

Amortized Analysis

Outline for Today

● Euler Tour Trees
● A quick bug fix from last time.

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● Amortized Analysis
● Analyzing data structures over the long term.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and

deletions.

Review from Last Time

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic
connectivity problem:

Maintain an undirected forest G so that edges may be
inserted an deleted and connectivity queries may be

answered efficiently.

● Each deleted edge splits a tree in two; each added
edge joins two trees and never closes a cycle.

Dynamic Connectivity in Forests

● Goal: Support these three operations:

● link(u, v): Add in edge {u, v}. The assumption
is that u and v are in separate trees.

● cut(u, v): Cut the edge {u, v}. The assumption
is that the edge exists in the tree.

● is-connected(u, v): Return whether u and v
are connected.

● The data structure we'll develop can perform
these operations time O(log n) each.

Euler Tours on Trees

● In general, trees do not have Euler tours.

● Technique: replace each edge {u, v}

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.

a b

e

c d

f

a c d b d f d c e c a

A Correction from Last Time

The Bug

● The previous representation of Euler tour
trees required us to store pointers to the
first and last instance of each node in the
tours.

● This can't be updated in time O(1) after
rotating a tour, so the operations have the
wrong time bounds.

● We need to update our approach so that this
is no longer necessary.

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

h i d c d e d i j l j i h g f g k g a b a g h

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees
depend on the root.

● In some cases, we will need to change the root of the tree.

g

a

f

k

b

h i j

d
c

e

l

i j l j i h g f g k g a b a g h i d c d e d i

Rerooting a Tour

● Algorithm:
● Find any copy of the node r that will be the

new root.
● Split the tour E right before r into E₁ and E₂.
● Delete the first node from E₁.
● Concatenate E₁, E₂, {r}.

● Difference from before: We only need
a single pointer to r, not the full range.

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f a

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

a b d b c e c b a f g j k j i j g h g f

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by
adding edge {u, v}.

● Watch what happens to the Euler tours:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂,
executing link(u, v) links the trees together by adding
edge {u, v}.

● To link T₁ and T₂ by adding {u, v}:

● Let E₁ and E₂ be Euler tours of T₁ and T₂, respectively.
● Rotate E₁ to root the tour at u.
● Rotate E₂ to root the tour at v.
● Concatenate E₁, E₂, {u}.

● This is the same as before.

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

c e c b a b d b c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g j k j i j g h g f g c

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:

a

b
c

d

e

f
h

g
j

i

k

b a b d b c e c g h g f g c j k j i j

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge {u, v} from
the tree (assuming it exists).

● To cut T into T₁ and T₂ by cutting {u, v}:

● Let E be an Euler tour for T.
● Split E at (u, v) and (v, u) to get J, K, L, in that order.
● Delete the last entry of J.
● Then E₁ = K.
● Then E₂ = J, L

● No longer necessary to store the full range of u and v.

● Now need to store pointers from the edges to the spots
where the nodes appear in the trees.

Euler Tour Trees

● The data structure:
● Represent each tree as an Euler tour.
● Store those sequences as balanced binary trees.
● Each node in the original forest stores a pointer to

some arbitrary occurrence of that node.
● Each edge in the original forest stores pointers to

the nodes appearing when that edge is visited.
– Can store these edges in a balanced BST.

● Each node in the balanced trees stores a pointer to
its parent.

● link, cut, and is-connected queries take time
only O(log n) each.

Cartesian Trees Revisited

Cartesian Trees

● A Cartesian tree is a binary tree derived from an
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of

the minimum value. Its left and right children are
Cartesian trees for the subarrays to the left and
right of the minimum.

261 268 161 167 166 14 55 22 43 116 5 3 9 7

2

0 4

31

2

4

3

1

0

4

0

2

31

The Runtime Analysis

● Adding an individual node to a Cartesian
tree might take time O(n).

● However, the net time spent adding new
nodes across the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of

pushes and pops.
● Total runtime is O(n).

The Tradeoff

● Typically, we've analyzed data structures by
bounding the worst-case runtime of each
operation.

● Sometimes, all we care about is the total
runtime of a sequence of m operations, not the
cost of each individual operation.

● Trade worst-case runtime per operation
for worst-case runtime overall.

● This is a fundamental technique in data
structure design.

The Goal

● Suppose we have a data structure and perform a
series of operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or

they might be different.
● Let t(opₖ) denote the time required to perform

operation opₖ.
● Goal: Bound the expression

● There are many ways to do this. We'll see three
recurring techniques.

T=∑
i=1

m

t (opi)

Amortized Analysis

● An amortized analysis is a different way of
bounding the runtime of a sequence of
operations.

● Each operation opᵢ really takes time t(opᵢ).

● Idea: Assign to each operation opᵢ a new cost
a(opᵢ), called the amortized cost, such that

● If the values of a(opᵢ) are chosen wisely, the

second sum can be much easier to evaluate than
the first.

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)

The Aggregate Method

● In the aggregate method, we directly
evaluate

and then set a(opᵢ) = T / m.
● Assigns each operation the average of all

the operation costs.
● The aggregate method says that the cost of

a Cartesian tree insertion is amortized O(1).

T=∑
i=1

m

t (opi)

Amortized Analysis

● We will see two types of amortized analysis
today:
● The banker's method (also called the accounting

method) works by placing “credits” on the data
structure redeemable for units of work.

● The potential method (also called the physicist's
method) works by assigning a potential function to
the data structure and factoring in changes to that
potential to the overall runtime.

● All three techniques are useful at different
times, so we'll see how to use all three today.

The Banker's Method

The Banker's Method

● In the banker's method, operations can place
credits on the data structure or spend credits that
have already been placed.

● Placing a credit somewhere takes time O(1).

● Credits may be removed from the data structure to
pay for O(1) units of work.

● Note: the credits don't actually show up in the data
structure. It's just an accounting trick.

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

The Banker's Method

● If we never spend credits we don't have:

● The sum of the amortized costs

upper-bounds the sum of the true costs.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(addedi−removedi))

= ∑
i=1

m

t (opi) + O(1)∑
i=1

m

(addedi−removedi)

= ∑
i=1

m

t (opi) + O(1)⋅netCredits

≥ ∑
i=1

m

t (opi)

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

$

159

159

$

314

314

$

42

The Banker's Method

● Using the banker's method, the cost of an
insertion is

 = t(op) + O(1) · (addedᵢ – removedᵢ)

 = 1 + k + O(1) · (1 – k)

 = 1 + k + 1 – k

 = 2

 = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314

Pop 159

Pop 137

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314Pop 159Pop 137

Each operation here is being
“charged” for two units of work,

even if didn't actually do two
units of work.

Each operation here is being
“charged” for two units of work,

even if didn't actually do two
units of work.

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314

Pop 159

Pop 137

$
$

$ $

$

Intuiting the Banker's Method

271 137 159 314 42

Push 271 Push 137

Pop 271

Push 159 Push 314 Push 137

Pop 314Pop 159Pop 137

$

Each credit placed can be used to
“move” a unit of work from one

operation to another.

Each credit placed can be used to
“move” a unit of work from one

operation to another.

An Observation

● We defined the amortized cost of an operation to
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ

● Some observations:

● It doesn't matter where these credits are placed
or removed from.

● The total number of credits added and removed
doesn't matter; all that matters is the difference
between these two.

The Potential Method

● In the potential method, we define a potential
function Φ that maps a data structure to a
non-negative real value.

● Each operation on the data structure might change this
potential.

● If we denote by Φᵢ the potential of the data structure
just before operation i, then we can define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively:

● Operations that increase the potential have amortized
cost greater than their true cost.

● Operations that decrease the potential have amortized
cost less than their true cost.

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means
that the sum of the amortized costs
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(Φi+1−Φi))

= ∑
i=1

m

t (opi) + O(1)⋅∑
i=1

m

(Φi+1−Φ i)

= ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

Constructing Cartesian Trees

271 137 159 314 42

271

137

137

159

159

314

314Φ = 3

The Potential Method

● Using the potential method, the cost of an
insertion into a Cartesian tree can be computed
as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)
● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).

Time-Out for Announcements!

Problem Set Three

● Problem Set Three goes out today. It's
due next Wednesday at 2:15PM.

● Explore amortized analysis and a
different data structure for dynamic
connectivity in trees!

● Keith will be holding office hours in
Gates 178 tomorrow from 2PM – 4PM.

Your Questions

“Is it possible to please get an explanation
of where we lost points in the homeworks

and a sample solution set?”

Of course! We'll release hardcopy
solutions for the problem sets in

lecture. You're welcome to stop by
office hours to ask questions about

the problem sets.

Of course! We'll release hardcopy
solutions for the problem sets in

lecture. You're welcome to stop by
office hours to ask questions about

the problem sets.

“How can we access the grades specifically
for our code submissions?”

You should have received an email
with your grade and feedback from

your grader. If you didn't, let me
know ASAP!

You should have received an email
with your grade and feedback from

your grader. If you didn't, let me
know ASAP!

“Could we use a Piazza forum for the class?
It would make answering a lot of questions,
both practical and conceptual, much easier.

Thanks!”

I'll think about this. In the meantime, feel
free to email the staff list with questions!

cs166-spr1314-staff@lists.stanford.edu

I'll think about this. In the meantime, feel
free to email the staff list with questions!

cs166-spr1314-staff@lists.stanford.edu

mailto:cs166-spr1314-staff@lists.stanford.edu
mailto:cs166-spr1314-staff@lists.stanford.edu

A Note on Questions

Back to CS166!

Another Example: Two-Stack Queues

The Two-Stack Queue

● Maintain two stacks, an In stack and an
Out stack.

● To enqueue an element, push it onto the
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.

An Aggregate Analysis

● Claim: Cost of a sequence of n intermixed
enqueues and dequeues is O(n).

● Proof:
● Every value is pushed onto a stack at most

twice: once for in, once for out.
● Every value is popped off of a stack at most

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).

The Banker's Method

● Let's analyze this data structure using the
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty.

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty.

Worst-case time is O(n).

The Two-Stack Queue

1
Out In

2

3

4

$

$

$

$

The Two-Stack Queue

1

In

2

3

4
Out

The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit

appropriately, amortized cost is O(1).

The Potential Method

● Define Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential

correctly, amortized cost becomes O(1).

Another Examples: 2-3-4 Trees

2-3-4 Trees

● Inserting or deleting values from a 2-3-4
trees takes time O(log n).

● Why is that?
● Some amount of work finding the insertion

or deletion point, which is Θ(log n).
● Some amount of work “fixing up” the tree by

doing insertions or deletions.

● How much is that second amount?

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split
nodes and propagate upward.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

61

2-3-4 Tree Deletions

1 6

11 26 36

46

16 31 41 61

56

51

● Most deletions from a 2-3-4 tree require no
fixup; we just delete a key from a leaf.

● Some deletions require fixup work to
propagate the deletion upward in the tree.

21

2-3-4 Tree Fixup

● Claim: The fixup work on 2-3-4 trees is
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m

insertions, the amortized fixup work is O(1).
● Next, we'll prove that in any sequence of m

deletions, the amortized fixup work is O(1).
● Finally, we'll show that in any sequence of

insertions and deletions, the amortized fixup
work is O(1).

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612 3

$

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

$

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

$

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future
splits.

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21

41

2-3-4 Tree Insertions

● Using the banker's method, we get that pure
insertions have O(1) amortized fixup work.

● Could also do this using the potential
method.
● Define Φ to be the number of 4-nodes.
● Each “light” insertion might introduce a new

4-node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and

decreases the potential by k for O(1) amortized
work.

2-3-4 Tree Deletions

36

46

31 41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”

$$

$

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”

$$

$

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”

36

$$

$

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children
are 2-nodes (call them “tiny triangles.”

36

46 $

2-3-4 Tree Deletions

● Using the banker's method, we get that pure
deletions have O(1) amortized fixup work.

● Could also do this using the potential method.
● Define Φ to be the number of 2-nodes with two

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny

triangles: one at the node where the deletion
ended and one right above it. Amortized time is
O(1).

● Each “heavy” deletion combines k tiny triangles
and decreases the potential by at least k.
Amortized time is O(1).

Combining the Two

● We've shown that pure insertions and pure
deletions require O(1) amortized fixup time.

● What about interleaved insertions and
deletions?

● Initial idea: Use a potential function that's the
sum of the two previous potential functions.

● Φ is the number of 4-nodes plus the number of
tiny triangles.

() ()# + #Φ =

A Problem

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

() ()# + #Φ =

= 6

A Problem

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

() ()# + #Φ =

= 5

A Problem

● When doing a “heavy” insertion that
splits multiple 4-nodes, the resulting
nodes might produce new “tiny
triangles.”

● Net result: The potential only drops by
one even in a long chain of splits.

● Amortized cost of the operation works
out to Θ(log n), not O(1) as we hoped.

The Solution

● 4-nodes are troublesome for two separate
reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce

a tiny triangle.
● Idea: Have each 4-node pay for the work to

split itself and to propagate up a deletion one
layer.

() ()2# + #Φ =

A Problem

1 6

11 21 31

41

16 91

86

26 36 81

56

53

51

46

76

71

66

612

= 9

() ()2# + #Φ =

A Problem

1 6

11 31

16 91

86

26 36 81

56

53

51

46

76

71

66

612

3

21 41

= 5

() ()2# + #Φ =

The Solution

● This new potential function ensures that
if an insertion chains up k levels, the
potential drop is at least k (and possibly
up to 2k).

● Therefore, the amortized fixup work for
an insertion is O(1).

● Using the same argument as before,
deletions require amortized O(1) fixups.

Why This Matters

● Via the isometry, red/black trees have
O(1) amortized fixup per insertion or
deletion.

● In practice, this makes red/black trees
much faster than other balanced trees on
insertions and deletions, even though
other balanced trees can be better
balanced.

Next Time

● Binomial Heaps
● A simple and versatile heap data structure.

● Fibonacci Heaps, Part One
● A specialized data structure for graph

algorithms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

