
  

Balanced Trees
Part Two

Problem Set One due at 
the start of class. 

Written assignments 
can be submitted up 

front.

Problem Set One due at 
the start of class. 

Written assignments 
can be submitted up 

front.



  

Outline for This Week

● B-Trees
● A simple type of balanced tree developed for 

block storage.

● Red/Black Trees
● The canonical balanced binary search tree.

● Augmented Search Trees
● Adding extra information to balanced trees to 

supercharge the data structure.

● Two Advanced Operations
● The split and join operations.



  

Outline for Today

● Recap from Last Time
● Review of B-trees, 2-3-4 trees, and red/black trees.

● Order Statistic Trees
● BSTs with indexing.

● Augmented Binary Search Trees
● Building new data structures out of old ones.

● Dynamic 1D Closest Points
● Applications to hierarchical clustering.

● Join and Split Operations
● Two powerful BST primitives.



  

Review from Last Time



  

B-Trees

B-tree of order 2

(2-3-4 Tree)

B-tree of order 2

(2-3-4 Tree)

1 2 4 6 7 8 10 12 14 15 17 18 19 21 22 24 26

3 9 11 16 20 25

5 13 23

● A B-tree of order b is a multiway search tree with the 
following properties:

● All leaf nodes are stored at the same depth.

● All non-root nodes have between b – 1 and 2b – 1 keys.

● The root has at most 2b – 1 keys.



  

Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
through the same 
number of black nodes.
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Red/Black Trees

● A red/black tree is a 
BST with the following 
properties:
● Every node is either 

red or black.
● The root is black.
● No red node has a red 

child.
● Every root-null path in 

the tree passes 
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number of black nodes.
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Red/Black Trees ≡ 2-3-4 Trees

● Red/black trees are an isometry of 2-3-4 
trees; they represent the structure of 
2-3-4 trees in a different way.

● Accordingly, red/black trees have height 
O(log n).

● After inserting or deleting an element 
from a red/black tree, the tree invariants 
can be fixed up in time O(log n) by 
applying rotations and color flips that 
simulate a 2-3-4 tree.



  

Tree Rotations
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Dynamic Order Statistics



  

Order Statistics

● In a set S of totally ordered values, the kth order 
statistic is the kth smallest value in the set.

● The 0th order statistic is the minimum value.
● The 1st order statistic is the second-smallest value.
● The (n – 1)st order statistic is the maximum value.

● In CS161, you (probably) saw quickselect or the 
median-of-medians algorithm for computing order 
statistics of a fixed array.

● Goal: Solve this problem efficiently when the data 
set is changing (i.e. elements are added or 
removed).



  

Finding Order Statistics
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Finding Order Statistics
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Problem: After inserting a 
new value, we may have to 
update Θ(n) values.

Problem: After inserting a 
new value, we may have to 
update Θ(n) values.



  

An Observation

● The exact index of each number is a 
global property of the tree.
● Depends on all other nodes and their 

positions.

● Could we find a local property that lets 
us find order statistics?
● Depends purely on nearby nodes.



  

Finding Order Statistics
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Finding Order Statistics
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If new nodes are added to the 
left subtree, these numbers 

don't need to be updated.

If new nodes are added to the 
left subtree, these numbers 

don't need to be updated.



  

Finding Order Statistics
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Each node is annotated 
with the number of 

children in its left subtree.

Each node is annotated 
with the number of 

children in its left subtree.



  

Finding Order Statistics
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Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.

Since the number just holds the number 
of nodes in its left subtree, we only need 

to increment the value for nodes that 
have the new node in its left subtree.



  

Finding Order Statistics
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160How do we update the 
numbers after the rotation?

How do we update the 
numbers after the rotation?



  

Rotations and Order Statistics
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Rotations and Order Statistics
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Order Statistic Trees

● The tree we just saw is called an order 
statistic tree.

● Include in each node a count of the nodes 
in the left subtree.

● Only O(log n) values must be updated on 
an insertion or deletion and each can be 
updated in time O(1).

● Supports all BST operations plus select 
(find kth order statistic) and rank (tell 
index of value) in time O(log n).



  

The General Pattern

● This data structure works in the appropriate 
time bounds because values only change in 
two cases:
● Along the root-leaf access path.
● During rotations.

● Red/black trees have height O(log n) and 
require only O(log n) rotations per insertion 
or deletion.

● We can augment red/black trees with any 
attributes we'd like as long as they obey 
these properties.



  

Augmented Red/Black Trees

● Let f(node) be a function with the following properties:

● f can be computed in time O(1).
● f can be computed at a node based purely on that 

node's key and the values of f computed at node's 
children.

● Theorem: The values of f can be cached in the nodes 
of a red/black tree without changing the asymptotic 
runtime of insertions or deletions.

● Proof sketch: After inserting or deleting a node, the 
only values that need to change are along the root-leaf 
access path, plus values at nodes that were rotated. 
There are only O(log n) of these.



  

Augmented Red/Black Trees

f can be computed at a node based purely on the key in that node 
and the values of f in it that node's children.



  

Order Statistics

● Note: The approach we took for building order 
statistic trees does not fall into this framework.

● Example: The values below denote the number 
of nodes in the indicated nodes' left subtrees. 
What is the correct value of x?

137 42

x



  

Order Statistics via Augmentation

● Have each node store three quantities:

● numLeft, the number of nodes in the left subtree.

● numRight, the number of nodes in the right subtree.

● numTotal, the total number of nodes in the subtree.

● Can compute this information at a node in time O(1) 
based on subtree values:

● node.numLeft = node.left.numTotal

● node.numRight = node.right.numTotal

● node.numTotal = 1 + node.numLeft + node.numRight

● Therefore, using the augmented BST framework, can 
compute subtree sizes.

● No need to reason about tree rotations!



  

Example: Dynamic 1D Closest Points



  

1D Hierarchical Clustering

42 44 60 66 71 86 92 10020

This tree is called 
a dendrogram.

This tree is called 
a dendrogram.



  

Analyzing the Runtime

● How efficient is this algorithm?
● Number of rounds: Θ(n).
● Work to find closest pair: O(n).
● Total runtime: Θ(n2).

● Can we do better?



  

Dynamic 1D Closest Points

● The dynamic 1D closest points 
problem is the following:

Maintain a set of elements undergoing 
insertion and deletion while efficiently 
supporting queries of the form “what is 

the closest pair of points?” 
● Can we build a better data structure for 

this?



  

Dynamic 1D Closest Points

k

max min



  

A Tree Augmentation

● Augment each node to store the following:
● The maximum value in the tree.
● The minimum value in the tree.
● The closest pair of points in the tree.

● Claim: Each of these properties can be 
computed in time O(1) from the left and right 
subtrees.

● These properties can be augmented into a 
red/black tree so that insertions and deletions 
take time O(log n) and “what is the closest pair 
of points?” can be answered in time O(1).



  

Dynamic 1D Closest Points
137

        Min: -17

        Max: 415

Closest: 137, 142
42

        Min: -17

        Max: 67

  Closest: 15, 21

271
        Min: 142

        Max: 415

Closest: 300, 310



  

A Helpful Intuition



  

Divide-and-Conquer

● Initially, it can be tricky to come up with the 
right tree augmentations.

● Useful intuition: Imagine you're writing a 
divide-and-conquer algorithm over the 
elements and have O(1) time per “conquer” 
step.

< k > k

k



  

Time-Out for Announcements!



  

Problem Set Two

● Problem Set Two goes out today. It's due 
next Wednesday, April 16, at 2:15PM.

● Play around with red/black trees, tree 
augmentations, splitting, and joining!



  

Your Questions



  

“Can you please post your extra lecture 
slides that you end up cutting (or, 

alternatively, make a course reader with 
the additional information that doesn't 

make it into the course for time's sake)?”

I'll try my best! Some of them need some 
polish, but I can release them “as-is.”

I don't think I have the time to put together a 
proper course reader this quarter (sorry!)

I'll try my best! Some of them need some 
polish, but I can release them “as-is.”

I don't think I have the time to put together a 
proper course reader this quarter (sorry!)



  

“Is there a particular reason that there are 
no late days for this class?”

A few reasons:
 

Logistics: Complex to make this 
fair with partner assignments, and 
difficult on our end to grade.

 

Pacing: Everything in this class 
builds off of itself and I want to 
ensure that everyone is caught up.

 

Scale: We can handle extensions for 
emergencies on a case-by-case 
basis.

A few reasons:
 

Logistics: Complex to make this 
fair with partner assignments, and 
difficult on our end to grade.

 

Pacing: Everything in this class 
builds off of itself and I want to 
ensure that everyone is caught up.

 

Scale: We can handle extensions for 
emergencies on a case-by-case 
basis.



  

“Is there a way to manage balanced BST so 
that they can handle interval queries, such 

as RMQ?”

It depends on the query, but usually 
yes! You can use the augmented 

BST framework for this.

It depends on the query, but usually 
yes! You can use the augmented 

BST framework for this.



  

“How long was the first homework 
supposed to take?”

I was aiming for 8 – 10 hours, assuming that you are 
working in pairs.

 

4 units × (3 hours / unit wk) = 12 hours / wk
 

12 hours / wk – 2.5 hours / wk = 9.5 hours / wk
 

Let me know if this wasn't the case!

I was aiming for 8 – 10 hours, assuming that you are 
working in pairs.

 

4 units × (3 hours / unit wk) = 12 hours / wk
 

12 hours / wk – 2.5 hours / wk = 9.5 hours / wk
 

Let me know if this wasn't the case!



  

Join and Split



  

Joining and Splitting Trees

● The join and split operations are 
powerful primitives on balanced BSTs.

● You'll use them in the problem set and 
we'll see them on Monday. 



  

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k. 
The assumption is that all keys in T₁ are less than k 
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to 
produce a new BST containing all keys in T₁ and T₂ and 
the key k.



  

Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k. 
The assumption is that all keys in T₁ are less than k 
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to 
produce a new BST containing all keys in T₁ and T₂ and 
the key k.

T₁ T₂
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Joining Trees

● join(T₁, k, T₂) takes in two BSTs T₁ and T₂ and a key k. 
The assumption is that all keys in T₁ are less than k 
and all keys in T₂ are greater than k.

● join(T₁, k, T₂) destructively modifies T₁ and T₂ to 
produce a new BST containing all keys in T₁ and T₂ and 
the key k.

T



  

Splitting Trees

● split(T, k) destructively modifies BST T by 
producing two new BSTs T₁ and T₂ such that all 
keys in T₁ are less than or equal to k and all 
keys in T₂ are greater than k.

T

k



  

Splitting Trees

● split(T, k) destructively modifies BST T by 
producing two new BSTs T₁ and T₂ such that all 
keys in T₁ are less than or equal to k and all 
keys in T₂ are greater than k.

T₁

k

T₂



  

The Runtimes

● Both of these operations can be implemented 
in time O(n) by completely rebuilding the 
trees from scratch.
● You'll design an algorithm for this in the problem 

set.

● Amazingly:
● join(T₁, k, T₂) can be made to run in time 

Θ(1 + |h₁ – h₂|).
● split(T, k) can be made to run in time O(log n).

● How is this possible?



  

Joining 2-3-4 Trees

● The isometry between 2-3-4 trees and 
red/black trees is very useful here.

● Let's see how to join two 2-3-4 trees and 
a key together.

● Based on what we find, we'll develop an 
efficient algorithm for joining red/black 
trees.



  

Joining 2-3-4 Trees
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Joining 2-3-4 Trees
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Joining 2-3-4 Trees

● To join(T₁, k, T₂):
● Assume that T₁ is the larger of the two trees; 

if not, do the following, but mirrored.
● Walk down the right spine of T₁ until a node 

v is found whose height is the height of T₂.
● Add k as a final key of v's parent with T₂ as a 

right child.
● Continue as if you were inserting k into v's 

parent – possibly split the node and 
propagate upward, etc.



  

Analyzing the Runtime

● Assume all 2-3-4 tree nodes are annotated with 
their heights.

● What is the runtime of join(T₁, k, T₂)?

● Runtime is Θ(1 + |h₁ – h₂|).

T₁
T₂

h₁
h₂

h₁ – h₂



  

Joining Red/Black Trees

……

………



  

Joining Red/Black Trees
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Joining Red/Black Trees

……

………



  

Joining 2-3-4 Trees

● Define the black height of a node to 
be the number of black nodes on any 
root-null path starting at that node.

● To join(T₁, k, T₂):

● Assume that T₁ is the tree with larger 
black height; if not, do the following, 
but mirrored.

● Walk down the right spine of T₁ until a 
black node v is found whose black 
height is the black height of T₂.

● Insert a new node with key k, left child 
v, and right child T₂ 

● Make this new node the right child of 
v's old parent.

● Continue as if you had just inserted k.

T₂

v

k

Keep applying 
fixup rules to k.

Keep applying 
fixup rules to k.



  

Runtime Analysis

● Need to augment the red/black tree to store the black 
height of each node.

● This fits into our augmentation framework – can be 
computed from the black heights of the left and right 
children and from the node's own color.

● Via the isometry with 2-3-4 trees, the runtime is 
O(1 + |bh₁ – bh₂|).

● Since the black heights of the trees are at most twice 
the heights of the trees, this runtime is equivalently 
O(1 + |h₁ – h₂|).

● This is O(log n₁ + log n₂) in the worst-case.



  

Joining Two Trees

● What if you want to join two red/black 
trees but don't have a key to join them 
with?

● Delete the minimum value from the 
second tree in time O(log n), then use 
that to join the two trees.



  

Implementing split Efficiently



  

The Intuition
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆

● Do a search for the inorder 
successor of k.

● (search for k; if found, move 
right and search for k.)

● Splits the tree into the access 
path and a set of trees L and 
R hanging off of the access 
path.

● Claim 1: The keys in p₁, p₂, 
p₃, … are sandwiched 
between the keys in the trees 
in L and R.

● Claim 2: There are at most 
two trees of any given black 
height.



  

The Intuition
p₁

p₂

p₃

p₄

p₅

L₁

L₂

R₁

L₃ 

R₂p₆



  

The Intuition

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

All keys here are less 
than or equal to k.

All keys here are 
greater than k.



  

The Intuition

p₁ p₂

p₃p₄

p₅

L₁ L₂
R₁L₃ R₂

p₆

Key idea: Join all the L trees back 
together and all the R trees back 

together. Because the height 
differences are low, the runtime 

works out to O(log n).

Key idea: Join all the L trees back 
together and all the R trees back 

together. Because the height 
differences are low, the runtime 

works out to O(log n).



  

A Simplified Argument

● Suppose there is one tree of each black height in L.

● What is the runtime of concatenating the trees in 
reverse order of heights?

● Each join takes time O(1 + |bh₁ – bh₂|) = O(1).

● At most O(log n) joins (access path has length O(log n))

● Runtime is O(log n).



  

A Simplified Argument

● Suppose there are trees of some, but not all, heights.

● What is the runtime of concatenating the trees in 
reverse order of heights?

● Each join takes time O(1 + bhₛ₊₁ – bhₛ)

● Summing across all joins:

  
 

● The number of trees (k) is O(log n) and the maximum 
black height is O(log n). Runtime: O(log n).

∑
i=1

k−1

O(1+bhi+1−bhi) = O(∑
i=1

k−1

(1+bhi+1−bhi))

= O(k+∑
i=1

k−1

(bhi+1−bhi))

= O(k+bhk−bh1)



  

The Split Algorithm

● Split the tree into the L trees, the R trees, and the 
access path.

● In time O(log n), process the trees in L and R to 
ensure there's at most one tree of height h for each 
possible height h.
● Details left as an exercise.

● In time O(log n), concatenate all trees in L and all 
trees in R using the previous approach.

● There will be O(1) leftover nodes from the access 
path. Insert them in time O(log n) into the proper 
trees.

● Net runtime: O(log n).



  

Next Time

● Dynamic Connectivity in Trees
● Maintaining connectivity under changing 

conditions.

● Euler Tour Trees
● An elegant data structure for tree 

connectivity.

● Bottleneck Edge Queries
● Putting everything together!
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