Fibonacci Heaps

You can submit
Problem Set 3 in
the box up front.




Outline for Today

e Review from Last Time

* Quick refresher on binomial heaps and lazy
binomial heaps.

« The Need for decrease-key
 An important operation in many graph algorithms.
 Fibonacci Heaps

» A data structure eftficiently supporting
decrease-Kkey.

 Representational Issues

 Some of the challenges in Fibonacci heaps.



A Personal Note: This is Exciting!



Review: (Lazy) Binomial Heaps



Building a Priority Queue

 Group nodes into “packets” with the following
properties:

Size must be a power of two.
Can efficiently fuse packets of the same size.

Can efficiently find the minimum element of
each packet.

Can efficiently “fracture” a packet of 2% nodes
into packets of 1, 2, 4, 8, ..., 2¥! nodes.



Binomial Trees

A binomial tree of order Kk is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order O, 1, 2, ..., k- 1.

e Here are the first few binomial trees:

@



Binomial Trees

A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

 We will use heap-ordered binomial trees to
implement our “packets.”

:



The Binomial Heap

A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

 Operations defined as follows:

« meld(pq:, pqz): Use addition to combine all the trees.
- Fuses O(log n) trees. Total time: O(log n).

« pg.enqueue(v, k): Meld pqg and a singleton heap of (v, k).
- Total time: O(log n).

 pq.find-min(): Find the minimum of all tree roots.
- Total time: O(log n).

 pq.extract-min(): Find the min, delete the tree root,
then meld together the queue and the exposed children.

- Total time: O(log n).



Lazy Binomial Heaps

A lazy binomial heap is a variation on a
standard binomial heap in which melds are
done lazily by concatenating tree lists together.

« Tree roots are stored in a doubly-linked list.

 An extra pointer is required that points to the
minimum element.

» extract-min eagerly coalesces binomial trees
together and runs in amortized time O(log n).



Coalescing Trees

%@@@@



Coalescing Trees

Total number of nodes: 15

(Can compute in time ©(T), where T
is the number of trees, if each tree is
tagged with its order)

Bits needed: 4

%@@@@



Coalescing Trees

A 17

%@@@@



Coalescing Trees

-

%@@@@




Coalescing Trees

LT [ ]

%@@@@



Coalescing Trees

LT [ ]

b q
@@@@



Coalescing Trees

I N e

@@@@



Coalescing Trees

L1 -1 1
i
5 4 1
7

@@@



Coalescing Trees

e I N

:

5 4 8
7

7

2 5 0 8 9

9 9




Coalescing Trees

i
@@




Coalescing Trees

;
g e ¢



Coalescing Trees




Coalescing Trees

L]

1~

SRS
o

go g



Coalescing Trees

[ L1 ~17]

go g



Coalescing Trees

7]




Coalescing Trees

7]




Coalescing Trees

P




The Overall Analysis

e Set ®(D) to be the number of trees in D.

 The amortized costs of the operations on a
lazy binomial heap are as tollows:

« enqueue: O(1)
« meld: O(1)
o find-min: O(1)
» extract-min: O(log n)
« Details are in the previous lecture.

» Let's quickly review extract-min's analysis.



Analyzing Extract-Min

Initially, we expose the children of the minimum
element. This takes time O(log n).

Suppose that at this point there are T trees. The
runtime for the coalesce is O(T).

When we're done merging, there will be O(log n)
trees remaining, so A® = -T + O(log n).

Amortized cost is
O(logn) + ©(T) + O(1) - (-T + O(log n))
= O(logn) + ©(T)-0(1) - T+ O(1) - O(log n)
= O(log n).



A Detail in the Analysis

e The amortized cost of an extract-min is
O(log n) + ©(T) + O(1) - (-T + O(log n))

Where do these O(log n) terms come from?

« First O(log n): Removing the minimum element
might expose O(log n) children, since the maximum
order of a tree is O(log n). /

« Second O(log n): Maximum number of trees after a
coalesce is O(log n).

A different intuition: L.et M(n) be the maximum
possible order of a tree in a lazy binomial heap.

Amortized runtime is O(M(n)).



The Need for decrease-key



Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Review: Dijkstra's Algorithm

* Dijkstra's algorithm solves the single-source
shortest paths (SSSP) problem in graphs with
nonnegative edge weights.




Dijkstra and Priority Queues

« At each step of Dijkstra's algorithm, we need to
do the following:

e Find the node at v minimum distance from s.

 Update the candidate distances of all the nodes
connected to v. (Distances only decrease in this step.)

» This first step sounds like an extract-min on a
priority queue.

« How would we implement the second step?



Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Review: Prim's Algorithm

 Prim's algorithm solves the minimum spanning
tree (MST) problem in undirected graphs.




Prim and Priority Queues

« At each step of Prim's algorithm, we need to
do the following:

 Find the node v outside of the spanning tree
with the lowest-cost connection to the tree.

« Update the candidate distances from v to nodes
outside the set S.

» This first step sounds like an extract-min
on a priority queue.

« How would we implement the second step?



The decrease-key Operation

 Some priority queues support the operation
pq.decrease-key(v, k), which works as follows:

Given a pointer to an element v in pq, lower its
key (priority) to k. It is assumed that Kk is less
than the current priority of v.

e This operation is crucial in efficient
implementations of Dijkstra's algorithm and
Prim's MST algorithm.



Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.



Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Dijkstra and decrease-key

» Dijkstra's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.

» Dijkstra's algorithm runtime is
onT, +nT,_ +mT, )



Prim and decrease-key

 Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.



Prim and decrease-key

 Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Prim and decrease-key

 Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Prim and decrease-key

 Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.




Prim and decrease-key

 Prim's algorithm can be implemented with a priority
queue using

 O(n) total enqueues,
« O(n) total extract-mins, and

 O(m) total decrease-keys.

 Prim's algorithm runtime is

O(n Tenq +nT .+ m Tdec)



Standard Approaches

* In a binary heap, enqueue, extract-min,
and decrease-key can be made to work
in time O(log n) time each.

» Cost of Dijkstra's / Prim's algorithm:
OonT,  +nT  +mT,)

= O(nlogn + nlogn+ mlog n)
= O(m log n)



Standard Approaches

* In a binomial heap, n enqueues takes
time O(n), each extract-min takes time
O(log n), and each decrease-key takes
time O(log n).

» Cost of Dijkstra's / Prim's algorithm:

O(n TenCI +nT__+m Tdec)

= O(n + nlogn + m log n)
= O(m log n)



Where We're Going

 The Fibonacci heap has these runtimes:

enqueue: O(1)
meld: O(1)
find-min: O(1)

extract-min: O(log n), amortized.

decrease-key: O(1), amortized.

« Cost of Prim's or Dijkstra's algorithm:

O(n Tenq +nT_ +m Tdec)

=0(n+nlogn+ m)
= O(m + n log n)

« This is theoretically optimal for a comparison-based
priority queue in Dijkstra's or Prim's algorithms.



The Challenge of decrease-key



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

bt



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

b



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

bt



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

ﬁgﬁég ggg )



A Simple Implementation

It is possible to implement decrease-key in
time O(log n) using lazy binomial heaps.

 Idea: “Bubble” the element up toward the root
of the binomial tree containing it and
(potentially) update the min pointer.

min

ﬁgﬁég gag )



The Challenge

 Goal: Implement decrease-key in
amortized time O(1).
« Why is this hard?

 Lowering a node's priority might break the
heap property.

e Correcting the imbalance O(log n) layers
deep in a tree might take time O(log n).

« We will need to change our approach.



Time-Out for Announcements!



Problem Set Four

 Problem Set Four goes out today; it's due
next Wednesday at the start of class.

* Play around with binomial heaps, lazy
binomial heaps, Fibonacci heaps, and
amortized analysis!

 We recommend working in pairs on this
one; stick around after class if you're
looking for a partner!



Problem Set Three Feedback

« Thanks for the feedback on PS3!

« Forgot to give feedback? Please try to do
SO as soon as possible.

« [ do take feedback seriously and I've
been reading the responses already.



Final OH Times/Places

» Keith's Monday OH will be from
3:30PM - 5:30PM in Gates 178.

« TA OH are Thursday from 7:30PM -
9:30PM in 160-318.

« And, of course, you can always email us
with questions!



HOW WILL
YOU RESPOND?

- GOURAGEOUS
SOMETIMES | FEEL LIKE PEOPLE AT (:"N\'E“SATI (,Ns

L3 »
STANFORD ARE NOT ONLY with Glenn Singleton
Stanford GSE Alum, award-winning author,
WPEREEHSITWE ﬂBﬂUT Rﬁcfu. B‘UT former Ivy League Admissions Director, :
_ " and President and Founder of Pacific Educational Group
ALSO HYPERCRITICAL. CEMEX
y Thursday, April 24th
7:00 - 9:00 pm
Etitﬁn;-ﬂg@@ﬂm [EEhATAe Stanford[LElayman Institute for Gender Rasearch  SPREES SAAAC Program m Urban Studies SAIO
Prosramiin| EennnistAGendersandts exualitygSmdies) EIAE] Inter-Sorority, Council The Stanford Democrats EAST House AASH

Metadiscussion about race. This is
particularly relevant in STEM fields.

Thursday, 7PM - 9PM in CEMEX.




Your Questions



“What program(s) do you use to make the
drawings on your lecture slides? It looks
like it takes forever.”

I'm just using the default
LibreOffice that comes with
Linux. I keep thinking I should
switch tools, but every animation
and drawing is different!




“Can you post an 'as-is' copy of your slides
before lecture starts? It's nice to be able to
go back and review a slide after you've
moved on from it.”

Sure! I keep meaning to do
this, but sometimes when
I'm heading over I forget

to update the website.




“Can you implement an efficient stack
using only two (or more) queues?”

You can implement a stack with two
queues, but to the best of my
knowledge there's no “efficient” (i.e.
amortized O(1)) way to do this. Let
me know if I'm mistaken!




“Until what age I need to procrastinate my
real life and study instead?”

You don't need to feel this way! If
you do, come talk to me and I can
offer some Life Advice™.




Back to CS1606!



The Challenge

 Goal: Implement decrease-key in
amortized time O(1).
« Why is this hard?

 Lowering a node's priority might break the
heap property.

e Correcting the imbalance O(log n) layers
deep in a tree might take time O(log n).

« We will need to change our approach.



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea

aff



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea



A Crazy Idea




A Crazy Idea




A Crazy Idea




A Crazy Idea




A Crazy Idea



A Crazy Idea

IR



A Crazy Idea

TIRE)



A Crazy Idea

 To implement decrease-key eftficiently:

 Lower the key of the specified node.

 If its key is greater than or equal to its
parent's key, we're done.

 Otherwise, cut that node from its parent and
hoist it up to the root list, optionally
updating the min pointer.

« Time required: O(1).

« This requires some changes to the tree
representation; more details later.



Tree Sizes and Orders

e Recall: A binomial tree of order k has 2k
nodes and the root has k children.

 Going forward, we'll say that the order
of a node is the number of children it
has.

e Concern: If trees can be cut, a tree of
order k might have many fewer than 2*
nodes.



The Problem

CiEvvEdbagdnd s



The Problem



The Problem

k+1 6 0




The Problem

k+1 6 0

Number of nodes: ©(k?)
Number of trees: @(n'/?)



The Problem

« Recall: The amortized cost of an
extract-min is O(M(n)), where M(n) is
the maximum order of a tree in the heap.

 With true binomial trees, this is O(log n).

« With our “damaged” binomial trees, this
can be O(n'?).

e We've lost our runtime bounds!



The Problem

« This problem arises because we have lost
one of the guarantees of binomial trees:

A binomial tree of order k has 2* nodes.

« When we cut low-hanging trees, the root
node won't learn that these trees are
missing.

« However, communicating this
information up from the leaves to the
root might take time O(log n)!



The Tradeoff

 If we don't impose any structural
constraints on our trees, then trees of
large order may have too few nodes.

 Leads to M(n) getting too high, wrecking our
runtime bounds for extract-min.

» If we impose too many structural
constraints on our trees, then we have to
spend too much time fixing up trees.

 Leads to decrease-key taking too long.



The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.



The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.

2] 3 6 4
3 48 7 97
545 8
7



The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.



The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.

2 @%
2 3 6 4
3 4 797
05 8




The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep
track of this fact.

¥



The Compromise

« Every non-root node is allowed to lose at most one child.

« If a non-root node loses two children, we cut it from its parent.
(This might trigger more cuts.)

 We will mark nodes in the heap that have lost children to keep

track of this fact.

2 1 % 2 3 0

3 6 4 4
70097 5



The Compromise

e To cut node v from its parent p:

e Unmark v.
« Cut v from p.

« If pis not already marked and is not the root
of a tree, mark it.

« If p was already marked, recursively cut p
from its parent.



The Compromise

e [f we do a few

decrease-keys, then
the tree won't lose @

“too many” nodes.
« If we do many 9 9 @ e
decrease-keys, the @) @ ®’ 7 (9 @
information

propagates to the 6 @ 6 @
root. e



The Compromise

e [f we do a few

decrease-keys, then
the tree won't lose @

“too many” nodes.
« If we do many 9 9 @ e
decrease-keys, the @) @ ®’ 7 (9 @

information

propagates to the D @ 6 @

root.



The Compromise

 If we do a few
decrease-keys, then
the tree won't lose
“too many” nodes.

* If we do many
decrease-Kkeys, the
information
propagates to the
root.




The Compromise

e If we do a few
decrease-keys, then
the tree won't lose @

“too many” nodes.
« If we do many - 9 @ e
decrease-keys, the 3] D (9 (@

information

propagates to the 0 @ @
root.



The Compromise

e If we do a few
decrease-keys, then
the tree won't lose @

“too many” nodes.
« If we do many 9 9 @ e
decrease-keys, the 3 a @ e

information

propagates to the 0 @ @
root.



The Compromise

e If we do a few
decrease-keys, then
the tree won't lose @

“too many” nodes.
« If we do many 9 @ e
decrease-keys, the a @ e

information
propagates to the @
root.



Assessing the Impact

« The amortized cost of an extract-min is
O(MM(n)), where M(n) is the maximum
possible order of a tree.

e This used to be O(log n) because our
trees had exponentially many nodes in
them.

« What is it now?



Two Extremes

If we never do any decrease-keys, then the
trees in our data structure are all binomial
trees.

Each tree of order k has 2% nodes in it, the
maximum possible order is O(log n).

On the other hand, suppose that all trees in the
binomial heap have lost the maximum possible
number of nodes.

In that case, how many nodes will each tree
have?



Maximally-Damaged Trees



Maximally-Damaged Trees

0



Maximally-Damaged Trees

I



Maximally-Damaged Trees

I

We can't cut any nodes
from this tree without
making the root node

have order 0.




Maximally-Damaged Trees
o0 @ 2
o 10
0



Maximally-Damaged Trees

@ 9 We can't cut any of the

root's children without
0 1 0

decreasing its order.




Maximally-Damaged Trees

9 We can't cut any of the
root's children without
decreasing its order.

N

However, we can cut this
node, leaving the root
node with two children.




Maximally-Damaged Trees

ie



Maximally-Damaged Trees

5P

0o 10
o



Maximally-Damaged Trees

@ e As before, we can't cut any
of the root's children
@ @ Q ? 9 without decreasing its order.

0o 10
o



Maximally-Damaged Trees

¢ 0

LT R E LR

As before, we can't cut any
of the root's children
without decreasing its order.

However, any nodes below

the second layer are fair
game to be eliminated.




Maximally-Damaged Trees

5P

0o 10
o



Maximally-Damaged Trees
o0 @ ﬁ 3
LN 0 JNEON 0 JP
1 o

o



Maximally-Damaged Trees

tAdN
0



Maximally-Damaged Trees

0 3
6446 1

0 -

Y

We can't cut this node
without triggering a
cascading cut, so
we're done.




Maximally-Damaged Trees

RYYY

0 ¢



Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

0




Maximally-Damaged Trees

RTSYTIRIT

o @ 2
oy




Maximally-Damaged Trees

RYYY




Maximally-Damaged Trees

"diede ol
N 0 BN 002
o C

A maximally-damaged tree of
order Kk is a node whose children

are maximally-damaged trees of
orders

0 ¢

0,0,1,2,3, .. k-2.




Maximally-Damaged Trees

"1disde ol
N 0 BN 602
o C




Maximally-Damaged Trees

14 e sl
0 o o0 602
0 C




Maximally-Damaged Trees




Maximally-Damaged Trees




Maximally-Damaged Trees

Claim: The minimum
number of nodes in a
tree of order k is Fx+>2




Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1
T e



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1
T e



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1
T e




Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0o 1
O % -




Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1 S k+1 ...
O g g 9
0 0 1 7 k2 | K

----------------------------------------



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1 S k+1 ...
O g g 9
0 0 1 7 k2 | K

----------------------------------------



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1 S k+1 ...
O g g 9
0 0 1 7 k2 | K

----------------------------------------



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1 S k+1 ...
O g g 9
0 0 1 7 k2 | K

----------------------------------------



Maximally-Damaged Trees

e Theorem: The number of nodes in a
maximally-damaged tree of order k is Fk+2.

 Proof: Induction.

0 1 S k+1 ...
O g g 9
0 0 1 7 k2 | K

----------------------------------------



(p-bonacci Numbers

 Fact: For n = 2, we have Fn = ™4, where @ is
the golden ratio:

¢ = 1.61803398875...

« Claim: In our modified data structure, we have
M(n) = O(log n).

 Proof: In a tree of order k, there are at least
Frx+2 = @* nodes. Therefore, the maximum
order of a tree in our data structure is
log,n = O(logn).



Fibonacci Heaps

« A Fibonacci heap is a lazy binomial heap
where decrease-key is implemented using
the earlier cutting-and-marking scheme.

 Operation runtimes:
 enqueue: O(1)

meld: O(1)

find-min: O(1)

» extract-min: O(log n) amortized

 decrease-key: Up next!



Analyzing decrease-key

* In the best case, decrease-key takes
time O(1) when no cuts are made.

* In the worst case, decrease-key takes
time O(C), where C is the number of cuts
made.

e What is the amortized cost of a
decrease-Kkey?



Refresher: Our Choice of ®

* In our amortized analysis of lazy binomial
heaps, we set ® to be the number of trees in
the heap.

« With this choice of ®, we obtained these
amortized time bounds:

 enqueue: O(1)

« meld: O(1)

e find-min: O(1)

» extract-min: O(log n)



Rethinking our Potential

 Intuitively, a cascading cut only occurs if we have a
long chain of marked nodes.

« Those nodes were only marked because of previous
decrease-key operations.

 Idea: Backcharge the work required to do the
cascading cut to each preceding decrease-key that
contributed to it.

» Specifically, change ® as follows:
® = #trees + #marked

* Note: Since only decrease-key interacts with marked
nodes, our amortized analysis of all previous
operations is still the same.



The (New) Amortized Cost

« Using our new O, a decrease-key makes C cuts, it

« Marks one new node (+1),
e Unmarks C nodes (-C), and
 Adds C tree to the root list (+C).

« Amortized cost is
OC) + 0(1) - AD
=0C)+01)-1-Cc+0)
=0(C)+0(1) -1
= O(C) + 0(1)
= 0(C)
« Hmmm... that didn't work.




The Trick

 Each decrease-key makes extra work
for two future operations:

e Future extract-mins that now have more
trees to coalesce, and

 Future decrease-keys that might have to do
cascading cuts.

« We can make this explicit in our potential
function:

® = #trees + 2-#marked



The (Final) Amortized Cost

« Using our new O, a decrease-key makes C cuts, it

« Marks one new node (+2),
e Unmarks C nodes (-2C), and
 Adds C tree to the root list (+C).

« Amortized cost is
OC) + 0(1) - AD
=0C)+01)-2-2C+ 0C)
=0(C)+0(1)-(2-0)
= 0(C) - O(C)
= 0(1)
« We now have amortized O(1) decrease-key!




The Story So Far

 The Fibonacci heap has the following
amortized time bounds:

« enqueue: O(1)

e find-min: O(1)

meld: O(1)

 decrease-key: O(1) amortized

o extract-min: O(log n) amortized
« This is about as good as it gets!



The Catch: Representation Issues



Representing Irees

 The trees in a Fibonacci heap must be
able to do the following:

 During a merge: Add one tree as a child of
the root of another tree.

 During a cut: Cut a node from its parent in
time O(1).

e Claim: This is trickier than it looks.



Representing Irees




Representing Irees




Representing Irees

et

6600 HENE




Representing Irees

66 o HEHNE




Representing Irees

o -

66 o HEME




Representing Irees

o =

66 o HEEE




Representing Irees

A @ 4

66 o HEEE

Finding this
pointer might take
time ©(log n)!




The Solution



The Solution

This is going to be weird.
Sorry.



The Solution

N



The Solution




The Solution

Each node stores a
pointer to its parent.

B DEAER




The Solution

Each node stores a
pointer to its parent.

B D

The children of each
node are in a circularly,
doubly-linked list.

=l




The Solution

The parent
Ea}ch nodg stores a stores a pointer
pointer to its parent. to an arbitrary

child.

B D

The children of each
node are in a circularly,
doubly-linked list.

=l




The Solution




The Solution




The Solution




The Solution

To cut a node from its parent, if it
isn't the representative child, just
splice it out of its linked list.




The Solution




The Solution




The Solution




The Solution




The Solution

If it is the representative, change
the parent's representative child to
be one of the node's siblings.




Awful Linked Lists

* Trees are stored as follows:
 Each node stores a pointer to some child.
« Each node stores a pointer to its parent.
 Each node is in a circularly-linked list of its siblings.

« Awful, but the following possible are now
possible in time O(1):

« Cut a node from its parent.
« Add another child node to a node.

« This is the main reason Fibonacci heaps are so
complex.



Fibonacci Heap Nodes

« Each node in a Fibonacci heap stores

* A pointer to its parent.

« A pointer to the next sibling.

« A pointer to the previous sibling.
« A pointer to an arbitrary child.

« A bit for whether it's marked.

Its order.

Its key.
Its element.



In Practice

 In practice, Fibonacci heaps are slower
than other heaps.

« Why?
 Huge memory requirements per node.
 High constant factors on all operations.



In Theory

« That said, Fibonacci heaps are worth
knowing about for several reasons:

« Clever use of a two-tiered potential function
shows up in lots of data structures.

 Implementation of decrease-key forms the
basis for many other advanced priority
queues.

* Gives the theoretically optimal
comparison-based implementation of Prim's
and Dijkstra's algorithms.



Summary

» decrease-key is a useful operation in many graph
algorithms.

 Implement decrease-key by cutting a node from its
parent and hoisting it up to the root list.

 To make sure trees of high order have lots of nodes,
add a marking scheme and cut nodes that lose two
or more children.

 Represent the data structure using Awful Linked
Lists.

 Can prove that the number of trees is O(log n) by
most maximally damaged trees in the heap.



Next Time

 Splay Trees

« Amortized-efficient balanced trees.
» Static Optimality

 Is there a single best BST for a set of data?
 Dynamic Optimality

» Is there a single best BST for a set of data if
that BST can change over time?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232

