
  

Amortized Analysis



  

Outline for Today

● Euler Tour Trees
● A quick bug fix from last time.

● Cartesian Trees Revisited
● Why could we construct them in time O(n)?

● Amortized Analysis
● Analyzing data structures over the long term.

● 2-3-4 Trees
● A better analysis of 2-3-4 tree insertions and 

deletions.



  

Review from Last Time



  

Dynamic Connectivity in Forests

● Consider the following special-case of the dynamic 
connectivity problem:

Maintain an undirected forest G so that edges may be 
inserted an deleted and connectivity queries may be 

answered efficiently.

● Each deleted edge splits a tree in two; each added 
edge joins two trees and never closes a cycle.



  

Dynamic Connectivity in Forests

● Goal: Support these three operations:

● link(u, v): Add in edge {u, v}. The assumption 
is that u and v are in separate trees.

● cut(u, v): Cut the edge {u, v}. The assumption 
is that the edge exists in the tree.

● is-connected(u, v): Return whether u and v 
are connected.

● The data structure we'll develop can perform 
these operations time O(log n) each.



  

Euler Tours on Trees

● In general, trees do not have Euler tours.

  

 

  

 
● Technique: replace each edge {u, v} 

with two edges (u, v) and (v, u).
● Resulting graph has an Euler tour.
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A Correction from Last Time



  

The Bug

● The previous representation of Euler tour 
trees required us to store pointers to the 
first and last instance of each node in the 
tours.

● This can't be updated in time O(1) after 
rotating a tour, so the operations have the 
wrong time bounds.

● We need to update our approach so that this 
is no longer necessary.



  

Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees 
depend on the root.

● In some cases, we will need to change the root of the tree.
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Rerooting a Tour

● The subtrees defined by ranges in Euler tours on trees 
depend on the root.

● In some cases, we will need to change the root of the tree.
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Rerooting a Tour

● Algorithm:
● Find any copy of the node r that will be the 

new root.
● Split the tour E right before r into E₁ and E₂.
● Delete the first node from E₁.
● Concatenate E₁, E₂, {r}.

● Difference from before: We only need 
a single pointer to r, not the full range.



  

Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
executing link(u, v) links the trees together by 
adding edge {u, v}.

● Watch what happens to the Euler tours:
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Euler Tours and Dynamic Trees

● Given two trees T₁ and T₂, where u ∈ T₁ and v ∈ T₂, 
executing link(u, v) links the trees together by adding 
edge {u, v}.

● To link T₁ and T₂ by adding {u, v}:

● Let E₁ and E₂ be Euler tours of T₁ and T₂, respectively.
● Rotate E₁ to root the tour at u.
● Rotate E₂ to root the tour at v.
● Concatenate E₁, E₂, {u}.

● This is the same as before.



  

Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge 
{u, v} from the tree (assuming it exists).

● Watch what happens to the Euler tour of T:
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Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge 
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Euler Tours and Dynamic Trees

● Given a tree T, executing cut(u, v) cuts the edge {u, v} from 
the tree (assuming it exists).

● To cut T into T₁ and T₂ by cutting {u, v}:

● Let E be an Euler tour for T.
● Split E at (u, v) and (v, u) to get J, K, L, in that order.
● Delete the last entry of J.
● Then E₁ = K.
● Then E₂ = J, L

● No longer necessary to store the full range of u and v.

● Now need to store pointers from the edges to the spots 
where the nodes appear in the trees.



  

Euler Tour Trees

● The data structure:
● Represent each tree as an Euler tour.
● Store those sequences as balanced binary trees.
● Each node in the original forest stores a pointer to 

some arbitrary occurrence of that node.
● Each edge in the original forest stores pointers to 

the nodes appearing when that edge is visited.
– Can store these edges in a balanced BST.

● Each node in the balanced trees stores a pointer to 
its parent.

● link, cut, and is-connected queries take time 
only O(log n) each.



  

Cartesian Trees Revisited



  

Cartesian Trees

● A Cartesian tree is a binary tree derived from an 
array and defined as follows:

● The empty array has an empty Cartesian tree.
● For a nonempty array, the root stores the index of 

the minimum value. Its left and right children are 
Cartesian trees for the subarrays to the left and 
right of the minimum.
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The Runtime Analysis

● Adding an individual node to a Cartesian 
tree might take time O(n).

● However, the net time spent adding new 
nodes across the whole tree is O(n).

● Why is this?
● Every node pushed at most once.
● Every node popped at most once.
● Work done is proportional to the number of 

pushes and pops.
● Total runtime is O(n).



  

The Tradeoff

● Typically, we've analyzed data structures by 
bounding the worst-case runtime of each 
operation.

● Sometimes, all we care about is the total 
runtime of a sequence of m operations, not the 
cost of each individual operation.

● Trade worst-case runtime per operation 
for worst-case runtime overall.

● This is a fundamental technique in data 
structure design.



  

The Goal

● Suppose we have a data structure and perform a 
series of operations op₁, op₂, …, opₘ.
● These operations might be the same operation, or 

they might be different.
● Let t(opₖ) denote the time required to perform 

operation opₖ.
● Goal: Bound the expression

● There are many ways to do this. We'll see three 
recurring techniques.

T=∑
i=1

m

t (opi)



  

Amortized Analysis

● An amortized analysis is a different way of 
bounding the runtime of a sequence of 
operations.

● Each operation opᵢ really takes time t(opᵢ).

● Idea: Assign to each operation opᵢ a new cost 
a(opᵢ), called the amortized cost, such that

 

 
● If the values of a(opᵢ) are chosen wisely, the 

second sum can be much easier to evaluate than 
the first.

∑
i=1

m

t (opi) ≤ ∑
i=1

m

a(opi)



  

The Aggregate Method

● In the aggregate method, we directly 
evaluate

 

 

and then set a(opᵢ) = T / m.
● Assigns each operation the average of all 

the operation costs.
● The aggregate method says that the cost of 

a Cartesian tree insertion is amortized O(1).

T=∑
i=1

m

t (opi)



  

Amortized Analysis

● We will see two types of amortized analysis 
today:
● The banker's method (also called the accounting 

method) works by placing “credits” on the data 
structure redeemable for units of work.

● The potential method (also called the physicist's 
method) works by assigning a potential function to 
the data structure and factoring in changes to that 
potential to the overall runtime.

● All three techniques are useful at different 
times, so we'll see how to use all three today.



  

The Banker's Method



  

The Banker's Method

● In the banker's method, operations can place 
credits on the data structure or spend credits that 
have already been placed.

● Placing a credit somewhere takes time O(1).

● Credits may be removed from the data structure to 
pay for O(1) units of work.

● Note: the credits don't actually show up in the data 
structure. It's just an accounting trick.

● The amortized cost of an operation is

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)



  

The Banker's Method

● If we never spend credits we don't have: 

 
● The sum of the amortized costs 

upper-bounds the sum of the true costs.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(addedi−removedi))     

= ∑
i=1

m

t (opi) + O(1)∑
i=1

m

(addedi−removedi)

= ∑
i=1

m

t (opi) + O(1)⋅netCredits                 

≥ ∑
i=1

m

t (opi)                                               



  

Constructing Cartesian Trees
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The Banker's Method

● Using the banker's method, the cost of an 
insertion is

   = t(op) + O(1) · (addedᵢ – removedᵢ)

   = 1 + k + O(1) · (1 – k)

   = 1 + k + 1 – k

   = 2

   = O(1)
● Each insertion has amortized cost O(1).
● Any n insertions will take time O(n).



  

Intuiting the Banker's Method
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Intuiting the Banker's Method
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Intuiting the Banker's Method

271 137 159 314 42
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Each credit placed can be used to 
“move” a unit of work from one 

operation to another.

Each credit placed can be used to 
“move” a unit of work from one 

operation to another.



  

An Observation

● We defined the amortized cost of an operation to 
be

a(opᵢ) = t(opᵢ) + O(1) · (addedᵢ – removedᵢ)

● Equivalently, this is

a(opᵢ) = t(opᵢ) + O(1) · Δcreditsᵢ  

● Some observations:

● It doesn't matter where these credits are placed 
or removed from.

● The total number of credits added and removed 
doesn't matter; all that matters is the difference 
between these two.



  

The Potential Method

● In the potential method, we define a potential 
function Φ that maps a data structure to a 
non-negative real value.

● Each operation on the data structure might change this 
potential.

● If we denote by Φᵢ the potential of the data structure 
just before operation i, then we can define a(opᵢ) as

a(opᵢ) = t(opᵢ) + O(1) · (Φᵢ₊₁ – Φᵢ)

● Intuitively:

● Operations that increase the potential have amortized 
cost greater than their true cost.

● Operations that decrease the potential have amortized 
cost less than their true cost.



  

The Potential Method

● Assuming that Φᵢ₊₁ – Φ₁ ≥ 0, this means 
that the sum of the amortized costs 
upper-bounds the sum of the real costs.

● Typically, Φ₁ = 0, so Φᵢ₊₁ – Φ₁ ≥ 0 holds.

∑
i=1

m

a(opi) = ∑
i=1

m

(t (opi)+O(1)⋅(Φi+1−Φi))       

= ∑
i=1

m

t (opi) + O(1)⋅∑
i=1

m

(Φi+1−Φ i)  

= ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)      



  

Constructing Cartesian Trees
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The Potential Method

● Using the potential method, the cost of an 
insertion into a Cartesian tree can be computed 
as

= t(op) + ΔΦ

= 1 + k + O(1) · (1 – k)

= 1 + k + 1 – k

= 2

= O(1)
● So the amortized cost of an insertion is O(1).
● Therefore, n total insertions takes time O(n).



  

Time-Out for Announcements!



  

Problem Set Three

● Problem Set Three goes out today. It's 
due next Wednesday at 2:15PM.

● Explore amortized analysis and a 
different data structure for dynamic 
connectivity in trees!

● Keith will be holding office hours in 
Gates 178 tomorrow from 2PM – 4PM.



  

Your Questions



  

“Is it possible to please get an explanation 
of where we lost points in the homeworks 

and a sample solution set?”

Of course! We'll release hardcopy 
solutions for the problem sets in 

lecture. You're welcome to stop by 
office hours to ask questions about 

the problem sets.

Of course! We'll release hardcopy 
solutions for the problem sets in 

lecture. You're welcome to stop by 
office hours to ask questions about 

the problem sets.



  

“How can we access the grades specifically 
for our code submissions?”

You should have received an email 
with your grade and feedback from 

your grader. If you didn't, let me 
know ASAP!

You should have received an email 
with your grade and feedback from 

your grader. If you didn't, let me 
know ASAP!



  

“Could we use a Piazza forum for the class? 
It would make answering a lot of questions, 
both practical and conceptual, much easier. 

Thanks!”

I'll think about this. In the meantime, feel 
free to email the staff list with questions!

cs166-spr1314-staff@lists.stanford.edu

I'll think about this. In the meantime, feel 
free to email the staff list with questions!

cs166-spr1314-staff@lists.stanford.edu

mailto:cs166-spr1314-staff@lists.stanford.edu
mailto:cs166-spr1314-staff@lists.stanford.edu


  

A Note on Questions



  

Back to CS166!



  

Another Example: Two-Stack Queues



  

The Two-Stack Queue

● Maintain two stacks, an In stack and an 
Out stack.

● To enqueue an element, push it onto the 
In stack.

● To dequeue an element:
● If the Out stack is empty, pop everything off 

the In stack and push it onto the Out stack.
● Pop the Out stack and return its value.



  

An Aggregate Analysis

● Claim: Cost of a sequence of n intermixed 
enqueues and dequeues is O(n).

● Proof:
● Every value is pushed onto a stack at most 

twice: once for in, once for out.
● Every value is popped off of a stack at most 

twice: once for in, once for out.
● Each push/pop takes time O(1).
● Net runtime: O(n).



  

The Banker's Method

● Let's analyze this data structure using the 
banker's method.

● Some observations:
● All enqueues take worst-case time O(1).
● Each dequeue can be split into a “light” or 

“heavy” dequeue.
● In a “light” dequeue, the out stack is nonempty. 

Worst-case time is O(1).
● In a “heavy” dequeue, the out stack is empty. 

Worst-case time is O(n).



  

The Two-Stack Queue
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The Banker's Method

● Enqueue:
● O(1) work, plus one credit added.
● Amortized cost: O(1).

● “Light” dequeue:
● O(1) work, plus no change in credits.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Θ(k) work, where k is the number of entries that started 

in the “in” stack.
● k credits spent.
● By choosing the amount of work in a credit 

appropriately, amortized cost is O(1).



  

The Potential Method

● Define Φ(D) to be the height of the in stack.
● Enqueue:

● Does O(1) work and increases Φ by one.
● Amortized cost: O(1).

● “Light” dequeue:
● Does O(1) work and leaves Φ unchanged.
● Amortized cost: O(1).

● “Heavy” dequeue:
● Does Θ(k) work, where k is the number of entries moved from 

the “in” stack.
● ΔΦ = -k.
● By choosing the amount of work stored in each unit of potential 

correctly, amortized cost becomes O(1).



  

Another Examples: 2-3-4 Trees



  

2-3-4 Trees

● Inserting or deleting values from a 2-3-4 
trees takes time O(log n).

● Why is that?
● Some amount of work finding the insertion 

or deletion point, which is Θ(log n).
● Some amount of work “fixing up” the tree by 

doing insertions or deletions.

● How much is that second amount?



  

2-3-4 Tree Insertions

● Most insertions into 2-3-4 trees require no 
fixup – we just insert an extra key into a leaf.

● Some insertions require some fixup to split 
nodes and propagate upward.
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2-3-4 Tree Deletions
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● Most deletions from a 2-3-4 tree require no 
fixup; we just delete a key from a leaf.

● Some deletions require fixup work to 
propagate the deletion upward in the tree.
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2-3-4 Tree Fixup

● Claim: The fixup work on 2-3-4 trees is 
amortized O(1).

● We'll prove this in three steps:
● First, we'll prove that in any sequence of m 

insertions, the amortized fixup work is O(1).
● Next, we'll prove that in any sequence of m 

deletions, the amortized fixup work is O(1).
● Finally, we'll show that in any sequence of 

insertions and deletions, the amortized fixup 
work is O(1).



  

2-3-4 Tree Insertions

● Suppose we only insert and never delete.

● The fixup work for an insertion is proportional to the 
number of 4-nodes that get split.

● Idea: Place a credit on each 4-node to pay for future 
splits.
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2-3-4 Tree Insertions

● Using the banker's method, we get that pure 
insertions have O(1) amortized fixup work.

● Could also do this using the potential 
method.
● Define Φ to be the number of 4-nodes.
● Each “light” insertion might introduce a new 

4-node, requiring amortized O(1) work.
● Each “heavy” insertion splits k 4-nodes and 

decreases the potential by k for O(1) amortized 
work.



  

2-3-4 Tree Deletions
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● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates 
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children 
are 2-nodes (call them “tiny triangles.”

$$

$



  

2-3-4 Tree Deletions

36

46

? 41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates 
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children 
are 2-nodes (call them “tiny triangles.”

$$

$



  

2-3-4 Tree Deletions

?

46

41 61

56

51

● Suppose we only delete and never insert.

● The fixup work per layer is O(1) and only propagates 
if we combine three 2-nodes together into a 4-node.

● Idea: Place a credit on each 2-node whose children 
are 2-nodes (call them “tiny triangles.”

36

$$

$



  

2-3-4 Tree Deletions

41 61

56

51

● Suppose we only delete and never insert.
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if we combine three 2-nodes together into a 4-node.
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are 2-nodes (call them “tiny triangles.”
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2-3-4 Tree Deletions

● Using the banker's method, we get that pure 
deletions have O(1) amortized fixup work.

● Could also do this using the potential method.
● Define Φ to be the number of 2-nodes with two 

2-node children (call these “tiny triangles.”)
● Each “light” deletion might introduce two tiny 

triangles: one at the node where the deletion 
ended and one right above it. Amortized time is 
O(1).

● Each “heavy” deletion combines k tiny triangles 
and decreases the potential by at least k. 
Amortized time is O(1).



  

Combining the Two

● We've shown that pure insertions and pure 
deletions require O(1) amortized fixup time.

● What about interleaved insertions and 
deletions?

● Initial idea: Use a potential function that's the 
sum of the two previous potential functions.

● Φ is the number of 4-nodes plus the number of 
tiny triangles.

(       ) (       )#  + #Φ =
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A Problem

● When doing a “heavy” insertion that 
splits multiple 4-nodes, the resulting 
nodes might produce new “tiny 
triangles.”

● Net result: The potential only drops by 
one even in a long chain of splits.

● Amortized cost of the operation works 
out to Θ(log n), not O(1) as we hoped.



  

The Solution

● 4-nodes are troublesome for two separate 
reasons:
● They cause chained splits in an insertion.
● After an insertion, they might split and produce 

a tiny triangle.
● Idea: Have each 4-node pay for the work to 

split itself and to propagate up a deletion one 
layer.

(       ) (       )2#  + #Φ =
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The Solution

● This new potential function ensures that 
if an insertion chains up k levels, the 
potential drop is at least k (and possibly 
up to 2k).

● Therefore, the amortized fixup work for 
an insertion is O(1).

● Using the same argument as before, 
deletions require amortized O(1) fixups.



  

Why This Matters

● Via the isometry, red/black trees have 
O(1) amortized fixup per insertion or 
deletion.

● In practice, this makes red/black trees 
much faster than other balanced trees on 
insertions and deletions, even though 
other balanced trees can be better 
balanced.



  

Next Time

● Binomial Heaps
● A simple and versatile heap data structure.

● Fibonacci Heaps, Part One
● A specialized data structure for graph 

algorithms.
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