Binomial Heaps
Outline for this Week

- **Binomial Heaps (Today)**
 - A simple, flexible, and versatile priority queue.

- **Lazy Binomial Heaps (Today)**
 - A powerful building block for designing advanced data structures.

- **Fibonacci Heaps (Wednesday)**
 - A heavyweight and theoretically excellent priority queue.
Review: Priority Queues
Priority Queues

- A **priority queue** is a data structure that stores a set of elements annotated with *keys* and allows efficient extraction of the element with the least key.

- More concretely, supports these operations:
 - `pq.enqueue(v, k)`, which enqueues element `v` with key `k`;
 - `pq.find-min()`, which returns the element with the least key; and
 - `pq.extract-min()`, which removes and returns the element with the least key,
Binary Heaps

- Priority queues are frequently implemented as **binary heaps**.
 - *enqueue* and *extract-min* run in time $O(\log n)$; *find-min* runs in time $O(1)$.
- We're not going to cover binary heaps this quarter; I assume you've seen them before.
Priority Queues in Practice

- Many graph algorithms directly rely priority queues supporting extra operations:
 - **meld**(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their elements into a single priority queue.
 - **pq.decrease-key**(v, k'): Given a pointer to element v already in the queue, lower its key to have new value k'.
 - **pq.add-to-all**(Δk): Add Δk to the keys of each element in the priority queue (typically used with meld).

- In lecture, we'll cover binomial heaps to efficiently support meld and Fibonacci heaps to efficiently support meld and decrease-key.

- After the TAs ensure that it's not too hard to do so, you'll design a priority queue supporting efficient meld and add-to-all on the problem set.
Meldable Priority Queues

- A priority queue supporting the *meld* operation is called a **meldable priority queue**.

- *meld*\((pq_1, pq_2)\) destructively modifies \(pq_1\) and \(pq_2\) and produces a new priority queue containing all elements of \(pq_1\) and \(pq_2\).

```plaintext
\begin{align*}
\text{Melded Queue:} & & \quad 13 & & 16 & & 18 & & 19 & & 72 & & 24 & & 25 & & 137 \\
\end{align*}
```
Meldable Priority Queues

- A priority queue supporting the **meld** operation is called a **meldable priority queue**.
- **meld**(pq_1, pq_2) destructively modifies pq_1 and pq_2 and produces a new priority queue containing all elements of pq_1 and pq_2.

![Diagram](image_url)
Efficiently Meldable Queues

- Standard binary heaps do not efficiently support *meld*.

- **Intuition**: Binary heaps are complete binary trees, and two complete binary trees cannot easily be linked to one another.
Binomial Heaps

• The **binomial heap** is an efficient priority queue data structure that supports efficient melding.

• We'll study binomial heaps for several reasons:
 • Implementation and intuition is totally different than binary heaps.
 • Used as a building block in other data structures (Fibonacci heaps, soft heaps, etc.)
 • Has a beautiful intuition; similar ideas can be used to produce other data structures.
The Intuition: **Binary Arithmetic**
Adding Binary Numbers

- Given the binary representations of two numbers n and m, we can add those numbers in time $\Theta(\max\{\log m, \log n\})$.

```
  1 0 1 1 1 0
+ 1 1 1 1 1 1
```

```
  1 1 1 1 1 1
```
A Different Intuition

- Represent n and m as a collection of “packets” whose sizes are powers of two.
- Adding together n and m can then be thought of as combining the packets together, eliminating duplicates.
Why This Works

- In order for this arithmetic procedure to work efficiently, the packets must obey the following properties:
 - The packets must be stored in ascending/descending order of size.
 - The packets must be stored such that there are no two packets of the same size.
 - Two packets of the same size must be efficiently “fusable” into a single packet.
Building a Priority Queue

- **Idea:** Adapt this approach to build a priority queue.
- Store elements in the priority queue in “packets” whose sizes are powers of two.
- Store packets in ascending size order.
- We'll choose a representation of a packet so that two packets of the same size can easily be fused together.
Building a Priority Queue

- What properties must our packets have?
 - Sizes must be powers of two.
 - Can efficiently fuse packets of the same size.

As long as the packets provide $O(1)$ access to the minimum, we can execute \textit{find-min} in time $O(\log n)$.
Inserting into the Queue

- If we can efficiently meld two priority queues, we can efficiently enqueue elements to the queue.

- **Idea:** Meld together the queue and a new queue with a single packet.
Inserting into the Queue

- If we can efficiently meld two priority queues, we can efficiently enqueue elements to the queue.
- **Idea:** Meld together the queue and a new queue with a single packet.

Time required: $O(\log n)$ fuses.
Fracturing Packets

• If we have a packet with 2^k elements in it and remove a single element, we are left with $2^k - 1$ remaining elements.

• **Fun fact:** $2^k - 1 = 1 + 2 + 4 + \ldots + 2^{k-1}$.

• **Idea:** “Fracture” the packet into $k - 1$ smaller packets, then add them back in.
Fracturing Packets

- We can *extract-min* by fracturing the packet containing the minimum and adding the fragments back in.
Fracturing Packets

- We can **extract-min** by fracturing the packet containing the minimum and adding the fragments back in.
Fracturing Packets

- We can \textit{extract-min} by fracturing the packet containing the minimum and adding the fragments back in.

- Runtime is $O(\log n)$ fuses in \textit{meld}, plus fragment cost.
Building a Priority Queue

- What properties must our packets have?
 - Size must be a power of two.
 - Can efficiently fuse packets of the same size.
 - Can efficiently find the minimum element of each packet.
 - Can efficiently “fracture” a packet of 2^k nodes into packets of $1, 2, 4, 8, ..., 2^{k-1}$ nodes.

- What representation of packets will give us these properties?
Binomial Trees

• A **binomial tree of order** \(k \) **is** a type of tree recursively defined as follows:

 A binomial tree of order \(k \) is a single node whose children are binomial trees of order 0, 1, 2, ..., \(k - 1 \).

• Here are the first few binomial trees:
Binomial Trees

- **Theorem:** A binomial tree of order k has exactly 2^k nodes.

- **Proof:** Induction on k. Assuming that binomial trees of orders 0, 1, 2, ..., $k-1$ have 2^0, 2^1, 2^2, ..., 2^{k-1} nodes, then the number of nodes in an order-k binomial tree is

 $$2^0 + 2^1 + ... + 2^{k-1} + 1 = 2^k - 1 + 1 = 2^k$$

 So the claim holds for k as well. ■
Binomial Trees

- A **heap-ordered binomial tree** is a binomial tree whose nodes obey the heap property: all nodes are less than or equal to their descendants.

- We will use heap-ordered binomial trees to implement our “packets.”
Binomial Trees

- What properties must our packets have?
 - Size must be a power of two. ✓
 - Can efficiently fuse packets of the same size.
 - Can efficiently find the minimum element of each packet.
 - Can efficiently “fracture” a packet of 2^k nodes into packets of $1, 2, 4, 8, ..., 2^{k-1}$ nodes.
Binomial Trees

• What properties must our packets have?
 • Size must be a power of two. ✓
 • Can efficiently fuse packets of the same size.
 • Can efficiently find the minimum element of each packet.
 • Can efficiently “fracture” a packet of 2^k nodes into packets of 1, 2, 4, 8, ..., 2^{k-1} nodes.

Make the binomial tree with the larger root the first child of the tree with the smaller root.
Binomial Trees

What properties must our packets have?

- Size must be a power of two. ✓
- Can efficiently fuse packets of the same size. ✓
- Can efficiently find the minimum element of each packet. ✓
- Can efficiently “fracture” a packet of 2^k nodes into packets of 1, 2, 4, 8, ..., 2^{k-1} nodes.
Binomial Trees

What properties must our packets have?

- Size must be a power of two. ✓
- Can efficiently fuse packets of the same size. ✓
- Can efficiently find the minimum element of each packet. ✓
- Can efficiently “fracture” a packet of 2^k nodes into packets of $1, 2, 4, 8, ..., 2^{k-1}$ nodes. ✓
The Binomial Heap

- A **binomial heap** is a collection of heap-ordered binomial trees stored in ascending order of size.

- Operations defined as follows:
 - \textit{meld}(pq_1, pq_2): Use addition to combine all the trees.
 - Fuses \(O(\log n)\) trees. Total time: \(O(\log n)\).
 - \textit{pq.enqueue}(v, k): Meld \(pq\) and a singleton heap of \((v, k)\).
 - Total time: \(O(\log n)\).
 - \textit{pq.find-min}(): Find the minimum of all tree roots.
 - Total time: \(O(\log n)\).
 - \textit{pq.extract-min}(): Find the min, delete the tree root, then meld together the queue and the exposed children.
 - Total time: \(O(\log n)\).
Time-Out for Announcements!
Office Hours Update

- Keith's office hours are now moved to Gates 178 going forward – looks like we didn't actually have Hewlett 201 after lecture. 😊

- Thursday office hours changed from 7:30PM – 9:30PM, location TBA.

- As always, feel free to email us with questions!
Problem Set Two Graded

• Problem Set Two has been graded; will be returned at end of lecture.
• Rough solution sketches available up front!
Many of you have questions about Q2 on Problem Set Three.

For parts (iii) and (iv), assume the following:

- The basic data structure can be constructed in worst-case time \(O(n) \).
- The cost of a cut is worst-case \(O(\min\{|T_1|, |T_2|\}) \).

You don't need to justify these facts. We're mostly interested in seeing your amortized analyses.
Your Questions
“What's a popular data structure in place of map for military purposes, where guaranteed time of operations are required?”

Red/black trees are the gold standard here – they've got excellent worst-case performance and support fast insertions and deletions. Hash tables have expected $O(1)$ operations, but that requires good hash functions. Search “HashDoS” for an attack on many programming languages' implementations of hash tables.
"How do you determine out of how many fewer points a problem set will be worth for people working alone vs. in pairs? Are you happy with how the optional pairs system has worked thus far?"

For PS1, about 25% the class worked in pairs. For PS2, about 50% of the class worked in pairs.

I'm hoping to encourage people to work in pairs without punishing people who choose not to. I'm still tuning the buffer amount.
"Can you write a CS-themed musical for us?"

I'm thinking *Les Miserables* could be adapted for CS. Some sample songs:

“Server in the Cloud”
“Red and Black”
“Do you Hear the Balanced Tree?”
Back to CS166!
Analyzing Insertions

- Each `enqueue` into a binomial heap takes time $O(\log n)$, since we have to meld the new node into the rest of the trees.

- However, it turns out that the amortized cost of an insertion is lower in the case where we do a series of n insertions.
Adding One

- Suppose we want to execute $n++$ on the binary representation of n.
- Do the following:
 - Find the longest span of 1's at the right side of n.
 - Flip those 1's to 0's.
 - Set the preceding bit to 1.
- Runtime: $\Theta(b)$, where b is the number of bits flipped.
An Amortized Analysis

- **Claim:** Starting at zero, the amortized cost of adding one to the total is $O(1)$.
- **Idea:** Use as a potential function the number of 1's in the number.

$$\Phi = 2 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1$$
An Amortized Analysis

- **Claim:** Starting at zero, the amortized cost of adding one to the total is $O(1)$.
- **Idea:** Use as a potential function the number of 1's in the number.

\[\Phi = 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \]

Actual cost: 3
$\Delta \Phi$: -1
Amortized cost: 2
Properties of Binomial Heaps

- Starting with an empty binomial heap, the amortized cost of each insertion into the heap is $O(1)$, assuming there are no deletions.

- **Rationale:** Binomial heap operations are isomorphic to integer arithmetic.

- Since the amortized cost of incrementing a binary counter starting at zero is $O(1)$, the amortized cost of enqueueing into an initially empty binomial heap is $O(1)$.
Binomial vs Binary Heaps

• Interesting comparison:
 • The cost of inserting \(n \) elements into a binary heap, one after the other, is \(\Theta(n \log n) \) in the worst-case.
 • If \(n \) is known in advance, a binary heap can be constructed out of \(n \) elements in time \(\Theta(n) \).
 • The cost of inserting \(n \) elements into a binomial heap, one after the other, is \(\Theta(n) \), even if \(n \) is not known in advance!
A Catch

- This amortized time bound does not hold if \textbf{enqueue} and \textbf{extract-min} are intermixed.

- \textbf{Intuition:} Can force expensive insertions to happen repeatedly.
Question: Can we make insertions amortized $O(1)$, regardless of whether we do deletions?
Where's the Cost?

- Why does `enqueue` take time $O(\log n)$?
- **Answer**: May have to combine together $O(\log n)$ different binomial trees together into a single tree.
- **New Question**: What happens if we don't combine trees together?
- That is, what if we just add a new singleton tree to the list?
Lazy Melding

• More generally, consider the following lazy melding approach:

To meld together two binomial heaps, just combine the two sets of trees together.

• If we assume the trees are stored in doubly-linked lists, this can be done in time $O(1)$.

Diagram of binomial heap trees:

```
  3
  |   
  6   4
     |   
    8
```
The Catch: Part One

• When we use eager melding, the number of trees is $O(\log n)$.

• Therefore, \textit{find-min} runs in time $O(\log n)$.

• \textbf{Problem:} \textit{find-min} no longer runs in time $O(\log n)$ because there can be $\Theta(n)$ trees.
A Solution

- Have the binomial heap store a pointer to the minimum element.
- Can be updated in time $O(1)$ after doing a meld by comparing the minima of the two heaps.
A Solution

- Have the binomial heap store a pointer to the minimum element.
- Can be updated in time $O(1)$ after doing a meld by comparing the minima of the two heaps.
The Catch: Part Two

- Even with a pointer to the minimum, deletions might now run in time $\Theta(n)$.

- **Rationale**: Need to update the pointer to the minimum.
Resolving the Issue

- **Idea:** When doing an *extract-min*, coalesce all of the trees so that there's at most one tree of each order.

- Intuitively:
 - The number of trees in a heap grows slowly (only during an insert or meld).
 - The number of trees in a heap drops rapidly after coalescing (down to $O(\log n)$).
 - Can backcharge the work done during an *extract-min* to *enqueue* or *meld*.
Coalescing Trees

- Our eager melding algorithm assumes that
 - there is either zero or one tree of each order, and that
 - the trees are stored in ascending order.
- **Challenge:** When coalescing trees in this case, neither of these properties necessarily hold.
Wonky Arithmetic

- Compute the number of bits necessary to hold the sum.
 - Only $O(\log n)$ bits are needed.
- Create an array of that size, initially empty.
- For each packet:
 - If there is no packet of that size, place the packet in the array at that spot.
 - If there is a packet of that size:
 - Fuse the two packets together.
 - Recursively add the new packet back into the array.
Now With Trees!

- Compute the number of *trees* necessary to hold the *nodes*.
 - Only $O(\log n)$ *trees* are needed.
- Create an array of that size, initially empty.
- For each *tree*:
 - If there is no *tree* of that size, place the *tree* in the array at that spot.
 - If there is a *tree* of that size:
 - Fuse the two *trees* together.
 - Recursively add the new *tree* back into the array.
Analyzing Coalesce

• Suppose there are \(T \) trees.
• We spend \(\Theta(T) \) work iterating across the main list of trees twice:
 • Pass one: Count up number of nodes (if each tree stores its order, this takes time \(\Theta(T) \)).
 • Pass two: Place each node into the array.
• Each merge takes time \(O(1) \).
• The number of merges is \(O(T) \).
• Total work done: \(\Theta(T) \).
• In the worst case, this is \(O(n) \).
The Story So Far

• A binomial heap with lazy melding has these worst-case time bounds:
 • *enqueue*: $O(1)$
 • *meld*: $O(1)$
 • *find-min*: $O(1)$
 • *extract-min*: $O(n)$.

• These are *worst-case* time bounds. What about an *amortized* time bounds?
An Observation

- The expensive step here is \textit{extract-min}, which runs in time proportional to the number of trees.

- Each tree can be traced back to one of three sources:
 - An \textit{enqueue}.
 - A \textit{meld} with another heap.
 - A tree exposed by an \textit{extract-min}.

- Let's use an amortized analysis to shift the blame for the \textit{extract-min} performance to other operations.
The Potential Method

• We will use the potential method in this analysis.

• When analyzing insertions with eager merges, we set $\Phi(D)$ to be the number of trees in D.

• Let's see what happens if we use this Φ here.
Analyzing an Insertion

• To *enqueue* a key, we add a new binomial tree to the forest and possibly update the *min* pointer.
Analyzing an Insertion

- To **enqueue** a key, we add a new binomial tree to the forest and possibly update the min pointer.

 Actual time: $O(1)$. $\Delta \Phi$: +1

 Amortized time: $O(1)$.

`min`
Analyzing a Meld

- Suppose that we *meld* two lazy binomial heaps B_1 and B_2. Actual cost: $O(1)$.
- Let Φ_{B_1} and Φ_{B_2} be the initial potentials of B_1 and B_2.
- The new heap B has potential $\Phi_{B_1} + \Phi_{B_2}$ and B_1 and B_2 have potential 0.
- $\Delta \Phi$ is zero.
- Amortized cost: $O(1)$.
Analyzing a Find-Min

- Each `find-min` does $O(1)$ work and does not add or remove trees.
- Amortized cost: $O(1)$.
Analyzing Extract-Min

- Initially, we expose the children of the minimum element. This takes time $O(\log n)$.
- Suppose that at this point there are T trees. As we saw earlier, the runtime for the coalesce is $\Theta(T)$.
- When we're done merging, there will be $O(\log n)$ trees remaining, so $\Delta \Phi = -T + O(\log n)$.
- Amortized cost is:
 \[
 \begin{align*}
 O(\log n) + \Theta(T) + O(1) \cdot (-T + O(\log n)) \\
 &= O(\log n) + \Theta(T) - O(1) \cdot T + O(1) \cdot O(\log n) \\
 &= O(\log n).
 \end{align*}
 \]
The Overall Analysis

• The *amortized* costs of the operations on a lazy binomial heap are as follows:
 • *enqueue*: $O(1)$
 • *meld*: $O(1)$
 • *find-min*: $O(1)$
 • *extract-min*: $O(\log n)$

• Any series of e *enqueues* mixed with d *extract-mins* will take time $O(e + d \log e)$.
Why This Matters

- Lazy binomial heaps are a powerful building block used in many other data structures.
- We'll see one of them, the Fibonacci heap, when we come back on Wednesday.
- Assuming the TAs think it's reasonable, you'll see another (supporting add-to-all) on the problem set.
Next Time

• **The Need for decrease-key**
 • A powerful and versatile operation on priority queues.

• **Fibonacci Heaps**
 • A variation on lazy binomial heaps with efficient decrease-key.

• **Implementing Fibonacci Heaps**
 • ... is harder than it looks!