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Outline for Today

● Dynamic Connectivity on Trees
● Maintaining connectivity in a changing 

environment.

● Euler Tour Trees
● A data structure for dynamic connectivity.

● The Bottleneck Path Problem
● Putting everything together.
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The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so 
that queries of the form “are nodes u and v 

connected?”

Using Θ(m + n) preprocessing, can preprocess the 
graph to answer queries in time O(1).
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Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● This is a much harder problem!
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Dynamic Connectivity

● Best known data structure:
● Edge insertions and deletions take average time 

O(log2 n) time.

– (Notation: log(k) n is log log … log n, k times.
logk n is (log n)k.

● Connectivity queries take time O(log2 n / log log n).

● This is a topic for later in the quarter. The 
solution is not trivial.

● Today, we'll look at a restricted version of the 
problem that will serve a building block for the 
general version.



  

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic 
connectivity problem:

Maintain an undirected forest G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● Each deleted edge splits a tree in two; each added 
edge joins two trees and never closes a cycle.
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Dynamic Connectivity in Forests

● Goal: Support these three operations:

● link(u, v): Add in edge {u, v}. The assumption 
is that u and v are in separate trees.

● cut(u, v): Cut the edge {u, v}. The assumption 
is that the edge exists in the tree.

● is-connected(u, v): Return whether u and v 
are connected.

● The data structure we'll develop can perform 
these operations time O(log n) each.
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Euler Tours

● In a graph G, an Euler tour is a path through 
the graph that visits every edge exactly once.

● Mathematically formulates the “trace this 
figure without picking up your pencil or 
redrawing any lines” puzzles.
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Euler Tours on Trees

● In general, trees do not have Euler tours.

  

 

  

 
● Technique: replace each edge {u, v} 

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.
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Euler Tours on Trees

● The data structure we'll design today is called 
an Euler tour tree.

● High-level idea: Instead of storing the trees in 
the forest, store their Euler tours.

● Each edge insertion or deletion translates into 
a set of manipulations on the Euler tours of the 
trees in the forest.

● Checking whether two nodes are connected 
can be done by checking if they're in the same 
Euler tour.



  

Properties of Euler Tours

● The sequence of nodes visited in an Euler 
tour of a tree is closely connected to the 
structure of the tree.
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Properties of Euler Tours

● The sequence of nodes visited in an Euler 
tour of a tree is closely connected to the 
structure of the tree.

● Begin by directing all edges toward the 
the first node in the tour.

● Claim: The sequences of nodes visited 
between the first and last instance of a 
node v gives an Euler tour of the subtree 
rooted at v.



  

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees 
depend on the root.

● In some cases, we will need to change the root of the tree.
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Rerooting a Tour

● Algorithm:
● Split the tour into three parts: S₁, R, and S₂, 

where R consists of the nodes between the 
first and last occurrence of the new root r.

● Delete the first node in S₁.
● Concatenate R, S₂, S₁, {r}.
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Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
executing link(u, v) links the trees together by 
adding edge {u, v}.

● To link T₁ and T₂ by adding {u, v}:

● Let E₁ and E₂ be Euler tours of T₁ and T₂, 
respectively.

● Rotate E₁ to root the tour at u.
● Rotate E₂ to root the tour at v.
● Concatenate E₁, E₂, {u}.



  

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge 
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:
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Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge 
{u, v} from the tree (assuming it exists).

● To cut T into T₁ and T₂ by cutting {u, v}:

● Let E be an Euler tour for T.
● Rotate u to the front of E.
● Split E into E₁, V, E₂, where V is the span 

between the first and last occurrence of v.
● T₁ has the Euler tour formed by concatenating 
E₁ and E₂, deleting the extra u at the join point.

● T₂ has Euler tour V.



  

The Story So Far

● Goal: Implement link, cut, and is-connected 
as efficiently as possible.

● By representing trees via their Euler tours, 
can implement link and cut so that only O(1) 
joins and splits are necessary per operation.

● Questions to answer:
● How do we efficiently implement these joins and 

splits?
● Once we have the tours, how do we answer 

connectivity queries?



  

Implementing the Structure

● The operations we have seen require us to be 
able to efficiently do the following:
● Identify the first and last copy of a node in a 

sequence.
● Split a sequence at those positions.
● Concatenate sequences.
● Add a new copy of a node to a sequence.
● Delete a duplicate copy of a node from a sequence.

● How do we do this efficiently?
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An Initial Idea: Linked Lists

● Each split or concatenate takes time O(1).

● The first and last copy of a node can be 
identified in time O(1).

● A new copy of a node can be appended to the 
end of the sequence in time O(1).

● A redundant copy of a node can be deleted in 
time O(1).

● Everything sounds great!

● Question: How do you test for connectivity?
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The Story So Far

● Euler tours give a simple, flexible 
encoding of tree structures.

● Using doubly-linked lists, concatenation 
and splits take time O(1) each, but 
testing connectivity takes time Θ(n) in 
the worst-case.

● Can we do better?



  

Using Balanced Trees

● Claim: It is possible to represent sequences of 
elements balanced binary trees.

● These are not binary search trees. We're using the 
shape of a red/black tree to ensure balance.
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Using Balanced Trees

● Observation 1: Can still store pointers to the first 
and last occurrence of each tree node.
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Using Balanced Trees

● Observation 2: If nodes store pointers to their 
parents, can answer is-connected(u, v) in time 
O(log n) by seeing if u and v are in the same tree.
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Using Balanced Trees

● Observation 3: Red/black trees can be split and 
joined in time O(log n) each.
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Euler Tour Trees

● The data structure:
● Represent each tree as an Euler tour.
● Store those sequences as balanced binary 

trees.
● Each node in the original forest stores a 

pointer to its first and last occurrence.
● Each node in the balanced trees stores a 

pointer to its parent.

● link, cut, and is-connected queries take 
time only O(log n) each.



  

Augmented Euler Tour Trees

● Euler tour trees are layered atop red/black 
trees.

● We can therefore augment Euler tour trees to 
store additional information about each tree.

● Examples:
● Keep track of the minimum-weight or maximum-

weight each in each tree.
● Keep track of the number of nodes in each tree.

● We'll use this both later today and in a few 
weeks when we talk about dynamic graph 
connectivity.



  

Time-Out for Announcements!



  

CS Casual Dinner

● Casual dinner for women studying 
computer science tomorrow night on 
the Gates Fifth Floor, 6PM – 8PM.

● Everyone is welcome!



  

OH Update

● This week only: I'll be covering the 
Thursday office hours and the TAs will 
cover today's OH right after class.

● Thursday OH rooms TBA.
● We will probably be changing Thursday 

OH times in future weeks; details later.



  

Your Questions



  

“Could you recommend some (other) 
awesome CS classes (preferably in Theory, 

but doesn't have to be)?”

My Recommendations

CS143 (Compilers)
CS343 (Dynamic Analysis)

CS154 (Automata and Complexity Theory)
CS181 (Computers, Ethics, and Public Policy)

CS261 / CS361B (Advanced Algorithms)
CS224W (Social Network Analysis)

My Recommendations

CS143 (Compilers)
CS343 (Dynamic Analysis)

CS154 (Automata and Complexity Theory)
CS181 (Computers, Ethics, and Public Policy)

CS261 / CS361B (Advanced Algorithms)
CS224W (Social Network Analysis)



  

“What percentage of student submitted the 
first problem set individually versus in 

pairs?”

I'm going to hold off on 
announcing this until 

Wednesday when we get 
an estimate for Problem 

Set Two. I expect there will 
be an increase.

I'm going to hold off on 
announcing this until 

Wednesday when we get 
an estimate for Problem 

Set Two. I expect there will 
be an increase.



  

“I've never written a Makefile before. 
Where can I find the resources to learn 

how to make one for Assignment 2?”

Check out the CS107 resources page:
 

http://cs107.stanford.edu/resources.html

Check out the CS107 resources page:
 

http://cs107.stanford.edu/resources.html

http://cs107.stanford.edu/resources.html
http://cs107.stanford.edu/resources.html


  

“What's the best way to impress everyone 
at a cocktail party?”

Balancing a fork and a spoon on a toothpick, then 
setting the toothpick on fire. Either that or walking 

through a sheet of paper.
 

Everyone will find you impressive if you talk about the 
history of food and nutrition. Bonus points for throwing 

out the words “nixtamalization” and “orangery.”
 

Or just be nice and a good listener. ☺

Balancing a fork and a spoon on a toothpick, then 
setting the toothpick on fire. Either that or walking 

through a sheet of paper.
 

Everyone will find you impressive if you talk about the 
history of food and nutrition. Bonus points for throwing 

out the words “nixtamalization” and “orangery.”
 

Or just be nice and a good listener. ☺



  

Back to CS166!



  

Application: Bottleneck Edge Queries



  

Bottleneck Paths

● Let G be an undirected graph where each 
edge has an associated, positive, real-
valued capacity.

● The bottleneck edge on a path is the 
edge on the path with minimum capacity.

● Challenge: Find the maximum-
bottleneck path between nodes u and v.
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Bottleneck Edge Queries

● The bottleneck edge query problem is the 
following:

Given an undirected graph G with edge 
capacities, preprocess the graph so that the 
bottleneck edge between any pair of nodes u 

and v can be found efficiently. 

● Applications in network routing, shipping, and 
maximum flow algorithms.

● Like RMQ, could solve by precomputing the 
bottleneck paths between all pairs of nodes.

● Can we do better?
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This is a maximum spanning tree of 
the undirected graph. It's like a 

minimum spanning tree, but with the 
maximum possible weight.

A maximum spanning tree in a graph 
can be found in time O(m + n log n). 

Details next week!

This is a maximum spanning tree of 
the undirected graph. It's like a 

minimum spanning tree, but with the 
maximum possible weight.

A maximum spanning tree in a graph 
can be found in time O(m + n log n). 

Details next week!
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Bottleneck Paths

Claim: For any pair of 
nodes, there is a maximum- 

bottleneck path between 
those nodes using only the 

edges in the maximum 
spanning tree.

Claim: For any pair of 
nodes, there is a maximum- 

bottleneck path between 
those nodes using only the 

edges in the maximum 
spanning tree.
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Any edge not in the tree can 
be replaced by the edges in 
the cycle it closes without 
lowering the bottleneck.

 

Repeating this process turns 
any path into a path using 

only tree edges.

Any edge not in the tree can 
be replaced by the edges in 
the cycle it closes without 
lowering the bottleneck.

 

Repeating this process turns 
any path into a path using 

only tree edges.



  

Bottlenecks and Trees

● Because of the previous observation, we only really 
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation 
about this problem on trees.
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Any nodes on 
opposite sides of 
this edge have 

bottleneck cost 1.
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Cartesian Trees of Trees

● Given a tree T, the Cartesian tree of tree T is defined 
recursively:

● The root of the tree is the minimum-capacity edge in T; 
call that edge {u, v}.

● The left subtree is the Cartesian tree of the u subtree and 
the right subtree is the Cartesian tree of the v subtree.

● The Cartesian tree of a one-node tree is that node itself.
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Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following 
reason:

In tree T, the bottleneck between u and v is the lowest 
common ancestor of u in v in the Cartesian tree of T.
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Solving RMQ on the Euler tour of a tree 
gives a solution to LCA on that tree. LCA 

has an ⟨O(n), O(1)⟩ solution!

Solving RMQ on the Euler tour of a tree 
gives a solution to LCA on that tree. LCA 

has an ⟨O(n), O(1)⟩ solution!
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The Solution

● As preprocessing:
● Compute a maximum spanning tree T* in time

O(m + n log n).
● Construct the Cartesian tree of T* in time O(n log n) 

(details in a second).
● Construct an LCA data structure for that Cartesian 

tree in time O(n).
● Total preprocessing: O(m + n log n).

● To make a query for the bottleneck edge between 
u and v:
● Compute the LCA of u and v.
● Total time: O(1).



  

Summary

● Trees can be represented via Euler tours.

● Given the Euler tours of two trees, those trees can be 
linked by doing O(1) concatenations and splits.

● Given the Euler tour of a tree, can cut that tree by 
doing O(1) concatenations and splits.

● Representing the Euler tours of various trees as 
balanced trees gives O(log n) link, cut and is-connected 
operations.

● The bottleneck edge query problem can be solved in 
time ⟨O(m + n log n), O(1)⟩ using appropriate data 
structures.



  

Next Time

● Amortized Analysis
● Can we trade worst-case efficiency for global 

efficiency?

● The Banker's Method
● Putting credits on data structures.

● The Potential Method
● Defining the potential energy of a data 

structure.

● Amortized Efficient Data Structures
● A sampling of amortized data structures.
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