

Hello Internet!

These slides are from 2014 and contain a semi-serious error at one point in the
presentation. For a more up-to-date set of slides with a correction, please visit

http://web.stanford.edu/class/archive/cs/cs166/cs166.1166/lectures/17/Slides17.pdf

Hope this helps!

-Keith

Hello Internet!

These slides are from 2014 and contain a semi-serious error at one point in the
presentation. For a more up-to-date set of slides with a correction, please visit

http://web.stanford.edu/class/archive/cs/cs166/cs166.1166/lectures/17/Slides17.pdf

Hope this helps!

-Keith

http://web.stanford.edu/class/archive/cs/cs166/cs166.1166/lectures/17/Slides17.pdf
http://web.stanford.edu/class/archive/cs/cs166/cs166.1166/lectures/17/Slides17.pdf

Euler Tour Trees

Outline for Today

● Dynamic Connectivity on Trees
● Maintaining connectivity in a changing

environment.

● Euler Tour Trees
● A data structure for dynamic connectivity.

● The Bottleneck Path Problem
● Putting everything together.

The Dynamic Connectivity Problem

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

● Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

● Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

0
0

0

0

1

3

1

2 2

3

3

3 2

2

2

2

0

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

● Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

0
0

0

0

1

3

1

2 2

3

3

3 2

2

2

2

0

The Connectivity Problem

● The graph connectivity problem is the following:

Given an undirected graph G, preprocess the graph so
that queries of the form “are nodes u and v

connected?”

● Using Θ(m + n) preprocessing, can preprocess the
graph to answer queries in time O(1).

0
0

0

0

1

3

1

2 2

3

3

3 2

2

2

2

0

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● The dynamic connectivity problem is the following:

Maintain an undirected graph G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● This is a much harder problem!

Dynamic Connectivity

● Best known data structure:
● Edge insertions and deletions take average time

O(log2 n) time.

– (Notation: log(k) n is log log … log n, k times.
logk n is (log n)k.

● Connectivity queries take time O(log2 n / log log n).

● This is a topic for later in the quarter. The
solution is not trivial.

● Today, we'll look at a restricted version of the
problem that will serve a building block for the
general version.

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Goal: Support these three operations:

● link(u, v): Add in edge {u, v}. The assumption
is that u and v are in separate trees.

● cut(u, v): Cut the edge {u, v}. The assumption
is that the edge exists in the tree.

● is-connected(u, v): Return whether u and v
are connected.

● The data structure we'll develop can perform
these operations time O(log n) each.

Euler Tours

Euler Tours

● In a graph G, an Euler tour is a path through
the graph that visits every edge exactly once.

● Mathematically formulates the “trace this
figure without picking up your pencil or
redrawing any lines” puzzles.

Euler Tours

● In a graph G, an Euler tour is a path through
the graph that visits every edge exactly once.

● Mathematically formulates the “trace this
figure without picking up your pencil or
redrawing any lines” puzzles.

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

a c d b d f d c e c a

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

c a c e c d b d f d c

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

a c e c d f d b d c a

Euler Tours on Trees

● The data structure we'll design today is called
an Euler tour tree.

● High-level idea: Instead of storing the trees in
the forest, store their Euler tours.

● Each edge insertion or deletion translates into
a set of manipulations on the Euler tours of the
trees in the forest.

● Checking whether two nodes are connected
can be done by checking if they're in the same
Euler tour.

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Properties of Euler Tours

● The sequence of nodes visited in an Euler
tour of a tree is closely connected to the
structure of the tree.

● Begin by directing all edges toward the
the first node in the tour.

● Claim: The sequences of nodes visited
between the first and last instance of a
node v gives an Euler tour of the subtree
rooted at v.

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

a b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a a b a g

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a a b a g

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h h i

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h h i

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i d

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i d

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i d

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i d

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

d c d e d i j l j i h g f g k g a b a g h i d

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

b a g h i d d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

b a g h i d d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

b a g h i d c d e d i j l j i h g f g k g a

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

b a g h i d c d e d i j l j i h g f g k g a b

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

b a g h i d c d e d i j l j i h g f g k g a b

Rerooting a Tour

● Algorithm:
● Split the tour into three parts: S₁, R, and S₂,

where R consists of the nodes between the
first and last occurrence of the new root r.

● Delete the first node in S₁.
● Concatenate R, S₂, S₁, {r}.

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f a

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f a

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a a b d b g j k j i j g h g f f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● To link T₁ and T₂ by adding {u, v}:

● Let E₁ and E₂ be Euler tours of T₁ and T₂,
respectively.

● Rotate E₁ to root the tour at u.
● Rotate E₂ to root the tour at v.
● Concatenate E₁, E₂, {u}.

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c c e c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c g

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c g

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c g

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c g

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g j k j i j g h g f g c e c g

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g g h g f g c e c g j k j i j

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g g h g f g c e c g j k j i j

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g h g f g c e c g j k j i j

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b g h g f g c e c g j k j i j

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● To cut T into T₁ and T₂ by cutting {u, v}:

● Let E be an Euler tour for T.
● Rotate u to the front of E.
● Split E into E₁, V, E₂, where V is the span

between the first and last occurrence of v.
● T₁ has the Euler tour formed by concatenating
E₁ and E₂, deleting the extra u at the join point.

● T₂ has Euler tour V.

The Story So Far

● Goal: Implement link, cut, and is-connected
as efficiently as possible.

● By representing trees via their Euler tours,
can implement link and cut so that only O(1)
joins and splits are necessary per operation.

● Questions to answer:
● How do we efficiently implement these joins and

splits?
● Once we have the tours, how do we answer

connectivity queries?

Implementing the Structure

● The operations we have seen require us to be
able to efficiently do the following:
● Identify the first and last copy of a node in a

sequence.
● Split a sequence at those positions.
● Concatenate sequences.
● Add a new copy of a node to a sequence.
● Delete a duplicate copy of a node from a sequence.

● How do we do this efficiently?

An Initial Idea: Linked Lists
a

b c

d e

a b d b c e c b a

An Initial Idea: Linked Lists
a

b c

d e

a b d b c e c b a

a b d b c e c b a

An Initial Idea: Linked Lists
a

b c

d e

a b d b c e c b a

a b d b c e c b a

a b c d e

An Initial Idea: Linked Lists
a

b c

d e

a b d b c e c b a

a b d b c e c b a

a b c d e

An Initial Idea: Linked Lists

● Each split or concatenate takes time O(1).

● The first and last copy of a node can be
identified in time O(1).

● A new copy of a node can be appended to the
end of the sequence in time O(1).

● A redundant copy of a node can be deleted in
time O(1).

● Everything sounds great!

● Question: How do you test for connectivity?

a

b c

d e

a b d b c e c b a

a b d b c e c b a

a b c d e

f

g

f g f

f g f

f g

The Story So Far

● Euler tours give a simple, flexible
encoding of tree structures.

● Using doubly-linked lists, concatenation
and splits take time O(1) each, but
testing connectivity takes time Θ(n) in
the worst-case.

● Can we do better?

Using Balanced Trees

● Claim: It is possible to represent sequences of
elements balanced binary trees.

● These are not binary search trees. We're using the
shape of a red/black tree to ensure balance.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

Using Balanced Trees

● Observation 1: Can still store pointers to the first
and last occurrence of each tree node.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

Using Balanced Trees

● Observation 1: Can still store pointers to the first
and last occurrence of each tree node.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a f

Using Balanced Trees

● Observation 2: If nodes store pointers to their
parents, can answer is-connected(u, v) in time
O(log n) by seeing if u and v are in the same tree.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 2: If nodes store pointers to their
parents, can answer is-connected(u, v) in time
O(log n) by seeing if u and v are in the same tree.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 2: If nodes store pointers to their
parents, can answer is-connected(u, v) in time
O(log n) by seeing if u and v are in the same tree.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 2: If nodes store pointers to their
parents, can answer is-connected(u, v) in time
O(log n) by seeing if u and v are in the same tree.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 3: Red/black trees can be split and
joined in time O(log n) each.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 3: Red/black trees can be split and
joined in time O(log n) each.

a b d b c e c b a f g f

e

d

b b

a

b

c a

c

g

f f

a fa f

Using Balanced Trees

● Observation 3: Red/black trees can be split and
joined in time O(log n) each.

a b d b a c e c f g f

d

b b

a

e

c c

a

g

f f

a fa f

Euler Tour Trees

● The data structure:
● Represent each tree as an Euler tour.
● Store those sequences as balanced binary

trees.
● Each node in the original forest stores a

pointer to its first and last occurrence.
● Each node in the balanced trees stores a

pointer to its parent.

● link, cut, and is-connected queries take
time only O(log n) each.

Augmented Euler Tour Trees

● Euler tour trees are layered atop red/black
trees.

● We can therefore augment Euler tour trees to
store additional information about each tree.

● Examples:
● Keep track of the minimum-weight or maximum-

weight each in each tree.
● Keep track of the number of nodes in each tree.

● We'll use this both later today and in a few
weeks when we talk about dynamic graph
connectivity.

Time-Out for Announcements!

CS Casual Dinner

● Casual dinner for women studying
computer science tomorrow night on
the Gates Fifth Floor, 6PM – 8PM.

● Everyone is welcome!

OH Update

● This week only: I'll be covering the
Thursday office hours and the TAs will
cover today's OH right after class.

● Thursday OH rooms TBA.
● We will probably be changing Thursday

OH times in future weeks; details later.

Your Questions

“Could you recommend some (other)
awesome CS classes (preferably in Theory,

but doesn't have to be)?”

My Recommendations

CS143 (Compilers)
CS343 (Dynamic Analysis)

CS154 (Automata and Complexity Theory)
CS181 (Computers, Ethics, and Public Policy)

CS261 / CS361B (Advanced Algorithms)
CS224W (Social Network Analysis)

My Recommendations

CS143 (Compilers)
CS343 (Dynamic Analysis)

CS154 (Automata and Complexity Theory)
CS181 (Computers, Ethics, and Public Policy)

CS261 / CS361B (Advanced Algorithms)
CS224W (Social Network Analysis)

“What percentage of student submitted the
first problem set individually versus in

pairs?”

I'm going to hold off on
announcing this until

Wednesday when we get
an estimate for Problem

Set Two. I expect there will
be an increase.

I'm going to hold off on
announcing this until

Wednesday when we get
an estimate for Problem

Set Two. I expect there will
be an increase.

“I've never written a Makefile before.
Where can I find the resources to learn

how to make one for Assignment 2?”

Check out the CS107 resources page:

http://cs107.stanford.edu/resources.html

Check out the CS107 resources page:

http://cs107.stanford.edu/resources.html

http://cs107.stanford.edu/resources.html
http://cs107.stanford.edu/resources.html

“What's the best way to impress everyone
at a cocktail party?”

Balancing a fork and a spoon on a toothpick, then
setting the toothpick on fire. Either that or walking

through a sheet of paper.

Everyone will find you impressive if you talk about the
history of food and nutrition. Bonus points for throwing

out the words “nixtamalization” and “orangery.”

Or just be nice and a good listener. ☺

Balancing a fork and a spoon on a toothpick, then
setting the toothpick on fire. Either that or walking

through a sheet of paper.

Everyone will find you impressive if you talk about the
history of food and nutrition. Bonus points for throwing

out the words “nixtamalization” and “orangery.”

Or just be nice and a good listener. ☺

Back to CS166!

Application: Bottleneck Edge Queries

Bottleneck Paths

● Let G be an undirected graph where each
edge has an associated, positive, real-
valued capacity.

● The bottleneck edge on a path is the
edge on the path with minimum capacity.

● Challenge: Find the maximum-
bottleneck path between nodes u and v.

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4
 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

Bottleneck Edge Queries

● The bottleneck edge query problem is the
following:

Given an undirected graph G with edge
capacities, preprocess the graph so that the
bottleneck edge between any pair of nodes u

and v can be found efficiently.

● Applications in network routing, shipping, and
maximum flow algorithms.

● Like RMQ, could solve by precomputing the
bottleneck paths between all pairs of nodes.

● Can we do better?

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

This is a maximum spanning tree of
the undirected graph. It's like a

minimum spanning tree, but with the
maximum possible weight.

A maximum spanning tree in a graph
can be found in time O(m + n log n).

Details next week!

This is a maximum spanning tree of
the undirected graph. It's like a

minimum spanning tree, but with the
maximum possible weight.

A maximum spanning tree in a graph
can be found in time O(m + n log n).

Details next week!

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

Claim: For any pair of
nodes, there is a maximum-

bottleneck path between
those nodes using only the

edges in the maximum
spanning tree.

Claim: For any pair of
nodes, there is a maximum-

bottleneck path between
those nodes using only the

edges in the maximum
spanning tree.

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

 4
7

4

6

 4
 6 6

7

4

 2

3

 5 6

 7

5

5

1

 6

Bottleneck Paths

Any edge not in the tree can
be replaced by the edges in
the cycle it closes without
lowering the bottleneck.

Repeating this process turns
any path into a path using

only tree edges.

Any edge not in the tree can
be replaced by the edges in
the cycle it closes without
lowering the bottleneck.

Repeating this process turns
any path into a path using

only tree edges.

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

1

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

1

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

1

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

1

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

1

11 9

c

h

d

 12

3

17e

a

6

4

Any nodes on
opposite sides of
this edge have

bottleneck cost 1.

Any nodes on
opposite sides of
this edge have

bottleneck cost 1.

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

11 9

c

h

d

 12

3

17e

a

6

4

Bottlenecks and Trees

● Because of the previous observation, we only really
need to focus on this problem as applied to trees.

● Good News: There is an elegant recursive observation
about this problem on trees.

b

f g

i j

 15

11 9

c

h

d

 12

3

17e

a

6

4

Cartesian Trees of Trees

● Given a tree T, the Cartesian tree of tree T is defined
recursively:

● The root of the tree is the minimum-capacity edge in T;
call that edge {u, v}.

● The left subtree is the Cartesian tree of the u subtree and
the right subtree is the Cartesian tree of the v subtree.

● The Cartesian tree of a one-node tree is that node itself.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

Cartesian Trees of Trees

● Cartesian trees of trees are useful for the following
reason:

In tree T, the bottleneck between u and v is the lowest
common ancestor of u in v in the Cartesian tree of T.

a

b c

e f

15
1

11 9

d
17

{b,c}

{b,e}

e {a,b}

a b

{d,f}

f {c,d}

d c

RMQ and LCA

A

GD

E

B

C F

RMQ and LCA

A

GD

E

B

C F

A B C B A D E D F D A G A

RMQ and LCA

A

GD

E

B

C F

0 1 2 1 0 1 2 1 2 1 0 1 0

A B C B A D E D F D A G A

RMQ and LCA

A

GD

E

B

C F

A B C B A D E D F D A G A

0 1 2 1 0 1 2 1 2 1 0 1 0

RMQ and LCA

A

GD

E

B

C F

Solving RMQ on the Euler tour of a tree
gives a solution to LCA on that tree. LCA

has an ⟨O(n), O(1)⟩ solution!

Solving RMQ on the Euler tour of a tree
gives a solution to LCA on that tree. LCA

has an ⟨O(n), O(1)⟩ solution!

A B C B A D E D F D A G A

0 1 2 1 0 1 2 1 2 1 0 1 0

The Solution

● As preprocessing:
● Compute a maximum spanning tree T* in time

O(m + n log n).
● Construct the Cartesian tree of T* in time O(n log n)

(details in a second).
● Construct an LCA data structure for that Cartesian

tree in time O(n).
● Total preprocessing: O(m + n log n).

● To make a query for the bottleneck edge between
u and v:
● Compute the LCA of u and v.
● Total time: O(1).

Summary

● Trees can be represented via Euler tours.

● Given the Euler tours of two trees, those trees can be
linked by doing O(1) concatenations and splits.

● Given the Euler tour of a tree, can cut that tree by
doing O(1) concatenations and splits.

● Representing the Euler tours of various trees as
balanced trees gives O(log n) link, cut and is-connected
operations.

● The bottleneck edge query problem can be solved in
time ⟨O(m + n log n), O(1)⟩ using appropriate data
structures.

Next Time

● Amortized Analysis
● Can we trade worst-case efficiency for global

efficiency?

● The Banker's Method
● Putting credits on data structures.

● The Potential Method
● Defining the potential energy of a data

structure.

● Amortized Efficient Data Structures
● A sampling of amortized data structures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224

