black tree without changing the asymptotic
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the
only values that need to change are along the root-leaf
access path, plus values at nodes that were rotated.
There are only O(log n) of these.

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node
and the values of f in it that node's children.

Order Statistics

● Note: The approach we took for building order
statistic trees does not fall into this framework.

● Example: The values below denote the number
of nodes in the indicated nodes' left subtrees.
What is the correct value of x?

137 42

x

Order Statistics via Augmentation

● Have each node store three quantities:

● numLeft, the number of nodes in the left subtree.

● numRight, the number of nodes in the right subtree.

● numTotal, the total number of nodes in the subtree.

● Can compute this information at a node in time O(1)
based on subtree values:

● node.numLeft = node.left.numTotal

● node.numRight = node.right.numTotal

● node.numTotal = 1 + node.numLeft + node.numRight

● Therefore, using the augmented BST framework, can
compute subtree sizes.

● No need to reason about tree rotations!

Example: Dynamic 1D Closest Points

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called
a dendrogram.

This tree is called
a dendrogram.

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?

Dynamic 1D Closest Points

● The dynamic 1D closest points
problem is the following:

Maintain a set of elements undergoing
insertion and deletion while efficiently
supporting queries of the form “what is

the closest pair of points?”
● Can we build a better data structure for

this?

Dynamic 1D Closest Points

k

max min

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

● These properties can be augmented into a
red/black tree so that insertions and deletions
take time O(log n) and “what is the closest pair
of points?” can be answered in time O(1).

Dynamic 1D Closest Points
137

 Min: -17

 Max: 415

Closest: 137, 142
42

 Min: -17

 Max: 67

 Closest: 15, 21

271
 Min: 142

 Max: 415

Closest: 300, 310

A Helpful Intuition

Divide-and-Conquer

● Initially, it can be tricky to come up with the
right tree augmentations.

● Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”
step.

< k > k

k

Time-Out for Announcements!

Problem Set Two

● Problem Set Two goes out today. It's due
next Wednesday, April 16, at 2:15PM.

● Play around with red/black trees, tree
augmentations, splitting, and joining!

Your Questions

“Can you please post your extra lecture
slides that you end up cutting (or,

alternatively, make a course reader with
the additional information that doesn't

make it into the course for time's sake)?”

I'll try my best! Some of them need some
polish, but I can release them “as-is.”

I don't think I have the time to put together a
proper course reader this quarter (sorry!)

I'll try my best! Some of them need some
polish, but I can release them “as-is.”

I don't think I have the time to put together a
proper course reader this quarter (sorry!)

“Is there a particular reason that there are
no late days for this class?”

A few reasons:

Logistics: Complex to make this
fair with partner assignments, and
difficult on our end to grade.

Pacing: Everything in this class
builds off of itself and I want to
ensure that everyone is caught up.

Scale: We can handle extensions for
emergencies on a case-by-case
basis.

A few reasons:

Logistics: Complex to make this
fair with partner assignments, and
difficult on our end to grade.

Pacing: Everything in this class
builds off of itself and I want to
ensure that everyone is caught up.

Scale: We can handle extensions for
emergencies on a case-by-case
basis.

“Is there a way to manage balanced BST so
that they can handle interval queries, such

as RMQ?”

It depends on the query, but usually
yes! You can use the augmented

BST framework for this.

It depends on the query, but usually
yes! You can use the augmented

BST framework for this.

“How long was the first homework
supposed to take?”

I was aiming for 8 – 10 hours, assuming that you are
working in pairs.

4 units × (3 hours / unit wk) = 12 hours / wk

12 hours / wk – 2.5 hours / wk = 9.5 hours / wk

Let me know if this wasn't the case!

I was aiming for 8 – 10 hours, assuming that you are
working in pairs.

4 units × (3 hours / unit wk) = 12 hours / wk

12 hours / wk – 2.5 hours / wk = 9.5 hours / wk

Let me know if this wasn't the case!

Join and Split

Joining and Splitting Trees

● The join and split operations are
powerful primitives on balanced BSTs.

● You'll use them in the problem set and
we'll see them on Monday.

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k.
The assumption is that all keys in T₁ are less than k
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to
produce a new BST containing all keys in T₁ and T₂ and
the key k.

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k.
The assumption is that all keys in T₁ are less than k
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to
produce a new BST containing all keys in T₁ and T₂ and
the key k.

T₁ T₂
k

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k.
The assumption is that all keys in T₁ are less than k
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to
produce a new BST containing all keys in T₁ and T₂ and
the key k.

T

Splitting Trees

● split(T, k) destructively modifies BST T by
producing two new BSTs T₁ and T₂ such that all
keys in T₁ are less than or equal to k and all
keys in T₂ are greater than k.

T

k

Splitting Trees

● split(T, k) destructively modifies BST T by
producing two new BSTs T₁ and T₂ such that all
keys in T₁ are less than or equal to k and all
keys in T₂ are greater than k.

T₁

k

T₂

The Runtimes

● Both of these operations can be implemented
in time O(n) by completely rebuilding the
trees from scratch.
● You'll design an algorithm for this in the problem

set.

● Amazingly:
● join(T₁, k, T₂) can be made to run in time

Θ(1 + |h₁ – h₂|).
● split(T, k) can be made to run in time O(log n).

● How is this possible?

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and
a key together.

● Based on what we find, we'll develop an
efficient algorithm for joining red/black
trees.

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

Joining 2-3-4 Trees

21 31

41

16 91

86

26 36 8156

51

46 71

66

61

76

58

166

161

110107

106

103

109

99

Joining 2-3-4 Trees

7 9

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11

21

31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

7 9

11

21

31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

6181 32

5

Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the larger of the two trees;

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node

v is found whose height is the height of T₂.
● Add k as a final key of v's parent with T₂ as a

right child.
● Continue as if you were inserting k into v's

parent – possibly split the node and
propagate upward, etc.

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with
their heights.

● What is the runtime of join(T₁, k, T₂)?

● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂

Joining Red/Black Trees

……

………

Joining Red/Black Trees

……

………

Joining Red/Black Trees

……

………

Joining 2-3-4 Trees

● Define the black height of a node to
be the number of black nodes on any
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger
black height; if not, do the following,
but mirrored.

● Walk down the right spine of T₁ until a
black node v is found whose black
height is the black height of T₂.

● Insert a new node with key k, left child
v, and right child T₂

● Make this new node the right child of
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying
fixup rules to k.

Keep applying
fixup rules to k.

Runtime Analysis

● Need to augment the red/black tree to store the black
height of each node.

● This fits into our augmentation framework – can be
computed from the black heights of the left and right
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is
O(1 + |bh₁ – bh₂|).

● Since the black heights of the trees are at most twice
the heights of the trees, this runtime is equivalently
O(1 + |h₁ – h₂|).

● This is O(log n₁ + log n₂) in the worst-case.

Joining Two Trees

● What if you want to join two red/black
trees but don't have a key to join them
with?

● Delete the minimum value from the
second tree in time O(log n), then use
that to join the two trees.

Implementing split Efficiently

The Intuition
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

● Do a search for the inorder
successor of k.

● (search for k; if found, move
right and search for k.)

● Splits the tree into the access
path and a set of trees L and
R hanging off of the access
path.

● Claim 1: The keys in p₁, p₂,
p₃, … are sandwiched
between the keys in the trees
in L and R.

● Claim 2: There are at most
two trees of any given black
height.

The Intuition
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃

R₂p₆

The Intuition

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less
than or equal to k.

All keys here are
greater than k.

The Intuition

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: Join all the L trees back
together and all the R trees back

together. Because the height
differences are low, the runtime

works out to O(log n).

Key idea: Join all the L trees back
together and all the R trees back

together. Because the height
differences are low, the runtime

works out to O(log n).

A Simplified Argument

● Suppose there is one tree of each black height in L.

● What is the runtime of concatenating the trees in
reverse order of heights?

● Each join takes time O(1 + |bh₁ – bh₂|) = O(1).

● At most O(log n) joins (access path has length O(log n))

● Runtime is O(log n).

A Simplified Argument

● Suppose there are trees of some, but not all, heights.

● What is the runtime of concatenating the trees in
reverse order of heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

● The number of trees (k) is O(log n) and the maximum
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)

The Split Algorithm

● Split the tree into the L trees, the R trees, and the
access path.

● In time O(log n), process the trees in L and R to
ensure there's at most one tree of height h for each
possible height h.
● Details left as an exercise.

● In time O(log n), concatenate all trees in L and all
trees in R using the previous approach.

● There will be O(1) leftover nodes from the access
path. Insert them in time O(log n) into the proper
trees.

● Net runtime: O(log n).

Next Time

● Dynamic Connectivity in Trees
● Maintaining connectivity under changing

conditions.

● Euler Tour Trees
● An elegant data structure for tree

connectivity.

● Bottleneck Edge Queries
● Putting everything together!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

